SINE: Cache-Friendly Integrity for the Web

Camille Gaspard *
Elisa Bertino !

Sharon Goldberg 2
Cristina Nita-Rotaru !

Wassim Itani!

cgaspard @cs.purdue.edu, goldbe @princeton.edu, witani@cs.purdue.edu
bertino@cs.purdue.edu, crisn@cs.purdue.edu
! Purdue University, West Lafayette, IN 47907 USA
2 Princeton University, Princeton, NJ 08544 USA

Abstract

In this paper we present SINE, a cache-friendly pro-
tocol for integrity-enforced web documents. SINE op-
erates by decoupling integrity from confidentiality and
provides web documents with an integrity-enforcement
authentication tag that can be incrementally verified by
multiple parties. We developed a prototype implementa-
tion of SINE with minimal changes to the standard web
client/server architecture and conducted experiments using
the standard Squid web proxy. Our experimental results
show that SINE provides the required integrity services
to web pages while maintaining the standard caching
mechanisms. Moreover, by taking advantage of caching,
SINE shows a performance gain that reached a factor of
5 over SSL/TLS.

I. INTRODUCTION

With the increased use of data-rich web 2.0 applications
and the amount of web-accessible information, a major
concern for users and content providers is the integrity of
these web documents. However, Reis et. al show in [8]
that up to 1% of all HTTP traffic may be tampered with
while it traverses the network from a web-server to a client
(usually a web browser). The standard way to prevent
such attacks is to require web clients to use the Hypertext
Transfer Protocol Secure (HTTPS) [3]. HTTPS refers to
the use of HTTP over an encrypted Secure Sockets Layer
(SSL) or Transport Layer Security (TLS) [S] connection.
With TLS, the server’s public key is used to negotiate a
pairwise shared secret key between the client and server;
the client and server then use symmetric-cryptographic
operations (keyed with their pairwise-secret key) to en-
crypt and authenticate each transport-layer segment that
they send. While SSL/TLS protects both the integrity and
confidentiality of web documents, this paper focuses only
on integrity protection.

Unfortunately, HTTPS significantly degrades perfor-
mance because it interferes with a very popular web tech-
nology called web document caching. With web document
caching, copies of frequently requested web documents
are stored on client machines or on specialized proxy
servers (such as Squid [2]) on the clients’ local network.

Web caching allows large organizations to significantly re-
duce their upstream bandwidth usage and cost, while sig-
nificantly improving application responsiveness for clients
and reducing load on web-servers. Because HTTPS en-
crypts each document the client wants to download using
a pairwise key between the client and the server, other
clients can no longer take advantage of the frequently-
requested documents stored on the proxy. One way to
get around this problem is to allow the server to delegate
its symmetric keys to the proxy and have the proxy use
these symmetric keys to simulate an HTTPS session to the
client. However, this solution has the major disadvantage
that it requires the client to frust the proxy.

If the client does not trust the proxy, the server could
instead append a public-key digital signature to each web
document. Then, if the proxy stores the document and
its signature, the web client can verify the integrity of
the document using the server’s public key, even if it
does not trust the proxy. While it initially seems very
appealing, we believe this solution is completely imprac-
tical. On one hand, suppose that a single digital signature
is computed over the entire document. Then there is an
unacceptable latency at the client, since it must wait to
download the entire document before it verifies the digital
signature. On the other hand, suppose that the document
is broken into small blocks that are individually authen-
ticated using a public-key cryptography (as in HTTPS,
where documents are broken into transport-layer segments
that are individually authenticated using a symmetric-key
cryptography). Since public-key cryptography is known
to be significantly (> 100 times) slower than symmetric-
key cryptography, this solution incurs an unacceptable
computational cost at the client.

To get around these issues and address the tension
between performance and security, this paper presents
SINE, a cache-friendly protocol for integrity-protected
web documents. SINE is a high-performance web protocol
that allows clients to take advantage of caching opportu-
nities without requiring them to trust the proxy or each
other. With SINE, clients can incrementally verify the
integrity of web documents using one (or fewer) public-
key cryptographic operations and a small number of fast
cryptographic hash computations. The contributions of

this paper are as follows:

e« We show how to obtain a practical integrity-only
security service for web documents that requires
minimal modification to the current web client/server
model. We base our work on the cryptographic
protocols proposed by Gennaro and Rohatgi in [6],
and present three protocol variants, SINE, SINEB,
and SINEX, that trade-off computational cost and
latency. We compare the three variants and discuss
appropriate application scenarios.

e« We develop a prototype implementation of SINE,
SINEB, and SINEX with minimal changes to the
standard web client/server architecture and evaluate
all three protocols using the standard Squid web
proxy. Our experimental results show that SINE
provides the required integrity services while main-
taining the standard web caching mechanisms. We
also find that SINE can improve performance over
SSL/TLS (by a factor of up to 5 when the file size
is large), because it allows clients to take advantage
of web caching.

