
2013 Ruby on Rails Exploits

CS 558
Allan Wirth

Background: Ruby on Rails
Ruby: Dynamic general purpose scripting language similar
to Python
Ruby on Rails: Popular Web app framework using Ruby

Designed for rapid and easy development
Used by sites such as Twitter, Github, Basecamp, Scribd, and
Groupon
Has become very popular in the past few years. About 2% of
the top 10,000 websites use Ruby on Rails.
Comes with every Mac OS X computer since 10.7 (Mountain
Lion)

Background: XML
XML (Extensible Markup Language): Very popular human-
readable data serialization format.

Used to transfer data from one program to another in a
platform agnostic fashion.
Core markup language for many formats, such as:

XHTML – Used for Web Pages
Open Office XML – Document Format for Microsoft Office 2007+
XMPP – Google Chat, Facebook Chat, Jabber
Nearly all web API services support XML data (such as the Twitter,
Facebook, Tumblr and Reddit APIs)

Example:
<message>Hello World!</message>

Background: JSON / YAML
JSON: JavaScript Object Notation

Designed to be a simplistic human-readable data serialization
using familiar JavaScript syntax
Example:

{

"first_name": "Allan",

"last_name": "Wirth",

"major": "Computer Science"

}

YAML: YAML Ain't Markup Language
Designed to be a human readable data serialization language.
JSON is supported as a strict subset of YAML.

Exploit: Ruby YAML implementation
Under normal conditions, the only types returned by YAML
parsing are generic types such as integers, lists and dictionaries.
The Ruby YAML implementation allows encoding of arbitrary
object formats. When deserialized, the object will be
constructed with the provided parameters.

Example:
--- !ruby/array:Array

- apples
- pears

Useful for automagic serialization of user defined types
Not inherently dangerous, as long as run on trusted input. If an
attacker’s input is interpreted as YAML, they can instantiate arbitrary
objects by name. For example, an attacker could instantiate a class
representing an SQL statement to run custom queries against the
database.

Exploit: Rails Deserialization
Rails will automagically deserialize incoming requests that
contain JSON or XML parameters. It does not do this for
YAML, because it would be unsafe.
However, the XML parser interprets elements in the form
<foo type=“yaml”>…</foo> as YAML documents.
This can be used by an attacker to have the YAML
interpreter interpret malicious YAML code.
Furthermore, the JSON parser simply uses the YAML
parser as the backend. This can be used to get the YAML
interpreter to interpret client-defined YAML documents.

Exploit: Rails Code Execution
By using one of the aforementioned methods, an attacker can obtain YAML
processing and instantiate arbitrary objects on the server.

By finding an object that will execute code on instantiation, the attacker can
run whatever they want.

The class
ActionDispatch::Routing::RouteSet::NamedRouteColle
ction allows for this sort of execution.

Example:
--- !ruby/hash:ActionDispatch::Routing::RouteSet::NamedRouteCollection

"foo; eval(puts '=== hello there'.inspect);": !ruby/object:OpenStruct

table:

:defaults: {}

Impact
Both exploits allowed arbitrary code execution on any
website running any Rails release for the past 6 years. The
exploit had 100% reliability.
XML vulnerability released Tuesday, January 8th, 2013
JSON vulnerability released Monday, January 28th, 2013
Both vulnerabilities were patched within the same day as
release.
A few large sites that were not patched quickly enough
were attacked, such as rubygems.org and Bitcoin
exchange Vircurex where an undisclosed sum of Bitcoins
were stolen.
Both vulnerabilities were rolled into Metasploit.

Questions?

References
Ruby on Rails: http://rubyonrails.org/
Ruby: http://www.ruby-lang.org/en/
JSON Parser Vuln Release:
https://groups.google.com/forum/?fromgroups=#!topic/rubyonr
ails-security/1h2DR63ViGo
CVE-2013-0333 write-up:
http://micrmsoft.blogspot.com/2013/01/cve-2013-0333-ruby-
on-rails-json-parser.html
Anatomy of an Exploit: http://rubysource.com/anatomy-of-an-
exploit-an-in-depth-look-at-the-rails-yaml-vulnerability/
XML Vuln Release: http://www.kb.cert.org/vuls/id/380039
Ruby Exploit Recap:
http://trends.builtwith.com/framework/Ruby-on-Rails

