
An Asymptotically Optimal Multiversion B�Tree

Bruno Beckery Stephan Gschwindy Thomas Ohlery

Bernhard Seegerz Peter Widmayerx

Abstract

In a variety of applications� we need to keep track of the development of a data

set over time� For maintaining and querying these multiversion data e�ciently�

external storage structures are an absolute necessity� We propose a multiversion
B�tree that supports insertions and deletions of data items at the current version�

and range queries and exact match queries for any version� current or past� Our

multiversion B�tree is asymptotically optimal in the sense that the time and space

bounds are asymptotically the same as those of the �single version� B�tree in the

worst case� The technique we present for transforming a �single version� B�tree

into a multiversion B�tree is quite general� it applies to a number of hierarchical

external access structures with certain properties directly� and it can be modi�ed

for others�

yisys software gmbh	 Ensisheimer Str� �a	 D�
���� Freiburg i� Br�
zFachbereich Mathematik	 Fachgebiet Informatik	 Philipps�Universit
at	 D������ Marburg
xInstitut f
ur Theoretische Informatik	 ETH Zentrum	 CH����� Z
urich

�

� Introduction

The importance of maintaining data not only in their latest version� but also to keep

track of their development over time has been widely recognized �Tansel et al��
�����

Version data in engineering databases �Katz�
���� and time oriented data �Cli�ord and

Ariav�
���� are two prime examples for situations in which the concepts of versions

and time are visible to the user� In multiversion concurrency control �Barghouti and

Kaiser�
��
� Bernstein et al��
��
�� these concepts are transparent to the user� but

they are used by the system �e�g� the scheduler� for concurrency control and recovery

purposes� In this paper� we are concerned with access structures that support version

based operations on external storage e�ciently� We follow the convention of Bernstein

et al� �
��
�� Driscoll et al� �
���� in that each update to the data creates a new

version� note that this di�ers from the terminology in engineering databases� where

an explicit operation exists for creating versions� and versions of design objects are

equipped with semantic properties and mechanisms � such as inheritance or change

propagation� Our choice of creating a new version after each update turns out not to

be restrictive� in the sense that the data structuring method we propose can be easily

adapted to create versions only on request� without loss of e�ciency�

We are interested in asymptotically worst�case e�cient access structures for external

storage that support at least insertions� deletions� exact match queries �associative

search� � the dictionary operations �Sedgewick�
���� Mehlhorn and Tsakalidis�
����

Gonnet and Baeza�Yates�
��
� �� and range queries in addition to application speci�c

operations like purging of old enough versions in concurrency control� That is� we aim

at a theoretical understanding of the fundamentals of multiversion access to data� with

little attention to constant factors �studies with this �avor have attracted interest in

other areas� too �Kanellakis et al��
���� Vitter�
��
��� We limit our discussion to

the situation in which a change can only be applied to the current version� whereas

queries can be performed on any version� current or past� Some authors call this a

management problem for partially persistent data� we call an access structure that

supports the required operations e�ciently a multiversion structure�

The problem in designing a multiversion access structure lies in the fact that data are on

external storage� Formain memory� there is a recipe for designing a multiversion struc�

ture� given a single version structure� More precisely� any single version main memory

data structure in a very general class� based on pointers from record to record� can be

�

transformed into a multiversion structure� with no change in the amortized asymptotic

worst�case time and space costs� by applying a general technique �Driscoll et al��
�����

For the special case of balanced binary search trees� this e�ciency is achieved even in

the worst case per operation � clearly a perfect result�

Given quite a general recipe for transforming single version main memory data struc�

tures into multiversion structures� it is an obvious temptation to apply that recipe

accordingly to external access structures� This can be done by simply viewing a block

in the external structure as a record in the main memory structure� At �rst glance�

this models block access operations well� unfortunately� it does not model storage space

appropriately� The size of a block is not taken into consideration� That is� a block is

viewed to store a constant number of data items� and the constant is of no concern�

Even worse� the direct application of the recipe consumes one block of storage space

for each data item� However� no external data structure can ever be satisfactory unless

it stores signi�cantly more than one data item in a block on average� balanced struc�

tures� such as the B�tree variants� actually require to store in each block at least some

constant fraction of the number of items the block can hold �the latter being called

the block capacity b�� As a consequence� the space e�ciency of this approach is clearly

unacceptable� and this also entails an unacceptable time complexity�

It is the contribution of this paper� to propose a technique for transforming single

version external access structures into multiversion structures� at the cost of a constant

factor in time and space requirements� where the block capacity b is not considered

to be a constant� That is� the asymptotic bounds for the worst case remain the same

as for the corresponding single version structure� but the involved constants change�

We call such a multiversion structure asymptotically optimal � because the asymptotic

worst�case bounds certainly cannot decrease by adding multiversion capabilities to a

data structure� Our result holds for a certain class of hierarchical external access

structures� It is worth noting that this class contains the B�tree and its variants� not

only because the B�tree is an ubiquitous external data structure� but also because an

asymptotically optimal multiversion B�tree had not been obtained so far� despite the

considerable interest this problem received in the literature� Since we are interested

primarily in the asymptotic e�ciency� we will discuss the involved constants only later

in the paper� Multiversion structures with excellent asymptotic worst�case bounds for

insert and exact match operations �but not delete� and for related problems had been

�A preliminary version of this paper has been published in �Becker et al�	 ������

	

obtained earlier� we will discuss them in some detail later in the paper�

For the sake of concreteness� we base the presentation of our technique in this paper

on B�trees� it is implicit how to apply our technique to other hierarchical structures�

Each data item stored in the tree consists of a key and an information part� access to

data items is by key only� and the keys are supposed to be taken from some linearly

ordered set� Let us restrict our presentation to the following operations�

� insert �key�info�� insert a record with given key and info component into the

current version� this operation creates a new version�

� delete �key�� delete the �unique� record with given key from the current version�

this operation creates a new version�

� exact match query �key�version�� return the �unique� record with given key in

the given version� this operation does not create a new version�

� range query �lowkey�highkey�version�� return all records whose key lies between

the given lowkey and the given highkey in the given version� this operation does

not create a new version�

Before brie�y reviewing the previous approaches of designing a B�tree that supports

these operations e�ciently� let us state the strongest e�ciency requirements that a

multiversion B�tree can be expected to satisfy� To this end� consider a sequence of N

update operations �insert or delete�� applied to the initially empty structure� and let

mi be the number of data items present after the i�th update �we say� in version i��

� � i � N � Then a multiversion B�tree with the following properties holding for each

i �all bounds are for the worst case� is the best we can expect�

� for the �rst i versions� altogether the tree requires O�i�b� blocks of storage space�

� the �i �
��th update �insertion or deletion� accesses and modi�es O�logbmi�

blocks�

� an exact match query in version i accesses O�logbmi� blocks�

� a range query in version i that returns r records accesses O�logbmi�r�b� blocks�

The reason why these are lower bounds is the following� For a query to any version i�

the required e�ciency is the same as if the data present in version i would be maintained