This paper is organized as follows. We start with the
system model and requirements in Section II and then
describe the different flavors of SINE in Section III
Section IV evaluates SINE in different scenarios. We
discuss related work in Section V and conclude in Section
VI

II. MODEL AND REQUIREMENTS

We present the client-server model considered in this
work, as well as our design requirements.

A. Client Server Model

The system model complies with the traditional web
client/ server architecture and is functionally represented
by three main components: the client, the server, and the
proxy.

When a client sends an HTTP request to the web
server, the proxy intercepts client requests and checks
if the requested content is available locally. If it is, the
proxy replies with the requested content; otherwise, it
forwards the HTTP request to the server. On the way
back, the proxy intercepts the HTTP response content and
stores it locally for servicing clients requesting the same
content in the future. In HTTPS on the other hand, the
client must establish a direct connection to the server. All
communication between client and server is encrypted and
authenticated under a secret pairwise key. Because this
key is kept secret from the untrusted proxy, all HTTPS
communication must bypass the proxy entirely.

B. Design Requirements

We have identified a number of requirements that we
believe are crucial for any integrity solution for web
content:

H(x) a collision-resistant hash function

PK a public key from a public-key scheme
SK a secret key from a public-key scheme
Signs i (m) a digital signature of m using SK

a digital signature verification function of m
and tag using PK

an equally-sized block partitions of an ob-
ject. The blocks equal size is guaranteed by
padding the last block

Y; a data structure containing file block B; and
its respective hash authenticator

, the string concatenation operator

Verpk(m,tag)

Bi, B2, ..., Bn

TABLE I
NOTATION

End-to-end integrity protection. is required from
server to client. The client only trusts the web server that
originates the web content. No trust should be placed in
the proxy.We only require the proxy to cache web content;
because the proxy is untrusted, it is not responsible for
verifying or guaranteeing the integrity of the content it
receives from the server. The server does not assume any
trust relationship with either the client or proxy.

Incremental verification. Standard web browsers pro-
gressively render content in order to provide increased
application responsiveness. A practical solution for web
content integrity has to allow the client to incrementally
verify the integrity of every part of the document as it is
downloaded.

Support for caching. We would like our protocols to
be backward-compatible; thus, we design protocols that
require no change to the web proxy architecture.

Leveraging SSL/TLS. Given that the SSL/TLS pro-
tocol has been under scrutiny for many years, it is
desirable (when possible) to leverage existing components
of SSL/TLS.

Communication/computation overhead. As resource-
constrained devices (e.g., smart phones, PDAs) are cur-
rently being used to browse the web, we require solutions
to have small communication and computation overhead
for the client.

III. SINE PrROTOCOLS DESCRIPTION

We start with the basic SINE protocol based on [6].
We then show two protocol flavors, SINEB and SINEX,
that leverage existing web architecture and web access
scenarios to provide better performance. The notation used
in the rest of the section is presented in Table I.

A. SINE Overview

At a high level, SINE, works as follows: whenever a
client requests a web page from a web server, the server
answers with the requested page and a corresponding
Authentication Tag (AT). This AT is a separate file or
a header added to the regular HTTP response of the
requested object, and is generated when the page is
updated on the server. As proposed by Gennaro and
Rohatgi [6], the AT is a public-key authenticated hash

chain on a set of small (typically 1 KB) equally-sized
blocks of the exchanged web document. The client can
incrementally verify the integrity of each block of the web
page by verifying the interdependent collision-resistant
hash values, while the authenticity of the entire document
is guaranteed by a (public-key) digital signature on the
first entry of hash chain.

Authentication Tag Generation. Figure 1 shows the
authentication tag AT for a file. First, the server divides
the file into equally-sized blocks (B1, Ba, ..., B,) (with
last block padded). Then, the server takes a backwards
pass over the file using the blocks to generate a (n + 1)-
elements hash chain, where n is the resulting number
of blocks in the file. Specifically, Y; is computed as the
hash function applied to the previous authenticator Y;_;.
The first authenticator, Y, is computed as the server’s
digital signature over Y7, n the number of blocks in file,
a timestamp 7', and an expiration date E. T" and E protect
against replay attacks and allow clients to check the
freshness of server responses. n prevents an attacker from
delivering only the first part of the file (and withholding
the rest of the file without the client’s knowledge).

