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Abstract: We show how an eavesdropper with a small amount of knowledge about the traffic sent
via a spectral-phase optical CDMA system with phase-scrambling can break the confidentially of
certain systems within a few bit intervals.
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Optical CDMA (OCDMA) [1] is a particularly attractive alternative to traditional digital encryption because it has the
potential to perform encryption at ultra-high data rates by initializing passive optical components (e.g. phase masks,
delay lines) according to a secret key that needs only occasional updates. To be a viable alternative to digital encryption,
OCDMA systems should maintain data confidentiality even when these optical components are reconfigured (i. e. the
key is refreshed) at rates much slower than aggregate system data rates. We focus on spectral-phase-encoded OCDMA
systems using phase-scrambling [2, 3], which have emerged as the leading proposal for providing data confidentiality
at the physical layer. Typical OCDMA schemes require some orthogonality between codewords and are therefore
restricted to use codes with low cardinality [4, 5]. These schemes are therefore vulnerable to brute force searches by
an eavesdropper who cycles through all possible codewords in an effort to find one that results an ungarbled datastream.
On the other hand, a spectral-phase scrambling scheme offers a keyspace that grows exponentially with the number
of frequency bins used, so that brute-force searches can be made infeasible. We assume that the secret key used in
the system is the setting of the phase-scrambler, and analyze this system using the assumptions of cryptanalysis [6].
In particular, we explore known plaintexts attacks in which an eavesdropper obtains the encryption of some set of
known messages, and uses this information to learn the secret key. Our first contribution is to show circumstances
in which confidentiality is determined by the parallelism (i. e. the number of users) in the system, rather than by the
number of frequency bins used for encoding. Our next contribution is to show that even when some systems are highly
parallelized (i. e. have a large number of users), an eavesdropper can still learn the key with high probability after only
two bit intervals. Our results thus far suggest that to maintain confidentiality when the secret key is the phase-scrambler
setting, components should be tuned at rates comparable to the system data rates.

System Overview: In spectral-phase-encoded OCDMA, pulse streams are encoded by adjusting the phase of
their frequency components using all-optical pulse shaping techniques. For each optical pulse, the encoding process
consists of dividing the pulse spectrum into W frequency bins, applying one of C possible discrete phase shifts at each
frequency (as prescribed by the choice of codeword), and recombining the frequency bins to produce the coded pulse.
Decoding is achieved in a similar manner, by applying inverse phase-shifts at each frequency bin [1]. We envision a
scheme where a group of N time-synchronized OCDMA users (i. e. transmitter-receiver pairs) simultaneously share
a waveband of a single optical fiber (that may then be overlayed onto a WDM network, or shared by another group
OCDMA of users). Each user’s encoded pulse train is passively coupled onto the waveband, transmitted along the
fiber, and then the superposed encoded pulse trains are passively split and individual pulse streams are recovered at
each decoder. To prevent energy detection attacks on on/off keyed OCDMA [5], we consider 2-code keyed (2CK)
systems where each user uses a ‘bright’ codeword to send a ’1’ bit, and a different ‘dark’ codeword to send a ’0’
bit. (Other constant-energy modulation formats such as phase-shift keying are also possible.) Spectral phase OCDMA
systems use orthogonal code families to reduce multiple access interference [1], so that number of available codewords
is typically limited to W , making the system vulnerable to brute force attacks. To eliminate this vulnerability, an
additional scrambling (descrambling) encoder that can take on any of CW possible spectral-phase settings, is placed
immediately after the coupler (before the splitter) as in Fig. 1. We assume that the setting of the shared scrambler is the
secret key that is used to prevent an eavesdropper from understanding the messages sent along the OCDMA waveband
[2, 3]. Since there are now CW (as opposed to just W ) possible keys, when W is large (say W ≈ 70) a simple brute
force search through the keyspace is no longer feasible. Finally, to avoid attacks on a link carrying only a single user’s
encoded pulse stream [5, 7], links between each transmitter and the passive coupler are physically secured so that an



eavesdropper can only tap the line between the scrambler and descrambler. We can expresses the field of the scrambled
superposition of n encoded codestreams at the eavesdropper’s tap as χ(t) =

∑N
j=1

∑W
i=1 cos(fit+θi,j(t)+φj(t)+ki)

where fi is the the frequency of the ith frequency bin, and θi,j(t) is the phase shift applied on the ith frequency bin
according to the particular codeword sent by user j during the bit interval containing time t, ki is the phase setting
of the ith frequency bin in the scrambler (which we assume remains the same for the duration of the eavesdropper’s
attack), and φj is the randomly time-varying phase shift of user j’s encoded pulse stream relative to all other other
users’ encoded pulse streams caused by variations in the lengths of the fibers between user j’s transmitter and the
passive coupler, and time-varying fluctuations in laser intensity or temperature.