�

separately in its own B�tree� For insertions and deletions on the current version� the

required e�ciency is the same as for a �single version� B�tree maintaining the data

set valid for the current version� In other words� a better multiversion B�tree would

immediately yield a better B�tree�

This paper presents a multiversion B�tree structure satisfying these e�ciency require�

ments� under the assumption that in a query� access to the root of the requested B�tree

has only constant cost �we could even tolerate a cost of O�log
b
mi�� to be asymp�

totically precise�� We have thus separated the concerns of� �rst� identifying the re�

quested version� and� second� querying the requested version �that is� the root of the

appropriate B�tree�� This separation of concerns makes sense because in an appli�

cation of a multiversion structure� access to the requested version may be supported

from the context� such as in concurrency control� For instance� the block address of

the requested root block may directly be known �possibly from previous accesses� or

only a constant number of versions might be relevant for queries� such that the root

block can be accessed in time O�
�� This assumption has been made in other papers

�Driscoll et al��
���� Lanka and Mays�
��
�� allowing the investigation to concentrate

on querying within a version� In this paper� we follow this view and try to take advan�

tage of a possibly direct version access for querying a version� We therefore concern

ourselves with ways to identify the requested version only later� with little emphasis�

since any of a number of search techniques can be applied for this purpose� Note that

if we do not separate these issues� but instead assume that the root of the requested B�

tree needs to be identi�ed through a search operation� ��log
b
N� instead of ��log

b
mi�

is a lower bound on the run�time of a query� since one item out of as many as N items

needs to be found�

In building multiversion structures� there is a general tradeo� between storage space�

update time and query time� For instance� building an extra copy of the structure

at each update is extremely slow for updates and extremely costly in space� but ex�

tremely fast for queries� Near the other extreme� Kolovson and Stonebraker �
����

view versions �time� as an extra dimension and store
�dimensional version intervals

in ��dimensional space in an R�tree� As a consequence of using an R�tree� they can

also maintain
�dimensional key intervals �and not only single keys�� This gives good

storage space e�ciency� but query e�ciency need not be as good� because the R�tree

gives no guarantee on selectivity� That is� even if access to version i is taken care of in

the context� the time to answer a query on version i does not depend on the number

�

of items in that version only� but instead on the total number of all updates� We will

discuss other multiversion B�trees suggested in the literature in Section �� none of them

achieves asymptotically optimal performance in time and space�

In the next section� we present an optimal multiversion B�tree� Our description suggests

a rather general method for transforming hierarchical external data structures into

optimal multiversion structures� provided that operations proceed in a certain way

along paths between the root and the leaves� But even if the external single version

data structure does not precisely follow the operation pattern we request �as in the

case of R�trees� for instance�� we conjecture that the basic ideas carry over to an extent

that makes a corresponding multiversion structure competitive and useful� Section �

provides an e�ciency analysis of our multiversion B�tree� and Section 	 adds some

thoughts around the main result� Section � puts the obtained result into perspective�

by comparing it with previous work� and Section � concludes the paper�

� An Optimal Multiversion B�tree

We present our technique to transform single version external access structures into

multiversion structures at the example of the leaf�oriented B�tree�

��� The Basic Idea

To achieve the desired behavior� we associate insertion and deletion versions with

items� since items of di�erent lifespans need to be stored in the same block� Let � key�

in version� del version� info � denote a data item� stored in a leaf� with a key that

is unique for any given version� an associated information� and a lifespan from its

insertion version in version to its deletion version del version� Similarly� an entry in

an inner node of the tree is denoted by � router� in version� del version� reference ��

the router� together with the in version and del version information on the referenced

subtree� guides the search for a data item� For example� the B�tree uses a separator

key and the R�tree uses a rectangle as a router�

From a bird�s eye view� the multiversion B�tree is a directed acyclic graph of B�tree

nodes that results from certain incremental changes to an initial B�tree� Especially� the

multiversion B�tree embeds a number of B�trees� it has a number of B�tree root nodes

that partition the versions from the �rst to the current one in such a way that each

B�tree root stands for an interval of versions� A query for a given version can then be

answered by entering the multiversion B�tree at the corresponding root�

Each update �insert or delete operation� creates a new version� the i�th update creates

version i� An entry is said to be of version i� if its lifespan contains i� A block is said to

be live if it has not been copied� and dead otherwise� In a live block� deletion version

� for an entry denotes that the entry has not yet been deleted at present� in a dead

block� it indicates that the entry has not been deleted before the block died� For each

version i and each block A except the roots of versions� we require that the number

of entries of version i in block A is either zero or at least d� where b � k � d for block

capacity b and some constant k �assume for simplicity that b� k� d are all integers and

b is the same for directory and data blocks�� we call this the weak version condition�

Operations that do not entail structural changes are performed in the straightforward

way that can be inferred from the single version structure by taking the lifespan of

entries into account� That is� an entry inserted by update operation i into a block

carries a lifespan of �i� �� at the time of insertion� deletion of an entry by update

operation i from a block changes its del version from � to i�

Structural changes are triggered in two ways� First� a block over�ow occurs as the

result of an insertion of an entry into a block that already contains b entries� A block

under�ow� as e�g� in B�trees� cannot occur� since entries are never removed from blocks�

However� the weak version condition may be violated in a non�root block as a result of

a deletion� such a weak version under�ow occurs� if an entry is deleted in a block with

exactly d current entries� Moreover� we say that a weak version under�ow occurs in the

root of the present version if there is only one live entry �except for the pathological

case in which the tree contains only one record in the present version� then� we do not

speak of a weak version under�ow��

The structural modi�cation after a block over�ow copies the block and removes all but

the current entries from the copy� We call this operation a version split� it is comparable

to a time split at the current time in Lomet and Salzberg �
����� equivalently� it may

be compared to the node copying operation of Driscoll et al� �
����� In general� a

copy produced by this version split may be an almost full block� In that case� a few

subsequent insertions would again trigger a version split� resulting in a space cost of

 �
� block per insertion� To avoid this and the similar phenomenon of an almost

empty block� we request that immediately after a version split� at least � � d�
 insert

operations or delete operations are necessary to arrive at the next block over�ow or

�

version under�ow in that block� for some constant � to be de�ned more precisely in the

next section �assume for simplicity that � �d is integer�� As a consequence� the number

of current entries after a version split must be in the range from �
� �� �d to �k� �� �d�

we call this the strong version condition� If a version split leads to less than �
 � �� � d

entries � we say� a strong version under�ow occurs �� a merge is attempted with a

copy of a sibling block containing only its current entries� If necessary� this merge must

be followed by a version independent split according to the key values of the items in

the block � a key split � Similarly� if a version split leads to more than �k� �� � d entries

in a block � we say� a strong version over�ow occurs �� a key split is performed�

��� An example

To illustrate the basic ideas described above� let us discuss the following example of

a multiversion B�tree that organizes records with an integer key� The initial situation

�i�e� �rst version� of our multiversion B�tree is given in Fig�
a�

For the sake of simplicity of our example� we assume that already

 data records are

in the �rst version� The multiversion B�tree consists of three blocks� a root R and two

leaves A and B� The parameters of the multiversion B�tree are set up in the following

way� b � �� d � �� and � � ���� Hence� after a structural change� a new block contains

at least three and at most �ve current entries�

2nd version

A

<10,1,*>
<15,1,*>

<35,1,*>

<25,1,*>
<30,1*>

<40,2,*>

R

<45,1,*,B>
<10,1,*,A>

A

<10,1,*>
<15,1,*>

<35,1,*>

<25,1,*>
<30,1*>

B

<45,1,*>
<55,1,*>
<65,1,*>
<70,1,*>
<75,1,*>
<80,1,*>

3rd version

B

<45,1,*>
<55,1,*>

<70,1,*>
<75,1,*>
<80,1,*>

<65,1,3>

(a) (b)