Storing the Document and AT. After the first request
for an object, the proxy will store the page and the
corresponding AT file. For subsequent client requests, the
proxy will thus be able to deliver the requested web page
along with its corresponding AT file without having to
contact the original web server. If the cache expires, the
proxy requests an updated version of the page and its
corresponding AT from the server.

Integrity Verification. In SINE the proxy (and server)
each delivers the document to the client as blocks Y;
for © = 0...n. When the client receives the first block,
Yy, it verifies this block using the public key of the
server (and verifies freshness by checking 7' and FE).
As with TLS/SSL, the client first needs to cross-check
the certificate of the server it is communicating with
against the chain of trusted CAs it has in its database
to validate the claimed public key of the server. The
authenticator Y; is used to authenticate the subsequent
block B;;1. Authentication of blocks Y; for ¢ = 1...n is
performed using fast collision-resistant hashing. Finally,
the client verifies that it has received the entire document
by comparing the number of blocks received with the
authenticated n from Yj.

Security. In [6], the authors prove that if the server
correctly formed the AT and if the client uses the correct
public-key for verification, then it is infeasible for an
adversary to generate an AT for a document that was not
created by the server. It follows that the integrity of the
web document is guaranteed even if the document and AT
are stored on the untrusted proxy.

Overhead. In SINE, the computation cost of the au-
thentication tag AT at the server (resp. client) consists of
one ‘slow’ public-key digital signature (resp. verification)

File Blocks Authenticating Tag (AT)

Yo= .0, T, E_ Signs(H(Y;,n, T,E))
B, A = H(Y,)
B, o= B, H(Ys)
s ‘
| © |
¥ g ¥
B 8 Y= B; H(Y,4
| g ¢
v Yoo= B H(Yp)
By Yorm B ()
B, Y= B, padding
w
Fig. 1. SINE Authentication Tag
AThash ATsign
Yo= .0,LE H(Yp0, T,)
Yi= By _H(Ya)
Y= B, _H(Ys)
s ‘
© :
E v
8 Y= Bi‘ H(Yi,1)
=3 v
Yoz= Boz H(Yas)
Yna= Bn.1 J_D)_H Y,
Yosa. Bn. woaddiaoy

Fig. 2. SINEB Authentication Tag

and n ‘fast’ collision-resistent hash computations.

B. SINEB Overview

SINEB is a variant of the SINE protocol that amortizes
the cost of computing the digital signature across multiple
web pages. Consider a user who uses SINE to browse
through a number of webpages on a certain website (e.g.
CNN.com) over some time period or session. With SINE,
the client needs to perform one public-key verification
per web object requested. We now propose SINEB, which
reduces the number of public-key operations by exploiting
the fact that these webpages are all generated by the
same web server. With SINEB, during a session with
a particular webserver, the client preforms only a single
(slow) public-key operation and thereafter preforms only
fast symmetric-key cryptographic operations.

Authentication Tag Generation. In SINEB, the
signature-authenticated component of the authentication
tag AT is separated from the non-authenticated compo-
nent, as shown in Figure 2. The first authenticator is di-
vided into two parts: AT}, containing the authenticators
Y;....Y,, as in SINE (but not including Yy), and AT,
containing collision-resistant hash of Y7, n, T, E.

Storing the AT. This time, AT}, is cached along
with the web document on the proxy server, but the web
server will store and secure the AT;,, for every web
document it serves.

Integrity Verification. In a simplified version of
SINEB, when a client wants to communicate with a web
site, he starts by establishing an SSL session with the
server. After the SSL connection is established, the client

Forward_Authenticator(P1)
URL(Pyo) Atgign(Pyo)
URL(Pys) Atgign(Pia)

v

URL(Pym) . Atgign(Picm)

()
Forward_Authenticator(P1)

Authenticating Tag (AT)

File Blocks P1 Yo T.E
—w Yy B, WH v,
B, Yo= B, _H(Ys)
B g
i § Yoo= Bua L H(Yn)
B 8 Yni= B4 H(Yq)
Bn-1 Y By H(Yau)
= " You= L—(—M)—H Y,
o
%, & Y= _&_ H(Y)
i v
:(5‘ [S Ynum= L—g_paddin
°
E ATgign(P1) i nsmu TE) Ly
(b) Authentication Tag
Fig. 3. SINEX Authentication Tag

initiates two requests per web object: one using HTTP for
the object itself and another SSL request for the AT%;qn
of the same object. The client can then verify the integrity
of the web document by combining AT}qsn and AT;gn
and proceeding as in the SINE protocol. Note that SSL
performs only symmetric-key cryptographic operations
once the handshake phase is complete, so that verifying
the AT ;g4 tag requires only symmetric-key cryptographic
operations.

