Sequential Aggregate Signatures
with Lazy Verification

from Trapdoor Permutations

Kyle Broglet!
Sharon Goldberg?
Leo Reyzin?

1Stanford University; work done while at Boston University
2Boston University

Asiacrypt 2012
Beijing, China
6 December 2012

BGP

¢ Internet Routing between Autonomous Systems (ASes)

Alice:
18.*.*.* has path
e MIT CoMIT
E Alic ' " 0Owns)
A BU- Casxr
Bob: 18.*.*.* has path
18.*.*.* has pat Alice —» MIT
Alice - MIT
- Bob , . BU

18.*.*.* has path
Bob — Aide —» MIT

BGPSEC

e Sign announcements sent
e Include announcements you received for the path
e Problem: Announcements get big!

BU: (Alice,MIT,18.*.* %) |

T

Bob: (Alice,MIT,18.** %)

U @ Ae T8)|

‘Bob: (Alice,MIT,18.*.* %)

Lazy Verification

e Problem: To verify these signatures, routers need to retrieve and maintain
~40,000 public keys. Hard to do with low latency packet forwarding.

e Want to be able to defer verification of signatures time permits (but can’t
afford to defer sending announcements) Must be able to sign before

verifying.

| BU: (Alice,MIT,18.*.*) |
Bob: (Alice,MIT,18.*.*.¥) \

Bob: (Alice,MIT,18.** %)

Sequential Aggregate Signatures

Best known aggregate signature scheme is BGLS

[Boneh-Gentry-Lynn-Shacham 03]

Based on Pairings over Elliptic Curves
« Has desired properties, but would
be nice to have alternative from
different assumptions.

[Fischlin-Lehmann-Schroder 11]
« Variant of BGLS with stronger
security guarantees.
« Guarantees aren’t needed in BGP,
but are interesting in other contexts.

What about an alternative built from TDPs?

All known constructions without
pairings:
« Don't allow for lazy verification
« Some operations using other
signers’ public keys

Sequential Aggregate Signatures

Sequential Aggregate Sigs can solve the
problem of large announcements
* One signature instead of n

But can Sequential Aggregate Sigs also
Handle lazy verification?

Two prior schemes from TDPs:
* By Lysyanskaya-Micali-Reyzin-Shacham (LMRS)
* By Neven

Both require verifying the aggregate-so-far
before signing (no lazy verification), and both
use other signer’s public keys in signing operation.

Goal: Build a scheme from TDPs, removing
requirement for verify before sign to allow
for lazy verification.
« To do so, we will have to let sig grow
by a small amount per signer
(much less than growth in msg length)

Previous Sequential Aggregate
Signature Schemes

FU”'Doma|n HaSh RSA [Rivest-Shamir-Adleman 78, Bellare-Rogaway 93]

e Going to use RSA as an example for today, but can be done with
any TDP.

e Hash function H (full RSA domain outputs; “random oracle”).
e Public key PK = (n, e). Secret key SK = (n, d).

Signer:

«y=H (m) mH@LRSAHX

e x=y9 modn

Verifier: y ?
oy:H(m) m—’B_':HRSA <+ X

f)
«y=Xemodn

LMRS Sighature Scheme imrs o4

Signer 1: PK:—> 1215/ Rsat [X,
m— ‘
Signer 2: PKy, PKy—> V72, @ Yo, lpsaa | 4
m,, m,—>
Steps for Signer 2:

Possible to generate a
» Check that PK, specifies permutation €= malicious PK that doesn’t

_ _ specify a permutation.
* Verify x, using PK,, m;

* 7,= H (PK{, PK;, my, m,)

Vo= 1, ® X, Prevents Laz_y Verification
(Need to verify aggregate-
. X, = de2 mod n, so-far before you add your

Sig)

LMRS Fails Under Lazy Verification

Signer 2 wants to sign m,

But Sig_ner 1 wants to Sianer 1: Prlﬁlz: RSA-1— X,
get a sig on bad-m, L |
(Chosen Message Attack) px pres|>, T2 . 3
i, m2—s
bad-7, ¥

PK,, PKG>) — 5@
m,, bad-m>—>

Signer 2: PKrﬁ’ PK;—| 1) Ty & Y2/ pop-il» X,

1, M= /’

Valid aggregate sig on (my, bad-m.)