Fig� �� Development of the multiversion B�tree up to the 	rd version

�

The �nd version is created by the operation insert�	��� adding a new entry to block

A� In Fig�
b� for the �nd and the �rd version� the result of the corresponding update

operation is shown by depicting the block which has been modi�ed� The next operation

delete���� creates the �rd version� As shown in Fig�
b� for the deletion of a record�

the deletion version of the corresponding entry is set to the current version� overwriting

the � marker�

To be able to illustrate di�erent under�ow and over�ow situations� let us assume further

updates � delete����� delete�
��� delete���� and delete���� � resulting in the
th version

of the multiversion B�tree �Fig� �a��

Now� let us consider two di�erent cases for creating the �th version of the multiversion

B�tree� illustrating the various types of structural changes�

In the �rst case� we consider the operation insert��� to create the �th version of the

multiversion B�tree� This results in a block over�ow of block A that is eliminated by

performing a version split on that block� All current entries of block A are now copied

into a new live block A!� Because block A! ful�lls the strong version condition� no

further restructuring is needed� Eventually� the parent block R is updated accordingly

�Fig� �b��

A

<10,1,*>
<15,1,5>

<35,1,4>
<40,2,*>

<30,1,6>
<25,1,7>

B

<45,1,*>
<55,1,*>

<70,1,*>
<75,1,*>
<80,1,*>

<65,1,3>

R

<45,1,*,B>
<10,1,*,A>

(a)

R

<45,1,*,B>

A

<10,1,*>
<40,2,*>

A

<10,1,*>

<40,2,*>

<15,1,5>
<25,1,7>
<30,1,6>
<35,1,4>

< 5,8,*>

<10,1,8,A>

(b)

B

<45,1,*>
<55,1,*>

<70,1,*>
<75,1,*>
<80,1,*>

<65,1,3>

A*

< 5,8,*,A*>

Fig�
� �a� The �th version of the multiversion B�tree and

�b� the multiversion B�tree after version split of block A

In the second case� the �th version is created by operation delete�	��� which leads to

�

a weak version under�ow� i�e� the number of current entries in block A is less than d

����� Then� a version split is performed on block A� copying the current entries of

block A into a new block A!� Now a strong version under�ow occurs in A!� which

is treated by merging this block with a block resulting from version split of a sibling

block� In our example� B is found to be a sibling� Accordingly� by version split a

temporary block B! is created from B and blocks A! and B! are merged� As in our

example� a block resulting from a merge can violate the strong version condition� To

treat the strong version over�ow� a key split is performed creating two new blocks C

and D� Because a key split is always balanced for a B�tree� blocks C and D ful�ll

the strong version condition� Eventually� the parent block R has to be updated by

overwriting the � of the entries which refer to block A and B and inserting two new

current entries� referring to blocks C and D �Fig� ��� Now� blocks A and B are dead

and blocks C and D are live�

A

<10,1,*>
<15,1,5>
<25,1,7>
<30,1,6>
<35,1,4>
<40,2,8>

R

<10,1,8,A>
<45,1,8,B>
<10,8,*,C>
<70,8,*,D>

B

<45,1,*>
<55,1,*>

<70,1,*>
<75,1,*>
<80,1,*>

<65,1,3>

<10,1,*>
<45,1,*>
<55,1,*>

C

<70,1,*>
<75,1,*>
<80,1,*>

D

Fig� 	� Structural changes after weak version under�ow of block A

Now let us consider an exact match query in the multiversion B�tree of Fig� �� A

record with key �� is requested in version �� First� the root of version � is accessed� in

our example this is block R� We consider only the entries in the root that belong to

version �� Among these entries we choose the one whose separator key is the greatest

key lower than the search key �� and follow the corresponding reference to the next

block� In our example� the search is directed to block A� Eventually� the desired entry

����
�
� is found in block A�

As mentioned before� our multiversion B�tree is not a tree� but a directed acyclic graph�

In general� several root blocks may exist� This and the e�ect of structural changes in

root blocks is illustrated in �gures 	� �� and ��

<10,1,8,A>
<45,1,8,B>
<10,8,11,C>
<70,8,15,D>

<70,18,*,G>

<10,11,*,E>
<70,15,18,F>

R1 R2

<10,11,*,E>
<70,18,*,G>

<10,1,8,A>
<45,1,8,B>
<10,8,11,C>

R1

<70,8,15,D>
<10,11,*,E>
<70,15,18,F>

Fig�
� Creation of two roots R�� R
 by version split of root block R�

Fig� 	 shows an overfull root block R
 and the two new roots R
� R� resulting from

version split of block R
� Block R� is the root of the current version� version
��

whereas block R
 is the root of versions
 to

� References to roots R
 and R� can

be stored in an appropriate data structure� supporting access to the root blocks over

versions�

<25,18,*,B>
<10,18,*,A>

<70,14,*,F>
<55,14,25,E>

R1

<55,25,*,G>

<40,21,*,D>
<30,21,*,C>

<10,25,*,R3>
<40,25,*,R4>

R2

<25,18,*,B>
<10,18,*,A>

R3

<30,21,*,C> <70,14,*,F>
<55,25,*,G>
<40,21,*,D>

R4

Fig� �� Key split after strong version over�ow of root block R�

Fig� � illustrates the case that after the version split a strong version over�ow occurs

and a key split becomes necessary� In this case� a new root block �R�� is allocated�

�

which stores entries referring to the two blocks R� and R	 resulting from key split of

the copy of root R
� By that� the height of the subtree valid for the current version�

version ��� has grown�

<10,32,*,I>
<40,21,*,D>

<70,14,*,F>
<55,25,*,G>

R5

R3

<30,21,32,C>

<10,32,*,I>

<25,18,29,B>
<10,18,29,A>

<10,29,32,H>
<70,14,*,F>
<55,25,*,G>
<40,21,*,D>

R4

R2

<10,25,32,R3>
<40,25,32,R4>

Fig� �� Weak version under�ow of root block R

Fig� � shows the shrinking of a subtree� By several data block merges� the number of

current entries in R� has shrunk� a weak version under�ow occurred� To handle this

under�ow� block copies of R� and R	 are created and merged into a block R�� Since

this causes a weak version under�ow of block R�� R� becomes the new root block valid

for the current version�

��� The multiversion operations in detail

To make these restructuring operations more precise� let us now present the main

points in a semi�formal algorithmic notation� In order to present the main idea without

obstructing irrelevant details� we assume that an exact match query in the single version

structure returns a block in which the searched item is stored if it is present in the

structure� For the same reason� we ignore the treatment of the end of the recursion in

our operations� when a change propagates up to the root of the tree�

To insert a data item� we proceed as follows�

insert key k� current version i� information info �

�

fassume k is not yet presentg

exact match query for k in version i leads to block A�

blockinsert � k� i� �� info � into A�

Here� blockinsert is de�ned as follows�

blockinsert entry e into block A�

enter e into A�

fthis may momentarily lead to a block over�ow in A� conceptually�

such an over�ow is eliminated immediatelyg

if block over�ow of A then

version split� copy current entries of A into a new block B�

blockinsert entry referencing B into father of A�

if strong version under�ow of B then

merge B

elsif strong version over�ow of B then

treat strong version over�ow of B�

Note that after a version split� the deletion version stored in the father entry referring

to the dead block must be adjusted to represent the version of the version split� in

order to guide subsequent searches correctly�

Merging a block makes use of the fact that a suitable sibling can always be found in

the access structure�

merge block B�

identify a sibling D of B to be merged�

version split� copy current entries of D into a new block E�

unite B and E into B and discard E�

if strong version over�ow of B then

treat strong version over�ow of B

fno weak version under�ow possible in father of Bg

else

adapt router to B in father of B�

check weak version under�ow of father of B�

	