We note that requiring an extra SSL request per web
document adds latency to the client because of the ex-
tra RTT with the server, and burdens the server with
additional SSL requests. A possible solution is to batch
the AT,q, for all the web objects that are expected
to be requested in one session together in one large
authenticator AT .oj1cct-

C. SINEX Overview

We describe SINEX, another variant of the protocol
proposed in Section III-A that combines the attractive
properties of SINE and SINEB. SINEX requires only a
single public-key verification per session (i.e. multiple
pages served from the same website), and does not incur
any communication with the web server on a per-request
basis. SINEX exploits the fact that the webpages at a
website are interconnected in manner that (often) allows
the server to predict the sequence in which the client
accesses the webpages on a website.

The Expected Set. Consider a single website with
a page P; that links to a set of other pages at

the same website. We refer to this set of linked
pages as Fuxpected_Set(P;). When content is static,
the FEaxpected_Set(Py) is deterministic and the same
for each user. In the case of dynamic content that
is the same for each client (e.g., a stock update on
CNN.com), the Expected_Set(P;) can be computed each
time the content changes. For these cases, we assume
a server function Compute_Expected_Set(P;) that re-
turns Fapected_Set(Py), and show how to protect these
pages with SINEX. However, we do not advocate using
SINEX to protect user-specific dynamic content (e.g. an
webmail inbox) where content is tailored to each user;
this content should be protected using SINE or SINEB.

Authentication Tag Generation. As shown in Fig-
ure 3(a) the ATy;4, elements of the Expected_Set(P;)
are stored in a new data structure, referred to as
Forward_Authenticator(Py). As shown in Figure 3
the Forward_Authenticator(Py) is then appended to
the end of the page P, (shown as blocks Xj, ..., X,,).
Finally, the page P, and Forward_Authenticator(P;)
are authenticated (using a digital signature on the hash
chain) as in SINE.

Integrity Verification. SINEX amortizes the cost of
public-key verification across multiple pages, without
requiring the client to establish an SSL connection
with the server. To see how, notice that in SINEX,
the first authenticator Yy is the root of the hash
chain that guarantees the integrity of P; as well as
Forward_Authenticator(P;). Suppose the client would
like to access a page P, followed by a linked page Pj;
that is stored in Forward_Authenticator(Py). To do
this, the client first processes the AT of page P;, and
verifies the integrity of a block X; = AT ;4 (Pri) using
a fast collision-resistant hash computation. Next, when the
client begins processing the AT of page Pg;, it no longer
needs to perform a public-key verification of page Py;’s
first authenticator, (as it already did this when it verified
the integrity of X; = AT ;4 (Pr;) in page Pi’s AT).

D. Discussion

We compare our protocols below and in Table II.

SINE. With SINE, one public-key verification per web
object is needed, while no communication is established
with the original web server when the cache is not stale.
SINE in its original form is very suitable for scenarios
where a user accesses only one particular website and
downloads one particular object.

TABLE II
COMPARISON FOR N REQUESTS IN ONE SESSION
SINE | SINEB | SINEX
Public-key verification | N 1 *1 (expected)
RTTs with server 0 N 0

Protocol Description

http HTTP without any caching between client and
server.

http-proxy Same as Attp but using a proxy with a variable
connection bandwidth between client and server.

https HTTPS without any caching between client and
server.

SINE SINE without any caching between client and
Server.

SINE-proxy Same as SINE but using a proxy with a variable
connection bandwidth between client and server.

SINEB SINEB without any caching between client and

Server.

SINEB-proxy | Same as SINEB but using a proxy with a variable

connection bandwidth between client and server.

SINEX SINEX without any caching between client and

Server.

SINEX-proxy | Same as SINEX but using a proxy with a variable

connection bandwidth between client and server.

TABLE III
PROTOCOLS USED IN EXPERIMENTAL EVALUATION

SINEB. SINEB has the advantage that it amortizes the
cost of both the public-key operations and the download
of the ATy oOver consecutive requests in one session. As
a result, SINEB is more appropriate for scenarios where
the user is interested in browsing one specific website for
a considerable amount of time. However, SINEB incurs
the cost of a RTT with the server for each fetched AT (or
collected set of ATs).