Background - Encryption Schemes: An encryption scheme uses a secret key to encrypt a plaintext message
to a ciphertext. When analyzing an encryption scheme, it is standard practice to apply Kerckhoffs’ Principle [6],
which states that that a cryptosystem should be secure even if everything about the system, except from the secret
key, is public knowledge. We now enumerate some standard cryptanalytic attacks on encryption schemes, ranked in
order of increasing difficulty for the eavesdropper: (a) Ciphertext Only Attacks (COA): The eavesdropper obtains a
set of ciphertexts, and uses these to learn the secret key. (b) Known Plaintext Attacks (KPA): The eavesdropper knows
some set of plaintexts and obtains the corresponding ciphertexts, and uses these to learn the secret key. (c) Chosen
Plaintext Attacks (CPA): The eavesdropper has the capability to choose plaintexts to be encrypted and obtains the
corresponding ciphertexts, and uses these to learn the secret key. (Note that once the eavesdropper learns the key, she
has completely broken the system since she is able to decrypt all ciphertexts.) Since the COA-attack is the easiest attack
for the eavesdropper to perform, a scheme that is secure against COA-attacks (i. e. COA-secure) is less secure than a
scheme that is KPA-secure. Thus, while COA-security is the weakest form of security, to date it is the only form of
security considered in the literature on OCDMA [3, 4, 5, 7]. Note the minimal threshold for security of standard digital
encryption schemes is the ability to withstand CPA-attacks (e.g. [8] §3.2.1.) In this paper, we focus on KPA-attacks.
The KPA-attack is a realistic threat, since data traffic is never completely random; it contains packet headers, ‘hello’
packets, or framing elements (e.g. SONET framing) that are publicly known and may be used to launch a KPA-attack.

Security Parameters of System: Recall that N is the number of OCDMA users, W is the number of
frequency bins used for OCDMA encoding, and C is the number of discrete phase shifts possible at each frequency
bin. In this paper, we assume that for the system in Fig. 1, the set of ‘bright’ and ‘dark’ codewords assigned to
each OCDMA user is not part of the secret key. (Note that schemes in which codewords assigned to each user are
also kept secret are possible as well [2].) Therefore, by Kerckhoffs’ principle, we assume that this information is
known to the eavesdropper. Then, for each bit-interval, instead of defining the plaintext as the bits transmitted by
each of the N users during that bit-interval, we define the plaintext as the set of codewords transmitted by each of
the N users during that bit-interval. (For ease of exposition, assume that encoders and scramblers are restricted to
use binary phase shifts of 0, π.) We represent the plaintext as an W × N {0, π}-matrix Θ, where entry θj,i gives the
phase shift applied to frequency bin i corresponding to the codeword send by user j. The secret key is the set of W
phase shifts ki ∈ {0, π} applied by the scrambler at frequency bin i. The ciphertext is χ(t), the optical signal seen
at the eavesdropper’s tap. We assume that the eavesdropper detects the ciphertext χ(t) using optical beat detection
[5, 9] by passing χ(t) through a demultiplexer to obtain χi(t) for i = 1, ...,W (where χi(t) is χ(t) filtered at ith

frequency bin). By interfering each χi(t) with a local oscillator signal cos(fit) and then detecting χi(t) + cos(fit)
with a photodetector that operates a square law device with envelope detection, she obtains a measurement of the form
yi(t) =

∑n
j=1 cos(θi,j(t) + φj(t) + ki). Thus, the eavesdropper has a total of W equations, (one equation for each

of the W measurements yi). In this paper we assume that the eavesdropper makes perfect noise-free measurements of
the yi’s, and use this assumption to discover the vulnerabilities of the system. Our future work will discuss the effect
of noise in the eavesdroppper’s measurements.