Essentially� a strong version over�ow is treated by a key split of the entries according

to their key or router values�

treat strong version over�ow of block A�

key split� distribute entries of A evenly among A and B�

adapt router to A in father of A�

blockinsert entry referencing B into father of A�

A weak version under�ow leads to a version split and a merge�

check weak version under�ow of block A�

if weak version under�ow of A then

version split� copy current entries of A into a new block B�

blockinsert entry referencing B into father of A�

merge B�

This completes the description of the insertion of an item into a block� To delete an

item� we proceed as follows�

delete key k� current version i fassume k is presentg�

exact match query for k in version i leads to block A�

blockdelete k� i from A�

blockdelete key k� version i from block A�

change entry � k� i
�

� �� info � into � k� i
�

� i� info � in A�

check weak version under�ow of A�

This completes the more detailed presentation of update operations� Let us repeat

that the multiversion structure de�ned in this way is not a tree� but a directed acyclic

graph� In general� more than one root block may exist� Since the number of root blocks

to be expected is very small� maintaining these blocks is not a major data organization

problem� see Section 	 for a suggestion�

In the next section� we show in an analysis that the basic operations actually do lead

to the desired behavior�

�

� E�ciency Analysis

Recall that a block is live if it was not copied up to the current version� dead other�

wise� N is the number of update operations performed on the data structure from the

beginning up to the current version� mi is the number of data items present in version

i�

What are the restrictions for the choice of k and �" First� after a key split � the

resulting blocks must ful�ll the strong version condition� Before a key split on a block

A is performed� A contains at least �k� �� � d�
 entries� After the key split operation

that distributes the entries of A among two blocks� both blocks must contain at least

�
 � �� � d entries� Therefore� the following inequality must hold�

�k � �� � d�
 �

�
� �
 � �� � d or� equivalently� k �

�
� �
 �

�
� � ��

d
����
�

Here� � depends on the underlying access structure� It denotes the constant fraction of

data entries that are guaranteed to be in a new node� For example� � � ��� is ful�lled

for B�trees� i�e� inequality ��
 is equivalent to k � � � � � �� �
d
�

Second� no strong version under�ow is allowed for a block A resulting from a merge

operation� Before a merge operation is performed� together there are at least � � d�

current entries in the blocks which have to be merged� Therefore we have�

� � d�
 � �
 � �� � d or� equivalently� � �
�

d
������

��� Run�time analysis

As introduced before� for our multiversion B�tree we have separated the concerns of

identifying the root block of the requested version and querying the requested version�

For the following analysis we assume that� supported from the application context� the

appropriate root block is given�

Recall that our multiversion structures are based on leaf oriented balanced access struc�

tures� The data blocks are on level � � the directory blocks are on level
���� � � � Then the

number of block accesses for searching a data item x in version i is at most dlog
d
mie�

because each directory block on the path from the root of version i to the leaf where x

is stored has at least d references of i� Given direct access to the root of the version in

question� we conclude�

�

Theorem � The number of block accesses for searching a data item in version i is

dlog
d
mie in the worst case�

The arguments above can be extended to range queries that are answered by traversing

the corresponding umbrella�like part of a subtree of the tree for the queried version�

Theorem � The number of block accesses for answering a range query in version i

that returns r data items is O�dlog
d
mie � r�d� in the worst case�

The �i �
��th update operation �rst performs an exact match query in version i and

then modi�es at least one data block A� If A violates the weak version condition� up

to three other data blocks have to be created or modi�ed� In this case� the parent of A

� say A� � has to be modi�ed� Again� this can lead to a violation of the weak version

condition of A�� In the worst case� this situation occurs on each directory level up to

the root of version i� On each directory level� at most �ve directory blocks have to be

accessed� modi�ed or created� Therefore we have�

Theorem � The number of block accesses and modi�cations for the �i �
��th update

operation is � � dlogdmie in the worst case�

��� Space analysis

We analyze the worst�case space utilization over the sequence of the N update oper�

ations� The crucial factor in the analysis is the fact that a version split � if necessary

followed by a merge or a key split leads to new blocks which ful�ll the strong version

condition� Therefore we need a certain number of update operations on these blocks�

before the next under�ow or over�ow situation on these blocks can occur� To be more

precise� we consider the utilization of data blocks and of directory blocks separately�

For data blocks� one update operation can lead to at most one over�ow or under�ow

situation� We distinguish four types of situations�

� Version split only� One block A becomes dead and one new live block B is

created� A was the �rst data block in the data structure or has ful�lled initially

� after its creation � the strong version condition� If it becomes overfull� at least

��d�
 operations must have taken place on A since its creation� So the amortized

space cost for each of these operations is at most k�d

��d��
�

� Version split and key split� One block A becomes dead and two new live blocks

B
 and B� are created� Again� at least � �d�
 operations must have taken place

on A and therefore the amortized space cost for each of these operations is at

most ��k�d
��d��

�

� Version split and merge without key split� Two blocks A
 and A� become dead

and one new live block B is created� On A
 or A� at least � � d �
 operations

must have taken place� So the amortized space cost for each of these operations

is at most k�d

��d��
�

� Version split and merge with key split� Two blocks A
 and A� become dead and

two new live blocks B
 and B� are created� Again� on A
 or A� at least � � d�

operations must have taken place� The amortized space cost for each of these

operations is at most ��k�d
��d��

�

In all cases the amortized data block space cost per update operation Sdat is at most

� � k � d

� � d�

�
� � k

�
� O�
������

For directory blocks� one update operation can lead to at most one block over�ow or

version under�ow situation on each directory level up to the directory level of the root

in the current version� Let L denote the maximum level that occurs during the N

operations� To look precisely at the di�erent under�ow and over�ow situations� we

distinguish between directory blocks that are roots at their lifetime and inner blocks�

Let Al denote an inner directory block of level l� We call a reference in Al dead � if it is

a reference to a dead block� live otherwise� The following situations can cause a weak

version under�ow or a block over�ow of Al�

� One reference in Al becomes dead and one new reference has to be inserted into

Al� This can cause a block over�ow with the creation of two new directory blocks�

� One reference in Al becomes dead and two new references have to be inserted

into Al� This can cause a block over�ow with the creation of two new directory

blocks�

� Two references in Al become dead and one new reference has to be inserted into

Al� This can cause a weak version under�ow or a block over�ow � In the case of

a weak version under�ow � a sibling of Al becomes also dead � and up to two new

directory blocks are created�

�

� Two references in Al become dead and two new references have to be inserted

into Al� This can cause a block over�ow with the creation of two new directory

blocks�

Note that if a directory block is the root of the data structure in version i� a weak

version under�ow does not lead to a new copy of the block� A block over�ow of a root

block is treated in the same manner as a block over�ow of an inner block�

We explain the amortized space cost per operation for the �rst case� The extension to

the other cases and the root blocks is straightforward and yields the same result� Al is

the only live parent for the live blocks referenced from Al and has initially ful�lled the

strong version condition� Therefore� in the subtree of Al on level l�
 at least � � d�

new blocks have been created between the creation of Al and the block over�ow of Al�

Hence� at least �� �d�
� �k �d space was used� Let us assume that the amortized space

cost per update on level l �
 is at most C l��� Then it follows that at least ���d����k�d
Cl��

operations have taken place in the subtree of Al between the creation of Al and its

block over�ow� The space cost for the version split of Al and the subsequent key split

is � � k � d� Therefore� the amortized space cost per update on level l is at most

C l � � � k � d �
C l��

�� � d�
� � k � d
�

�

� � d
� C l������	�

for
 � l � L� With C� �� Sdata� i�e� C
� � ��k

�
�from inequality ����� we can rewrite

inequality ��	�

C l �
�
�

� � d

�l
� C� �

�
�

� � d

�l
�
� � k

�
������

for
 � l � L�

Therefore� the total amortized directory block space cost per operation Sdir is at most�

Sdir �
LX
l��

C l �
� � k

�
�

LX
l��

�
�

� � d

�l
�����

For d � �
�
� which can easily be satis�ed in all practically relevant circumstances� we

get�

Sdir �
� � k

�
�
�X
l��

�
�

� � d

�l
� O�
����
�

In summary� from inequalities ��� and ��
 we can conclude�

�

Theorem 	 The worst case amortized space cost per update operation S � Sdat � Sdir

is O�
� if d � �
�
�

In total� we get�

Theorem
 The multiversion B�tree constructed in the described way from the single

version B�tree is asymptotically optimal in the worst case in time and space for all

considered operations�

The analysis shows that for a given block capacity b it is useful for the time complexity

to choose d large and k small� To guarantee a good space utilization it is useful to

choose � maximum� that is equal to
� �
d
� and k as small as possible without violating

inequality ��
� Choosing � �
 � �
d
gives bounds for the strong version condition of

��d�
 and �k�
��d�
� For instance� for block capacity b � �� we get k � �� d � �� and

� � ���� In the worst case� this implies that we have

�� ���k
�
�
� redundant records

for each key on average� Because this is quite a high number� we implemented the

multiversion B�tree and ran a number of experiments with the above parameters and

N �
����� update operations� It turned out that in all experiments� we had between

��
 and
�
� redundant records for each key on average� Hence� our worst�case bounds

are extremely pessimistic and do not imply high constant costs on average�

� Thoughts around the main result

In the following� we present some of the thoughts around the main result that may be

interesting or important in practice� First� we discuss the organization of the access to

the requested B�tree root� this also solves the problem of time�oriented access� where

query points in time di�er from version creation times� and of maintaining user�de�ned

versions� Second� we show how to e�ciently remove the oldest versions� in order to

save storage space� Our thoughts are intended to demonstrate the high potential of

adapting the multiversion B�tree to di�erent settings and di�erent requirements� The

given list of modi�cations and extensions is not meant to be exhaustive� additions to

this list should be performed as needed�

��

��� Access to the requested version

Our presentation of the multiversion B�tree so far assumes that access to the root of a

version is taken care of in the context of the application� If this is not the case� a search

structure may be used to guide the access� As an example� a B�tree maintaining the

version intervals of the multiversion B�tree root nodes in its leaves serves this purpose�

Even in its most direct application� this access structure to the roots of the multiversion

B�tree �we call it root�� allows access to a root as well as insertion of a new root into

root� in time O�log
b
p�� where p is the number of roots being maintained� The space

e�ciency of such a B�tree is obviously O�p�� Since p is less than dN�de� the storage

cost of root� is O�N�b� and the search for a key in a multiversion query can be realized

in time O�log
b
N� in total� including the search for the appropriate version�

In most cases� we expect that the number of roots is much less than dN�de� Consider for

example the situation when the current version data set has been created by a sequence

of insertions only� beginning at an empty structure� Then� the left path of the current

B�tree contains all the roots of the multiversion B�tree� Therefore� the number of roots

is only O�log
b
N� which is considerably less than the worst�case results of the general

case�

Furthermore� root� can be used to support time oriented queries� If our setup changes

from versions to time� such that each key has an insertion time stamp and a deletion

time stamp� root� supports queries for any point in time �not necessarily coinciding

with some insertion or deletion time� in the standard B�tree fashion�

Moreover� root� can be tuned to achieve even higher performance� by observing that

a new multiversion root can only be added at the high end of the current version or

time spectrum� Therefore� a split of a node of root� can be made totally unbalanced�

the node of the lower key range is full� whereas the node of the higher key range

contains just one key� namely the new one� As a consequence� all nodes in root� are

full� except those on the rightmost path� This straightforward approach is somewhat

reminiscent of the append�only tree �Segev and Gunadhi�
����� where an entry pointer

to the rightmost node for each level of the tree is maintained in addition� in order to

favor queries to the recent past� Then� access to the records of the current �and recent

past� version can be organized more e�ciently� leading to a path length of O�logbmN ��

Therefore� the worst�case time bound for range queries to the current version for the

MVBT tree is O�log
b
mN � r�b�� An update costs time O�log

b
N� in the worst case�

because a change may propagate up to the root of the root� B�tree� Amortized over a

�

sequence of updates� however� the worst�case cost of a single update is only O�logbmN ��

for the following reasons� First� in root�� the entry pointing to the current root is found

in O�
�� Second� the record to perform the update in the current B�tree is found in

O�logbmN�� Third� the remaining e�ort to perform the update has only constant

amortized cost �Huddleston and Mehlhorn�
����� Overall� this proves our statement�

Other access structures may be plugged in to serve as root�� For instance� if a high lo�

cality of reference to nearby versions is required� a �nger search tree may be the method

of choice �Huddleston and Mehlhorn�
����� To summarize� root� has the potential to

be tuned to the particular application�

��� Purging old versions

The operation of removing the oldest versions from disk� the so�called purge operation�

is very important in multiversion access structures� because maintaining all versions

forever may be too costly in terms of storage space� Under the assumption that old

versions are accessed signi�cantly less frequently than newer ones� the amount of sec�

ondary storage can be reduced substantially by moving old versions to tertiary storage