SINEX. By anticipating the pages a client will visit
after reaching a certain web page in a web site, SINEX
can achieve the same security guarantees of SINE with a
single public-key verification and without paying the cost
of RTTs with the web server. We believe that SINEX is
the most appropriate choice for integrity protecting web
documents in common web scenarios.

IV. EVALUATION

Experimental Setup. We evaluated SINE on a real
network using two local Linux machines (located on a
campus network within the US), to implement the client
and proxy, and one geographically-separated PlanetLab
[1] machine (located in France) to implement the server.
The machines were each equipped with a 3.4 GHz uni-
processor Pentium CPU and 1 GB of physical memory
running Linux with a 2.6 kernel. The web server used
was Apache 2.2.10 and the proxy server was Squid 3.0.
The time required to compute the Fxpected_Set is not
included in our evaluation. The evaluated protocols are
summarized in Table III.

Throughput. We conducted experiments in two scenar-
io0s: direct connection between the client and the server,
and connecting using a local proxy.

To simulate a client connected to a local proxy via
a typical Ethernet or WiFi connection, we connect our
two local Linux machines (client and proxy) using an
effective 100 Mbps connection that is routed through the
local campus network. The PlanetLab machine acts as the

80 80
SINEB-proxy ———
SINE-proxy
70} SINEXproxy x 7
{p-proxy
SINEB
SINE
60 SINEX ---® 60
I~ hip -4~
. https.
E 50 50
< "
2 40 5K 40
<=
Ed |
* y
o
B 30 . . AR EU
= &
20 ¥ s 20
* ,,'*/
10 - 10
L — Lo bt
Lt & & -
ek b b ORR .-
100K 0K 00K 400K 600K SOOK IMB 2mp B 6MB SMBIOMB
File size (MB)
Fig. 4. Throughput per file size
9 9
SINEB-proxy —+—
SINE-proxy
8 SINEX-proxy 8
http-proxy
SINEB
7 SINE 7
SINEX ---®
hitp -4~
%; o https 6
=
15
3 s 5
< N
o4 i 4
= \
g R
< = R
3 - 3
3 P s~
E 2 X%, p -
2 2
*, -
1 v — 1
* *
0 0
128K 256K SI2K IM 2M 4M 8M 100M

Bandwidth (bit/sec)
Latency for one 100 KB file

Fig. 5.
server. We measured the average throughput (the average
number of bits transmitted in a second) for different file
sizes.

As depicted in the Figure 4, all three SINE-flavored
protocols used with a proxy have a significant perfor-
mance gain over HTTPS, particularly for larger file sizes.
Notice that the throughput of SINE is comparable to
that of regular unprotected HTTP. Figure 4 also confirms
that SINEX achieves the best throughput of all the SINE
flavors; indeed, when the file is large, SINEX provides a
fivefold improvement over HTTPS.

Interestingly, one anomaly we observed is that HTTPS
slightly outperformed HTTP without proxy. We suspect
this behavior is due to the compression performed by SSL.

Latency. To assess the latency perceived by the user
while browsing the web using SINE we have conducted
experiments in two scenarios: single fixed-size file and a
web portal.

Fixed-size file. We first measured the latency for a single
fixed 100 KB file. The server-proxy measured bandwidth
was around 4 Mbps, and we increased the bandwidth of
the client’s connection from 128 Kbps to 100 Mbps using
the Linux Traffic Control (i.e., the t¢c command). We ran
the experiments 30 times each and present the average
over all runs. When a proxy is used, Figure 5 shows that
SINE and SINEX perform as well as HTTP, while SINEB
incurs an additional latency due to a round trip to the
server (see Table III).

Static content. We instrumented the main page of a

55 55
SINEB-proxy ———
SINE-proxy
50 SINEX-proxy - 50
: http-proxy

4l SIN 45

08 hip -2 4 40
35 \ 35
30 \ 30

25) 25

Latency (seconds)

\ *
20 PN o @ 2 20

15 15

10 10

5 5
128K 256K 512K IM 2M 4M 8M 100M
Bandwidth (bit/sec)

Fig. 6. Latency for a portal main page of 330 KB

portal web site (www.msn.com) and simulated the browser
rendering of such a page. Our analysis showed that in
order to render www.msn.com, the browser needs to
connect to 22 hosts on the msn.com subnet, getting around
15KB of content in one TCP connection from each host.
The total size of the web page was 330 KB.

The results depicted in Figure 6 show that SINEX and
HTTP both operating with a proxy provide almost similar
perceived latency to the user when browsing a portal
web site. This means that the client gets the integrity
guarantees of SINE almost without any noticeable loss in
responsiveness. On the other hand, the same figure shows
that the latency perceived by clients when using HTTPS is
almost three times worse than what SINEX can guarantee
with a proxy. In the case in which all the elements of the
portal page were a “miss” in the cache (these elements
are not found in the cache store), the experimental results
show that SINEX is only slightly worse than pure HTTP
in terms of responsiveness. Furthermore, we can see that
SINEX is only slightly worse than HTTPS in this case of
a “cold cache”.

V. RELATED WORK

SSL/TLS. SSL is currently the predominant security
protocol providing end-to-end confidentiality and integrity
to web content. SSL interferes with performance-oriented
network services such as web document caching (as
discussed in Section II). However, SSL provides confi-
dentiality services that are not provided by our (integrity-
only) SINE protocol.

SSL Splitting [7]. SSL Splitting allows a web proxy
to serve cached documents directly to a client while
requiring the server to forward only the symmetric-key
cryptographic authentication tags for these documents to
the clients via the proxy. Both SSL Splitting and SINE
provide incrementally-verifiable integrity checking using
mostly symmetric-key cryptographic operations. However,
SINE allows the client to verify the integrity of cached
web documents without communicating with the server.
Thus, as compared to SSL Splitting, SINE reduces the
latency at the client and the load at the server. We believe
that the only cost that SINE incurs over SSL Splitting is

a small number of public-key operations, which can be
amortized over many webpages.

HTTP Merkle Trees [4]. In [4], web documents are
represented in a Merkle tree that authenticates both the
existence and non-existence of web resources. While this
solution does not interfere with caching, it is highly ineffi-
cient in dealing with dynamic content. Changing one bit in
any of the web pages requires a secure redistribution of the
secured root hash, and the recalculation and redistribution
of parts of the tree. SINE (and SINEX), on the other hand,
recalculates only the pages linking to the webpage being
updated.

Javascript-based Integrity Checking [8]. Recently,
[8] presented a non-SSL integrity-checking solution for
web content exchanged using HTTP. In [8], integrity-
checking Javascript code is embedded in the webpage
provided by the server. Once the webpage is rendered by
the client browser, the Javascript code executes and veri-
fies the webpage’s integrity. In [8], the goal is to develop
a HTTP-based solution that does not require changing
current browsers, so they do not require cryptographic
authentication of the webpage or the embedded Javascript.
Their solution is vulnerable to adversarial modifications
of webpage and/or Javascript code. We believe that the
ideas in [8] are more appropriate for detecting errors that
occur randomly (rather than adversarially) as a webpage
traverses the network.

VI. CONCLUSION

In this paper we presented SINE, a family of security
protocols based on [6] that ensures the integrity of web
documents while supporting standard web caching mecha-
nisms. SINE allows web clients to verify a web document
incrementally, as it is downloaded from the network. The
paper presented the protocol design and supported it with
a prototype implementation using standard web architec-
ture components. The experiments conducted showed that
SINE provides the required integrity services to web pages
while maintaining the standard caching mechanisms. We
believe that in settings where confidentiality is not re-
quired, SINE has a significant advantage over SSL/TLS;
indeed, when files are large, SINE showed a fivefold
improvement in throughput over SSL/TLS.

REFERENCES

[1] PlanetLab. http://www.planet-lab.org.

[2] Squid: Optimising Web Delivery. http://www.squid-cache.org/.

[3] HTTP over TLS, 2000. RFC2818.

[4] R. J. Bayardo and J. Sorensen. Merkle tree authentication of http
responses. In WWW 05, pages 1182-1183, 2005.

[5] T. Dierks and C. Allen. RFC 2246: The TLS protocol version 1,
January 1999. Status: PROPOSED STANDARD.

[6] R. Gennaro and P. Rohatgi. How to sign digital streams. In
Proceedings of CRYPTO 97, pages 180-197. ACM, 1997.

[7]1 C. Lesniewski-Laas and M. F. Kaashoek. SSL splitting: securely
serving data from untrusted caches. In SSYM’03, pages 13—13, 2003.

[8] C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver. Detecting in-
flight page changes with web tripwires. In NSDI’08, pages 31-44,
2008.

