Towards a Cryptanalysis of Scrambled Spectral-Phase Encoded OCDMA

Sharon Goldberg*

Ron Menendez^{**}, Paul R. Prucnal^{*} *Princeton University, **Telcordia Technologies

OFC'2007, Anaheim, CA, March 29, 2007

Security for Encryption Schemes

Kerchoff's Principle (1883): System should be secure even if encryption / decryption algorithms are known, as long as key is secret.

The (Digital) One Time Pad

Digital solutions: Block ciphers like AES, Stream ciphers like RC4

Can we encrypt at data optically faster than we could electronically? Can optics do more than the digital one-time-pad?

Spectral Phase Encoded Optical CDMA (1)

Use orthogonal codewords

W frequencies \rightarrow W codewords

Spectral Phase Encoded OCDMA

Previous ciphertext-only attacks:

- **On-off-keying:** Eve uses energy detection to distinguish 0 & 1
- Isolated code: Eve learns codeword by comparing adjacent phase elements [Shake 05] Eve uses spectrum to distinguish 0 & 1 [Leaird-Jiang-Weiner 05]

Spectral Phase Encoded OCDMA

Eve uses spectrum to distinguish 0 & 1 [Leaird-Jiang-Weiner 05]

Scrambled Spectral Phase Encoded OCDMA (1)

Scrambled Spectral Phase Encoded OCDMA (1)

Scrambled Spectral Phase Encoded OCDMA (2)

Security of Scrambled SPE-OCDMA

Security of Scrambled SPE-OCDMA

Here we assume all secrecy in the system comes from the scrambler key. \Rightarrow By Kerchoff's Principle, we assume that codewords are known to Eve.

Brute Force:	Ciphertext-only exhaustive search thru 2^{Frequencies} keys
Result 1:	Known plaintext exhaustive search thru 2^{Tributaries} keys Need 1 known plaintext and 1 "set of measurements"
Result 2:	Can immediately learn key without exhaustive search Need 2 known plaintexts and 2 "sets of measurements"

Eve's 'set of measurements'

In our attacks: For each known plaintext, we assume Eve gets W simultaneous (noise-free) current measurements

Result 1: Reducing exhaustive search space

- 1. Eve obtains a coherent measurement set y and a known plaintext d
- Eve has W equations in W + N unknowns
 On computer, guess just N key bits then solve for W-N remaining key bits
- 3. Eve tries the key on **decoder**. Stop if ungarbled data, else repeat step 2.

Brute Force:	Ciphertext-only exhaustive search thru 2 ^{Frequencies} keys
Result 1:	Known plaintext exhaustive search thru 2 ^{Tributaries} keys

Result 2: Learning the key with 2 known plaintexts

- 1. Eve gets 2 coherent measurement / known plaintext pairs (y₁, d₁) (y₂, d₂)
- Eve has 2W equations in W + 2N unknowns where 2N ≤ W
 On computer solve the equations for the key k.

What is dimension of solution space for this system of equations?

If dimension N, there are 2^N solutions and Eve learns nothing. If there is a **unique** solution, Eve has learned the key

Result 2: Learning the key with 2 known plaintexts

What is dimension of solution space for this system of equations?

If there is a **unique** solution, Eve has learned the key

Result 2:Can immediately learn key (w.h.p.) without exhaustive searchNeed 2 known plaintexts and 2 "sets of measurements"

Conclusion and Open Problems

Scrambled spectral-phase encoded OCDMA:

- All secrecy from scrambler key (2^{Frequencies} keys)
- Tributary codewords are known
- Binary scrambling phases

Our Attacks: Simultaneously measure electric field at f_i for all f_i

- Co-polarized local oscillator phase- & time- synchronized with incoming signal
- Coherent balanced detection and noise-free analog current measurement

Parallelism is important!

Known plaintext exhaustive search thru **2**^{Tributaries} keys (Need 1 known plaintext and 1 "set of measurements")

Can immediately learn key without exhaustive search (Need 2 known plaintexts and 2 "sets of measurements")

Open Issues:

Result

- How often must the key be changed to secure the system?
- Non-idealized measurements (noisy matrices / integer linear programming)
- Including the tributary codewords in the key (*i.e.*, make them secret)

Thanks:

Boaz Barak Jennifer Rexford Moses Charikar Eugene Brevdo

Parts of this work were supported by DARPA