�e�g� optical disks� or� whenever the application permits� by simply deleting them �e�g�

in multiversion concurrency control��

The deletion of versions older than a speci�ed version i can be supported easily in

the multiversion B�tree� A straightforward approach would be to search for all blocks

which have been split by a version split in a version less than or equal to i� This

search starts at the root blocks valid for version i and older� Performing a depth��rst

search� all blocks ful�lling the above condition can immediately be deallocated� The

disadvantage of this approach is that it may access many blocks for a few that can

be purged� A more e�cient approach accesses only blocks that must be purged� An

additional data structure is used to keep track for each node of the most recent �i�e�

newest� version for which this node is relevant in a query� Since this version is just

the version before the version in which the node dies� this de�nes a linear order on the

nodes� a simple �rst�in��rst�out queue will therefore su�ce to perform all operations

e�ciently� Whenever a node dies� a corresponding entry is added to the tail of the

queue� Whenever the oldest versions before some version i are to be deleted� triggered

by the user or by some other mechanism such as concurrency control� the corresponding

head entries of the queue are removed� as well as the corresponding multiversion B�tree

nodes�

��

Note that the removal of a node from a multiversion B�tree may leave the tree in an

inconsistent state� there may be pointers in the tree that point to the node that is no

longer present� Nevertheless� this inconsistency is not harmful� as long as no search

for a deleted version �older than version i� initiates� A search may encounter� but will

never follow a dangling pointer�

� Related work

A number of investigations on how to maintain multiversion data �historical data� time

dependent data� on external storage have been presented in the literature� Often� the

goal of these investigations has been somewhat di�erent from our goal in designing the

multiversion B�tree� Nevertheless� some previous proposals pursue almost the same

objective as we do� and others have been in�uential in setting the stage� To put our

work into its proper perspective� we present a synopsis of relevant previous work in

this section�

In Kolovson and Stonebraker �
����� the authors have discussed the problem of main�

taining multiversion data using two external storage media� magnetic disk for recent

data and WORM optical disk for historical versions� They have proposed two ap�

proaches� both using the R�tree index �Guttman�
��	� to organize data records ac�

cording to their key values in one� according to their life spans in the other dimension�

The approaches di�er by the techniques of moving data and index blocks from mag�

netic disk to WORM disk� also called vacuuming� In the �rst approach� vacuuming is

triggered in the following way� If the size of the index on magnetic disk reaches a given

threshold� a vacuuming process moves a given fraction of the oldest �i�e� dead� data

blocks to WORM disk and � recursively upwards the tree � those directory blocks

that refer only to blocks already stored on WORM disk� The second approach main�

tains two R�trees� one completely on magnetic disk� the other with the upper levels on

magnetic and all levels below on WORM disk� Again� if the size of the R�tree com�

pletely stored on magnetic disk reaches a threshold� all its blocks except the root are

moved to WORM disk� Then� references to the blocks below the root level� now stored

on WORM disk� are inserted into the corresponding level of the R�tree on magnetic

disk� Updates are only performed on the R�tree that completely resides on magnetic

disk� while queries may a�ect both R�trees� Both approaches presented in Kolovson

and Stonebraker �
���� support the same operations as the multiversion B�tree �in

��

the following� MVBT for short�� Additionally� queries over version intervals can be

answered�

In both approaches� the height of the R�trees is �logbN�� remember that N is the

total number of updates to the tree� and b is the maximum number of entries in a tree

node� Therefore� each insertion needs time �log
b
N�� this compares with amortized

time �logbmN� in the MVBT� since access to the newest version is always immediate�

Deletion must be implemented as modi�cation of the corresponding R�tree entry� For

that� the a�ected entry has to be searched in the tree before modi�cation� Because of

overlapping regions in the R�tree� the search for a record may necessitate a traversal of

the whole index tree in the worst case� Therefore� deletion can be extremely expensive

in the worst case� this compares with worst�case time O�log
b
mN� in the MVBT� The

same arguments show that exact match queries and range queries on a given version

may access �N�b� blocks in the worst case� This compares with a worst�case time for

exact match queries and range queries of �logbN� and �logbN � r�b�� respectively�

Note� however� that the goals of these approaches have been somewhat di�erent from

our goal of building a multiversion B�tree�

Because no data is replicated� the space e�ciency of Kolovson#Stonebraker�s approaches

is perfect� However� especially for sets of records with life spans of non�uniformly dis�

tributed lengths� Kolovson and Stonebraker observed a decreasing e�ciency for the

R�tree�

In order to achieve better query and update performance for such data distributions�

Kolovson and Stonebraker have proposed segment R�trees �Kolovson and Stonebraker�

��
�� a hybrid of segment trees �Bentley�
�

� and R�trees �Guttman�
��	�� Skeleton�

SR�trees operate with a preset data space partitioning� based on an assumption about

the data distribution� In the performance evaluation presented by Kolovson and Stone�

braker �
��
�� the SR�trees never outperformed R�trees in the non�skeleton variant�

However� skeleton�SR�trees have better performance than skeleton�R�trees for non�

uniformly distributed interval lengths and query regions of very high or very low aspect

ratio� The approach of �skeleton��SR�trees su�ers from the same major ine�ciencies

as using R�trees to store multiversion data� There is no good worst�case guarantee for

deletions� exact match queries� and range queries�

In Elmasri� Wuu� and Kim �
�����
�� the authors have proposed the time index for

maintaining historical data� The time index supports all the operations of our setting�

plus range queries over versions� In the time index� data records are organized in a

�	

B��tree according to versions �time�� For each version� a bucket is maintained for

storing all data records �or references to it� valid for that version� Elmasri et al� have

proposed several modi�cations of the basic approach to reduce the high redundancy

resulting from this data organization� However� assuming that each update creates a

new version� the space e�ciency of all those variants may be as bad as �N��b� in

the worst case� An insertion of a record in the time index may create a new bucket

containing all records for the new version� In the worst case� this operation requires

 �N�b� time� Moreover� the time index does not support range queries e�ciently�

range query e�ciency may be as bad as �logbN �N�b� in the worst case�

TheWrite�Once�B�tree �WOBT�� proposed by Easton �
����� is a variation of the B��

tree� it is completely stored on a WORM medium� e�g� an optical disk� Because of

the write�once characteristic� all versions of data are kept forever� If version numbers

are assigned to the index and data records� multiversion queries can be answered in a

straightforward way� To treat an over�ow of a data or an index block in the WOBT�

�rst a version split must be performed� because the over�ow block itself cannot be

rewritten� Afterwards� if the current entries occupy more than a given fraction of the

new block �e�g� �#��� a key split is performed on the block before writing it to external

memory� So far� the WOBT split policy is comparable to the one of the MVBT� One

major di�erence is the treatment of a root split� if a root is split in the WOBT� a new

root block is allocated that initially contains three references� One reference is pointing

to the old root block� whereas the other references are pointing to the blocks obtained

from splitting the old root� Thus� a WOBT has one root� and all the paths from the

root to a data block have the same length �logbN�� In contrast� if a root is split

in the MVBT� the reference to the new root is inserted into root!� the data structure

organizing the root blocks�

Under the pessimistic assumption that the computation of the root of an arbitrary non�

current version requires �log
b
N� time� the MVBT is still more time�e�cient than the

WOBT for updates and queries on the current version� Recall that the root of the

MVBT valid for the current version � and for some recent non�current versions � can

be accessed in time O�
� by maintaining a direct reference to this block� Therefore�

queries to these versions and updates to the current version are more e�cient than

