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BGP

¢ Internet Routing between Autonomous Systems (ASes)
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BGPSEC

e Sign announcements sent
e Include announcements you received for the path
e Problem: Announcements get big!
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Lazy Verification

e Problem: To verify these signatures, routers need to retrieve and maintain
~40,000 public keys. Hard to do with low latency packet forwarding.

e Want to be able to defer verification of signatures time permits (but can’t
afford to defer sending announcements) Must be able to sign before

verifying.
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Sequential Aggregate Signatures

Best known aggregate signature scheme is BGLS

[Boneh-Gentry-Lynn-Shacham 03]

Based on Pairings over Elliptic Curves
« Has desired properties, but would
be nice to have alternative from
different assumptions.

[Fischlin-Lehmann-Schroder 11]
« Variant of BGLS with stronger
security guarantees.
« Guarantees aren’t needed in BGP,
but are interesting in other contexts.

What about an alternative built from TDPs?

All known constructions without
pairings:
« Don't allow for lazy verification
« Some operations using other
signers’ public keys



Sequential Aggregate Signatures

Sequential Aggregate Sigs can solve the
problem of large announcements
* One signature instead of n

But can Sequential Aggregate Sigs also
Handle lazy verification?

Two prior schemes from TDPs:
* By Lysyanskaya-Micali-Reyzin-Shacham (LMRS)
* By Neven

Both require verifying the aggregate-so-far
before signing (no lazy verification), and both
use other signer’s public keys in signing operation.

Goal: Build a scheme from TDPs, removing
requirement for verify before sign to allow
for lazy verification.
« To do so, we will have to let sig grow
by a small amount per signer
(much less than growth in msg length)



Previous Sequential Aggregate
Signature Schemes



FU”'Doma|n HaSh RSA [Rivest-Shamir-Adleman 78, Bellare-Rogaway 93]

e Going to use RSA as an example for today, but can be done with
any TDP.

e Hash function H (full RSA domain outputs; “random oracle”).
e Public key PK = (n, e). Secret key SK = (n, d).

Signer:

«y=H (m) mH@LRSAHX

e x=y9 modn

Verifier: y ?
oy:H(m) m—’B_':HRSA <+ X

f)
«y=Xemodn




LMRS Sighature Scheme imrs o4

Signer 1: PK:—> 1215/ Rsat [ X,
m— ‘
Signer 2: PKy, PKy—> V72, @ Yo, lpsaa | 4
m,, m,—>
Steps for Signer 2:

Possible to generate a
» Check that PK, specifies permutation €= malicious PK that doesn’t

_ _ specify a permutation.
* Verify x, using PK,, m;

* 7,= H (PK{, PK;, my, m,)

Vo= 1, ® X, Prevents Laz_y Verification
(Need to verify aggregate-
. X, = de2 mod n, so-far before you add your

Sig)



LMRS Fails Under Lazy Verification

Signer 2 wants to sign m,

But Sig_ner 1 wants to Sianer 1: Prlﬁlz: RSA-1— X,
get a sig on bad-m, L |
(Chosen Message Attack) px  pres|>, T2 . 3
i, m2—s
bad-7, ¥

PK,, PKG> ) — 5@
m,, bad-m>—>

Signer 2: PKrﬁ’ PK;—| 1) Ty & Y2/ pop-il» X,

1, M= /’

Valid aggregate sig on (my, bad-m.)




Neven Signature Scheme [Neven 08]

Hash functions H (short outputs), G (full RSA domain outputs)

Signature has two components: (X, h)

Signer 2: X
[, It

Signer 3: T(

PK,, PK,, PK, Y !

m,, m,, M, :@ 773><Jvr) >@—>@y—3> RSAT X,

hs

v No more certified permutations

« Verify (x,, hy) using PK;, m;
Without verification, same
* 1= H (PK]_; PKZ; X11 mll m2) \ ubad_mzu attack works!
Will always work if signer |

*h,=n,®h
2= 2 T knows exactly what goes
into RSA-L for signer i+1

_d, Need something to be out of
" X, =Y, mod n previous signer’s control!

*Y,=G(hy)® X,



Our Scheme [BGR 12]

Hash functions H (short outputs), G (full RSA domain outputs)

Signature has two components: (X, h) plus an r value per signer

X1

Signer 2: h |
PK,,PK, T
Signer 3: fz — h, | T(

PK,, PK,, PK, Y

m,, m,, My @773 » D >@—>@—> RSAT X,

—

. Ran.dom r,
—verify-thprosimgPREmT
* 1,= H (PKy, PKy, X3, my, my), )
*h,=m,®h,

= G(h)® x,

= ygzmod n,

h
Ve

No more verification
necessary...malicious
signer | cannot predict input
to RSA™! for signer i+1

Lazy Verification Achieved!

Note: Security proof improves if r is
pseudorandom; see paper for
interesting combinatorial tricks.
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Security Proof

Warm Up: Full-Domain-Hash Proof [sellare-rogaway 93]
m—»@L RSA1 —» X y & /H(m)?
F

\ X = RSA@

Proof logic: if forger F succeeds, we can invert RSA on a giveny
H is a random oracle =F has to query it=answer one query with y

By programming the random oracle H to respond with y, we can
ensure that if the forger succeeds, we will have inverted RSA

on agiveny.



Security Proof cont’d
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¢ Implemented our scheme with OpenSSL primitives

e Benchmarks computed with software implementations.
® Things may look different in hardware.

¢ Benchmarks computed using OpenSSL.:
® 2GB Ram, 2.4GHz Core i3
® BLGS benchmark computed with MIRACL crypto library, as OpenSSL did
not have an implementation.
e Benchmarks considered were signature length, verify time, and
sign time.



Signature Length
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Conclusions

Sequential Aggregate Signatures
+From any TDP (in RO model)

+ Lazy Verification (In fact, don’t need to know
previous signers at all)
— Signature grows ~128 bits/signer

* Already have linear growth due to messages, which are
on average longer than 128 bytes.

T Speed comparable to RSA (fast verify, slower sign).



