Failure Localization in the Internet

Boaz Barak, Sharon Goldberg, David Xiao

Excerpts of talks presented at Stanford, U Maryland, NYU.

Why use Internet path-quality monitoring?

Internet: Best-effort delivery, congestion, no integrity for traffic, competition

Many (new) applications need Internet path quality monitoring....

Intelligent Routing: To inform routing decisions

- Source routing: (Alice chooses nodes on path to Bob)
- Multipath routing: (Alice switches paths based on performance)

Network Accountability: To demand reimbursement from faulty ISPs

Necessary to drive innovation! (game-theoretic study of [LC06])

The presence of adversaries

Internet: Best-effort delivery, congestion, no integrity for traffic, competition

Failure Detection: Alice wants to know if her packets were dropped/modified.Failure Localization: Alice wants to know who dropped/modified her packets.

We consider **benign** (congestion, link failure) and **malicious** (due to Eve) packet loss, but do not require Alice to distinguish between them. 3/26

Failure Localization (FL)

We assume:

- 1. Alice knows identity of nodes on path.
- 2. Eve occupies node(s) on the path, and can add, drop, modify packets.
- 3. Alice doesn't know where Eve is.
- 4. Symmetric paths

Need more assumptions about Eve for assymetric path setting (Eve occupies only 1 path ? – left for future work)

Need to model a path switching mechanism ?

Maybe we should consider the whole graph, not just a path?

Two flavours of Failure Localization (FL)

We assume:

- 1. Alice knows identity of nodes on path.
- 2. Eve occupies node(s) on the path, and can add, drop, modify packets.
- 3. Alice doesn't know where Eve is.
- 4. Symmetric paths

Secure per-packet failure localization (FL):

For each packet dropped or modifies on a link , the Alice outputs that link.

Secure statistical fault localization (FL):

If the packet loss rate on a link exceeds **β**, Alice **outputs that link** (or a link adjacent to Eve) *regardless of Eve's behavior* Alice **will not alarm** if packet loss rate on the path is less than **α**

Contributions of our work

- 1. Per-packet failure localization protocols
- 2. Statistical failure localization protocols
- 3. Lower bounds:
 - FL needs keys and crypto at each node on path
- 4. Implications of our work
 - FL protocols necessarily require the participation of every node on the path
 - And, thus, is expensive to deploy
 - Can deploying FL be compatible with node incentives?
 - FL is good for highly secure networks / important traffic

'Onionizing' the reports prevents Eve selectively dropping reports for an innocent node.

Contributions of our work

- 1. Per-packet failure localization protocols
- 2. Statistical failure localization protocols
- 3. Lower bounds:
 - FL needs keys and crypto at each node on path
- 4. Implications of our work
 - FL protocols necessarily require the participation of every node on the path
 - And, thus, is expensive to deploy
 - Can deploying FL be compatible with node incentives?
 - FL is good for highly secure networks / important traffic

Lower Bounds for per-packet Fault Localization

Proof idea:If a node i lacks a resourceEve at node i-1 can trick Alice into thinking node i+1 failedAlice implicates link (i,i+1)Eve breaks security

Fault Localization needs keys at each node

Theorem: Each node needs a shared secret with Alice

Proof: Suppose node *i* does not a share secret with any upstream node:

Case (b): Eve drops packets and impersonates keyless node *i*

Case (a) and case (b) are indistinguishable to Alice

 \Rightarrow In case (b) Eve drops packets while making innocent link (i, i+1) look guilty.

10/22

 \Rightarrow The FL protocol cannot be secure.

Can we use reductions to prove FL needs crypto?

Proof idea [IL89]: Existence of a secure FL protocol \Rightarrow existence of a OWF

Define: OWF $f(k_A, k_1, ..., k_N, k_B, A) = FL_Conversation(R₂, R₃)$

The reduction: \exists Ivan that inverts the OWF $\Rightarrow \exists$ Eve that breaks FL security

Very Nice!

But we only proved that **someone** needs to do crypto. We want to show that **each node** needs to do crypto.

Fault Localization needs crypto at each node

Theorem: Each node needs to perform cryptographic operations.

Proof (sketch, for the per-packet case): Suppose node i has a shares key k; with Alice but does not do crypto.

Since i doesn't do crypto Eve can observe messages she gets from i and learn how node i uses k_i in moments of *congestion*

Case (b): Eve drops packets and impersonates crypto-less node *i*

 \Rightarrow Eve can drop packets while making innocent link (*i*,*i*+1) look guilty, and the FL protocol is not secure! 12/26

FL needs crypto. Proof tool: oracle separation

Black-box constructions: Use only input / output properties of the primitive

Security of the protocol is based on the security of the cryptographic primitive

[IR, BGS]: Any secure black-box protocol must remain secure even when the PRF is replaced by a Random Oracle and all parties have a PSPACE oracle

In our proof, the node that "doesn't do crypto" can't call the random oracle!

Oracles

Random Oracle

PSPACE Oracle

random string in {0,1}^r

FL needs crypto. Proof tool: learning algorithm

[Naor-Rothblum]: **Inefficient** algorithm that learns on $O(n/(\epsilon^2 \delta^2))$ samples and outputs sample that is statistically ϵ -close to true distribution, w.p. > 1- δ .

Inefficient step can be done by PSPACE oracle

PSPACE

15/26

Sketch of Learning Algorithm

Black-box FL needs crypto at each node (1)

Eve can learn \mathbf{k}_i in case (a) using [NR] algorithm with PSPACE oracle

Black-box FL needs crypto at each node (2)

Contributions of our work

- 1. Per-packet failure localization protocols
- 2. Statistical failure localization protocols
- 3. Lower bounds:
 - FL needs keys and crypto at each node on path
- 4. Implications of our work
 - FL protocols necessarily require the participation of every node on the path
 - And, thus, is expensive to deploy
 - Can deploying FL be compatible with node incentives?
 - FL is good for highly secure networks / important traffic

Note (April 2008)

- This talk contains an older version of our lower bounds please see the full version of our paper, [Barak, Goldberg, Xiao., "Protocols and Lower Bounds for Fault Localization in the Internet", EUROCRYPT 2008] for the full details
- 2. See also the companion paper to this work [Goldberg, Xiao, Tromer, Barak, Rexford, "Path-Quality Monitoring in the Presence of Adversaries", to appear at SIGMETRICS 2008.]