O�log
b
N � r�b� and O�log

b
N�� the respective bounds in the WOBT� Moreover� the

WOBT is restricted to insertions and modi�cations of the non�key part of records�

while the MVBT supports both� insertions and deletions�

��

In order to reduce storage costs and to improve performance of queries on the current

version� Lomet and Salzberg �
���� have proposed a variant of the WOBT� the Time�

Split B�tree �TSBT�� The TSBT spans over magnetic and WORM disk� All live blocks

are stored on magnetic disk� while a dead block migrates to WORM disk during a

version split� Lomet and Salzberg distinguish split policies for index blocks from those

for data blocks�

For splitting data blocks� the following two basic types of splits can be performed in

the TSBT� First� in contrast to the WOBT� the version �time� used for a version split

�time split� of a data block is not restricted to the current version� but can be chosen

arbitrarily� Second� a key split can be performed on a data block instead of a version

�time� split� In Lomet and Salzberg �
�������� the authors have discussed the e�ects

of di�erent data block split policies� with emphasis on space cost� The space cost is

given as the sum of storage cost on magnetic and WORM disk� For data block split�

the following three split policies have been proposed�

� The WOBT policy is the split policy as used in the WOBT�

� The time�of�last�update policy performs a version split with the version of the last

update� This reduces the number of entries to be kept in the dead block after

a version split� and therefore the storage space needed on WORM disk� The

number of entries in the live block remains unchanged in comparison to a version

split of the WOBT� As for the WOBT� a key split will be performed immediately

after a version split� if the current entries occupy at least a given fraction of the

new block �e�g� �#���

� The isolated�key�split policy performs a key split if at least a given fraction of the

entries �e�g� �#�� of the overfull node belongs to the current version� Otherwise�

a version split with the current version is performed� In comparison with the two

split policies described above� this split policy reduces redundancy and therefore

storage space� a version split is not performed if it would be immediately followed

by a key split� The disadvantage of this policy is that by a key split the dead

entries of the block are spread over two blocks� This decreases the performance for

range queries to non�current versions� Consequently� in contrast to the MVBT it

is not guaranteed that a block contains for each version either none or �b� entries�

Then� a range query in the worst case requires �N�b� blocks� independent of

the size of the response set and independent of the number of records in the

��

correponding version� In comparison with the TSBT� the MVBT requires more

storage space �but it is still O�N�� to cluster versions appropriately such that

range queries can be answered with O�log
b
N � r�b� disk accesses�

For index blocks� split policies cannot be the same as for data blocks� The problem of

using data block split policies on index nodes is the following� a dead index block may

still contain references to live blocks on the next lower level of the tree� If such a live

block becomes dead �i�e� it migrates to optical disk�� the corresponding references have

to be updated in the parent nodes� However� this would require that the dead blocks

are stored on a write�many storage medium�

In their �rst paper �Lomet and Salzberg�
���� on the TSBT� Lomet and Salzberg

discuss the e�ects of using version and key splits for index block splitting� An index

block split policy based on key splits avoids redundancy� but leads to an index which

gives no selectivity according to versions� Moreover� an index block may contain entries

which cannot be separated by a key split� Therefore� for the simulations presented in

Lomet and Salzberg �
����� the authors applied another policy for index block splitting�

A version split is performed using the insertion version of the oldest index entry that

is still valid for the current version� Then� a dead block contains only non�current

index entries and therefore it can be written onto WORM disk� In addition to the

redundancy that this entails in index blocks� the main problem of this split policy is

that such a split version may not exist� In this case� a key split is possible� This does

not only separate current entries �as desired�� but also dead ones� As a consequence�

the TSBT does not have a lower bound on the number of entries for a version in an

index block�

Lanka and Mays �
��
� have presented three approaches for fully persistent B��trees�

Full persistence means that changes can be applied to any version� current or past�

creating a new version� Because this concept of multiple versions of data is more general

than ours� all three approaches also can be used to maintain our type of multiversion

data �partially persistent data�� Like the MVBT and in contrast to the WOBT and

the TSBT� all the proposed techniques support insertions and deletions�

The �rst approach� the fat node method � is based on the idea that each node� index node

or leaf with data items� is fat enough to store all versions of all its entries� Lanka#Mays

have proposed to implement such a fat node as a set of blocks� one block per version�

and a version block� containing references to each of the blocks� Although query and

update e�ciency for any given version i is O�log
b
mi� �based on the assumption that

�

the root block for version i can be accessed in time O�
��� this obviously leads to

storage cost of �
� blocks per update� Moreover� it is doubtful whether one physical

block is su�cient to implement a version block� as assumed in the paper�

The fat �eld method is an improvement on the fat node method� storing entries of

di�erent versions in the same block� To describe which versions a B��tree entry belongs

to� each entry is extended by a �eld representing its insertion version and the set of

its deletion versions� Applying the fat �eld method to our multiversion data� the

structure of an entry is equal to that of a MVBT entry� because only one deletion

version can occur� Also comparable to the MVBT� the fat �eld method guarantees for

each block and each version in the block that a number of entries proportional to the

block capacity �namely �� $� is stored in that block� If for any version less than half

of the entries belong to that version� a version split and a merge is performed� The

split policy is a version split� followed by a key split if the block is still overfull� In

contrast to the MVBT� for the fat �eld method a block may be full after split or merge�

That means that after a constant number of updates� the next split or merge may be

triggered� leading to a worst�case storage cost of �
� blocks per update� Like for the

fat node method� the query performance analysis for the fat �eld method is based on

the assumption that each version block �ts into one physical block� This assumption

is not realistic for organizing a high number of versions in the structure�

The third approach proposed in Lanka and Mays �
��
� is the pure version block

method� In this technique� a B��tree index is built over the key values of the data

items� This technique does not give any selectivity according to versions�

As a result� we conclude that the approaches for multiple version B�trees proposed in

the literature have their merits in exposing many interesting ideas and achieving good

performance in one or the other aspect� Nevertheless� none of them achieves asymptotic

worst�case optimality� both in the time for all operations and in space� Therefore� we

feel the MVBT to be a worthwhile addition to the list of multiversion external B�trees�

� Conclusion

In this paper� we have presented a technique to transform certain single version hierar�

chical external storage access structures into multiversion structures� We have shown

that our technique delivers multiversion capabilities with no increase in asymptotic

worst�case performance for B�trees� if we assume that the root block for a requested

��

version is given from the application context� Otherwise� a search structure for the

appropriate root block can be tuned to the particular requirements� The properties of

B�trees that we have used include the following characteristics of access structures�

� the access structure is a rooted tree of external storage blocks�

�� data items are stored in the leaves �data blocks� of the tree� the inner nodes

�directory blocks� store routing information�

�� the tree is balanced� typically� all leaves are on the same level�

	� the tree can be restructured by splitting blocks or by merging blocks with siblings

along a path between the root and a leaf�

�� a block split can be balanced� that is� each of the two resulting blocks is guaran�

teed to contain at least a constant fraction �� � � � � ���� of the entries�

Single version access structures satisfying these requirements are therefore the prime

candidates for carrying over and applying our technique� Examples of such access struc�

tures other than the B�tree include the cell�tree �G�unther and Bilmes�
��
�� the BANG