Size of Brute Force Search Space in a KPA attack: If the eavesdropper in the COA setting attempts to
learn all W elements of the key, then the strongest attack shown by [2, 3] on a system with N > 1 users is to have
the eavesdropper do a brute force search through a space of size CW . Thus, in the COA setting, when W is large
(say W > 70) an exhaustive search to learn all W elements of the key becomes infeasible (since 270 ≈ 1020). How-
ever, consider now eavesdropper with one known plaintext Θ and corresponding beat detection measurement vector
y = [y1 .... yN ]. Then the eavesdropper has a system of W equations with W + N unknowns (i. e. W unknown key
elements k = [k1 ... kW ], and N unknown inter-user phases φ = [φ1 ... φN ]). She can use these equations to reduce
the size of her search space. Since the eavesdropper knows the θij , she may guesses N elements of the key and use N

of her equations to obtain a guess φ̂ for the N -vector of inter-user phases. She can then use φ̂ to solve the other W −N
equations for the remaining W −N key elements. Because the eavesdropper need only guesses only N elements of k,



in the KPA-setting, the size of the space in an exhaustive search for all w elements of the key is CN .1

That is, confidentiality is determined by the the amount of parallelism in the system, (the number of parallel OCDMA
users N ), rather than by the number of frequency bins W used for in encoding. This can be significant reduction in the
key search space, since systems are typically designed so that N < W (e.g. in 2CK with orthogonal codes N ≤ W

2 ).
As an example, in the KPA-setting, a system using a large number of frequency bins W = 70 but only a small number
of users N = 4 has a key search space of size only 24 = 16 rather than 270, as implied by [2, 3].

KPA Attack to Learn Key with 2 Known Plaintexts: Even when the system is highly parallelized so that N is
large enough to prevent brute force attacks (say N ≈ 70 users), we now present another KPA-attack that eavesdropper
can use reduce the size of the key search space from CN to an even smaller set of possibilities. Suppose the eavesdrop-
per obtains two known plaintexts and corresponding measurements (Θ1, y1), (Θ2, y2). Then the eavesdropper has 2W
equations and W +2N unknowns, that can be solved for the W elements of the key (when N ≤ W

2 ). We show in [10]
that the eavesdropper’s key search space is reduced from CN to the set of solutions to this system of 2W equations.
Furthermore, if there is a unique solution to these 2W equations then the eavesdropper immediately learns the key.

To quantify the size of the key search space after solving these 2W equations, we have done a detailed analysis in
[10] of a N -user system using 2-code-keying with W = 2N frequency bins and the standard 2N -Hadamard codes,
where key and codewords elements can take on binary phases (C = 2). We present in Fig. 2 the probability (over
all possible combinations of known plaintexts Θ1,Θ2) of the existence of a unique solution to to the system of 2W
equations (so that the eavesdropper learns the key immediately by solving these equations) . We can see, for example,
that when N = 8 users, then over 95% of known plaintexts pairs result in a unique solution. Fig. 2 further shows that
as N increases, the probability that an eavesdropper with arbitrary pair of known plaintexts will immediately learn the
key (because of the existence of a unique solution) increases as well. Finally, to generalize to an arbitrary number of
users N , we used linear algebra to prove that for any N , at least 75% of all possible known plaintexts pairs Θ1,Θ2

will result in a unique solution to the 2W equations. Taken together, our results indicate that an eavesdropper with an
arbitrary pair of known plaintexts has a very high probability of learning the key.

Future Work: In future papers we will study how noise in measurements y1, y2 affects our KPA-attacks.
Other interesting directions include analyzing systems using other modulation schemes (instead of 2-code keying),
or OCDMA spreading codes (instead of the standard Hadamard codes), or when both the scrambler setting and the
codewords assigned to users are kept secret and refreshed periodically (e.g. codewords could be assigned from one of
W ! instantiations of the Hadamard codes (see [2] §VII), where the instantiation chosen would be kept secret).

Conclusions: When analyzing the confidentiality provided by OCDMA systems, we have demonstrated the
importance of formulating security analyses using standard cryptanalytic notions (e.g. Kerckhoffs’ Principle, KPA-
attacks), particularly if these systems are to present a viable alternative to standard digital encryption schemes. More-
over, the existence of the attacks we describe here suggest that spectral-phase encoded OCDMA systems that use only
the phase scrambler setting as a secret key are unlikely to guarantee confidentiality, unless the key is refreshed at rates
comparable to the system data rates. Other variants of OCDMA (e.g. when user codewords and scrambler settings are
both secret) may or may not be secure. Determining the confidentiality of these variants is left for future work.
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Fig 1. System overview Fig 2. KPA Attack with 2 known plaintexts
Fig 2. shows relationship between number of users N and probability, over all possible known plaintexts pairs, of eavesdropper learning key (due
to existence of unique solution to system of 2W equations). For N ≥ 16 probabilities obtained from 10000 randomly sampled plaintext pairs.
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1Note that noisy measurements ey will result in noisy guesses for the W −N key elements obtained by solving the W equations. However, an
eavesdropper with multiple known (Θ,ey) pairs can usually limit her search space to CN taking a majority vote over the noisy guesses [10].