Neven Signature Scheme [Neven 08]

Hash functions H (short outputs), G (full RSA domain outputs)

Signature has two components: (X, h)

Signer 2: X
[, It

Signer 3: T(

PK,, PK,, PK, Y !

m,, m,, M, :@ 773><Jvr) >@—>@y—3> RSAT X,

hs

v No more certified permutations

« Verify (x,, hy) using PK;, m;
Without verification, same
* 1= H (PK]_; PKZ; X11 mll m2) \ ubad_mzu attack works!
Will always work if signer |

*h,=n,®h
2= 2 T knows exactly what goes
into RSA-L for signer i+1

_d, Need something to be out of
" X, =Y, mod n previous signer’s control!

*Y,=G(hy)® X,

Our Scheme [BGR 12]

Hash functions H (short outputs), G (full RSA domain outputs)

Signature has two components: (X, h) plus an r value per signer

X1

Signer 2: h |
PK,,PK, T
Signer 3: fz — h, | T(

PK,, PK,, PK, Y

m,, m,, My @773 » D >@—>@—> RSAT X,

—

. Ran.dom r,
—verify-thprosimgPREmT
* 1,= H (PKy, PKy, X3, my, my),)
*h,=m,®h,

= G(h)® x,

= ygzmod n,

h
Ve

No more verification
necessary...malicious
signer | cannot predict input
to RSA™! for signer i+1

Lazy Verification Achieved!

Note: Security proof improves if r is
pseudorandom; see paper for
interesting combinatorial tricks.

e Need for Lazy Verification

e Sequential Aggregate Signatures
e Our Scheme

e Proof

e Benchmarks

Security Proof

Warm Up: Full-Domain-Hash Proof [sellare-rogaway 93]
m—»@L RSA1 —» X y & /H(m)?
F

\ X = RSA@

Proof logic: if forger F succeeds, we can invert RSA on a giveny
H is a random oracle =F has to query it=answer one query with y

By programming the random oracle H to respond with y, we can
ensure that if the forger succeeds, we will have inverted RSA

on agiveny.

Security Proof cont’d

P
| Notf GleduRoAcee)
|| Thifceamduetestorpair

PK—> v n L ’ the Wwonaets tto fidl one
m1—>E - >é —> D Yi > R}A@/ 1 to match to X,
rHh— h; Xq | N\

PKe—>P 7, v M " Nowwe havea)

— > -1 »
My—>1H G% . > RSA X2 pair of matched
v queries, SO we've
. found X! y

e Need for Lazy Verification

e Sequential Aggregate Signatures
e Our Scheme

e Proof

e Benchmarks

¢ Implemented our scheme with OpenSSL primitives

e Benchmarks computed with software implementations.
® Things may look different in hardware.

¢ Benchmarks computed using OpenSSL.:
® 2GB Ram, 2.4GHz Core i3
® BLGS benchmark computed with MIRACL crypto library, as OpenSSL did
not have an implementation.
e Benchmarks considered were signature length, verify time, and
sign time.

Signature Length

25000

20000

< 15000

it Leng

10000

5000

0

ECDSA shorter 1
for small k

Average path length
od

/ >-BGLS-256

~RSA-2048
=BGR-2048

ECDSA-256

Weaker routers see

_ longer k => BGR more

’—'—'—_._\ efficient

@ @ @ @ Q

6 7 8 9 10
Path length k

EVALNE

Time (ms)

30

N
o

N
o

(BN
92

p Average path length

>-BGLS-256
~+RSA-2048

=BGR-2048
ECDSA-256

Path length k

70

Time (ms)
N w S Ul (@)
o o o o o

[HEY
o

o

Out Degree

-+RSA-2048

=+BGR-2048
ECDSA-256

>-BGLS-256

Conclusions

Sequential Aggregate Signatures
+From any TDP (in RO model)

+ Lazy Verification (In fact, don’t need to know
previous signers at all)
— Signature grows ~128 bits/signer

* Already have linear growth due to messages, which are
on average longer than 128 bytes.

T Speed comparable to RSA (fast verify, slower sign).