�le �Freeston�
��
�� and the R�tree family �Guttman�
��	� Greene�
���� Beckmann et al��
�����

whenever reinsertion of data items can be replaced by block merge without loss of geo�

metric clustering� Note that the data items are not limited to one�dimensional points�

We conjecture that our technique may be useful also for access structures that do

not satisfy all of our requirements� such as hierarchical grid �les� In that case� the

performance guarantees derived for the MVBT do not carry over without change� This

is clearly due to the fact that these performance guarantees do not hold for the single

version structure in the �rst place� However� we do not know in su�cient generality how

the performance of an arbitrary external access structure changes if it is transformed

into a multiversion structure along the lines of our technique�

Acknowledgement

We want to thank an anonymous referee for an extraordinary e�ort and thorough

discussion that led to a great improvement in the presentation of the paper�

��

References

�Barghouti and Kaiser�
��
� Barghouti� N�S� and Kaiser� G�E�� Concurrency control

in advanced database applications� ACM Computing Surveys� ����������

�

�
��
�

�Becker et al��
���� Becker� B�� Gschwind� S�� Ohler� T�� Seeger� B�� and Widmayer�

P� On optimal multiversion access structures� 	rd International Symposium

on Large Spatial Databases� Lecture Notes in Computer Science� Springer�

Verlag� ����
���
	
�
����

�Beckmann et al��
���� Beckmann� N�� Kriegel� H�P�� Schneider� R�� and Seeger� B�

The R��tree� An e�cient and robust access method for points and rectangles�

ACM SIGMOD International Conference on Management of Data�
������

��
�
����

�Bentley�
�

� Bentley� J�L� Algorithms for Klee�s Rectangle Problems� Computer

Science Department� Carnegie�Mellon University� Pittsburg�
�

�

�Bernstein et al��
��
� Bernstein� P�A�� Hadzilacos� V�� and Goodman� N� Concur�

rency control and recovery in database systems� Addison Wesley Publ� Co��

Reading� Massachusetts�
��
�

�Cli�ord and Ariav�
���� Cli�ord� J�� and Ariav� G� Temporal data management�

models and systems� New directions for database systems� Eds� Ariav� G�

and Cli�ord� J� Ablex� Publishing Co�� Norwood� N�J�� pages
���
���
����

�Driscoll et al��
���� Driscoll� J�R�� Sarnak� N�� Sleator� D�D�� and Tarjan� R�E� Mak�

ing data structures persistent� Journal of Comp� and System Sci�� ������
�	�

����

�Easton�
���� Easton� M� Key�sequence data sets on indelible storage� IBM J� Res�

Development 	�� 	 � pages �����	
�
����

�Elmasri et al��
���� Elmasri� R�� Wuu� G�� and Kim� Y��J� The time index� An access

structure for temporal data�
�th International Conference on Very Large

Data Bases� pages
�
��
����

��

�Elmasri et al��
��
� Elmasri� R�� Wuu� G�� and Kim� Y��J� E�cient Implementation

Techniques For the Time Index� Seventh IEEE International Conference on

Data Engineering �
�
���

�
��
�

�Freeston�
��
� Freeston� M�W� The BANG��le� a new kind of grid �le� ACM SIG�

MOD International Conference on Management of Data�
����������
��
�

�Gonnet and Baeza�Yates�
��
� Gonnet� G�H�� and Baeza�Yates� R� Handbook of Al�

gorithms and Data Structures� in PASCAL and C � Addison�Wesley� Publ�

Co�� Reading� Massachusetts�
��
�

�Greene�
���� Greene� D� An implementation and performance analysis of spatial

access methods� Fifth IEEE International Conference on Data Engineering �

�������
��
����

�G�unther and Bilmes�
��
� G�unther� O�� and Bilmes� J� Tree�based access methods

for spatial databases� implementation and performance evaluation� IEEE

Trans� on Knowledge and Data Eng�� pages �	������
��
�

�Guttman�
��	� Guttman� A� R�trees� A dynamic index structure for spatial search�

ing� ACM SIGMOD International Conference on Management of Data�

��	
��
�
��	�

�Huddleston and Mehlhorn�
���� Huddleston� S�� and Mehlhorn� K� A new data struc�

ture for representing sorted lists� Acta Informatica�

�
�
�
�	�
����

�Kanellakis et al��
���� Kanellakis� P�C�� Ramaswamy� S�� Vengro�� D�E�� Vitter� J�S�

Indexing for Data Models with Constraints and Classes� ACM SIGACT�

SIGMOD�SIGART Symposium on Principles of Database Systems�
������

�	��
����

�Katz�
���� Katz� R�H� Towards a uni�ed framework for version modeling in engi�

neering databases� ACM Computing Surveys� ���	���
��	���
����

�Kolovson and Stonebraker�
���� Kolovson� C�� and Stonebraker� M� Indexing tech�

niques for historical databases� Fifth IEEE International Conference on

Data Engineering � ��
�
�
�
�
����

�

�Kolovson and Stonebraker�
��
� Kolovson� C�� and Stonebraker� M� Segment In�

dexes� Dynamic Indexing Techniques for Multi�Dimensional Interval Data�

ACM SIGMOD International Conference on Management of Data� ���
���

	
�
��
�

�Lanka and Mays�
��
� Lanka� S�� and Mays� E� Fully persistent B��trees� ACM

SIGMOD International Conference on Management of Data� ���	���	���

��
�

�Lomet and Salzberg�
���� Lomet� D�� and Salzberg� B� Access methods for multi�

version data� ACM SIGMOD International Conference on Management of

Data�
���
����	�
����

�Lomet and Salzberg�
���� Lomet� D�� and Salzberg� B� The performance of a multi�

version access method� ACM SIGMOD International Conference on Man�

agement of Data�
����������
����

�Mehlhorn and Tsakalidis�
���� Mehlhorn� K�� and Tsakalidis� A� Data strucutures�

Handbook of Theoretical Computer Science� Vol� A� Algorithms and Com�

plexity � Ed� van Leeuwen� J� Elsevier Science Publishers� Amsterdam� pages

��
��	
�
����

�Samet�
���a� Samet� H� The design and analysis of spatial data structures� Addison�

Wesley� Publ� Co�� Reading� Massachusetts�
����

�Samet�
���b� Samet� H� Applications of spatial data structures� computer graph�

ics� image processing� and GIS � Addison�Wesley� Publ� Co�� Reading� Mas�

sachusetts�
����

�Sedgewick�
���� Sedgewick� R� Algorithms� Addison�Wesley� Publ� Co�� Reading�

Massachusetts�
����

�Segev and Gunadhi�
���� Segev� A�� and Gunadhi� H� Event�join optimization in

temporal relational databases�
�th International Conference on Very Large

Data Bases� pages �����
��
����

�Tansel et al��
���� Tansel� A�U�� Cli�ord� J�� Gadia� S�� Jajodia� S�� Segev� A�� and

Snodgrass� R� Temporal Databases
 Theory� Design� and Implementation�

The Benjamin#Cummings Publ� Co�� Redwood City� California�
����

��

�Vitter�
��
� Vitter� J�S� E�cient Memory Access in Large�Scale Computation� �th

Annual Symposium on Theoretical Aspects of Computer Science �STACS��

Lecture Notes in Computer Science� Springer�Verlag� 	������	
�
��
�

��

