
Zhuoqun Cheng

Feb 2013

Kernel Malware

Kernel Mode vs. User Mode

• x86 provides 4 privilege levels
 Ring 0 – kernel mode for kernel (highest)

 Ring 1,2 - not used

 Ring 3 - user mode for applications (lowest)

• Higher level can control lower levels and access more
hardware resources

Kernel Malware vs. User Malware

• Kernel malware is more destructive
• Can control the whole system

• including both hardware and software

• Kernel malware is more difficult to detect or remove
• Many antivirus software runs in user mode

• lower privilege than malware

• cannot scan or modify malware in kernel mode

• Kernel malware is more difficult to develop
• Kernel is complex

• Kernel mode malware are more likely to have bugs

• Even a minor bug in kernel mode can cause kernel crash

• That’s why kernel mode malware is rare

Kernel Malware vs. User Malware

An Example

• SpamTool.Win32.Mailbot.az
• Found in December 2005 on Windows XP

• A kernel-mode driver

• Took control of the System Service Dispatcher (SSD)

• Applications requesting system service could be redirected to
other system functions (including functions in malware)

• So all applications are actually under its control

How to exploit kernel?

• Stack overflow?
• Kernel has only one stack

• Fixed size, 8KB, quite small

• Very likely to overwrite some important kernel data

• Cause kernel crash

• Loadable driver!
• Drivers run in kernel mode

• Windows allows drivers to be loaded at runtime

• Develop malware as drivers and ask kernel to load it

Mitigation

• Drivers must be signed since Windows Vista

• Check before driver is loaded

• Unsigned driver cannot be loaded into kernel

One possible bypass

• Loaded driver (signed and checked) will be
swapped out from memory to Pagefile in disk
when short of memory

• Modify Pagefile and insert our shellcode

• Call that driver

• Swapped in and get executed

First how to force the specific
driver to be swapped out?

• Allocate huge amount of memory for a process
to use up physical memory

• Some rarely used drivers are always swapped
into disk

Second how to locate and
modify that driver?

• Take a sufficiently long binary string (one of its
functions) of that driver

• Do a pattern search in the disk region where
Pagefile probably resides

• Replace it with our shellcode (extremely
difficult to create useful shellcode)

Final step

• Call that driver

• Driver gets swapped in and malware injected!

• Or kernel dies…

Wait…

• Why operating system doesn’t stop us from
scanning and modifying Pagefile

• Windows has documented API to allow raw access

to disk from user mode

• We can read and write disk sectors which are
occupied by the Pagefile

• While kernel has no idea what file we are modifying
since we don’t go through file system

Possible mitigations

• Forbid raw disk access from user mode
• probably break lots of programs

• Encrypt Pagefile
• Big performance impact

• Disable kernel memory swapping
• Possible. But users lose this useful feature

Thank you!
Q u e s t i o n s ?

Reference

• Kernel Malware: The Attack from Within
• Kimmo Kasslin, Kuala Lumpur

• Subverting Vista Kernel for Fun and Profit
• Joanna Rutkowska

• Wiki: Rootkit
• http://en.wikipedia.org/wiki/Rootkit

