Extra problems for induction

1. Prove by induction:
 Prove that, for all \(n \in \mathbb{N} \) where \(n \geq 1 \),
 \(7^n - 1 \) is evenly divisible by 6.
2. Prove, for all \(n > 1 \),
 \(1^3 + 2^3 + 3^3 + \ldots + n^3 = (n^2(n + 1)^2)/4 \)
3. Prove that \(3^n > n^2 \) for \(n = 1, n = 2 \) and use mathematical induction to
 prove that \(3^n > n^2 \) for \(n \) any positive integer greater than 2.

Extra problems for recurrence relations

1. Define the sequence \(x_1, x_2, x_3, \ldots \) by recursion, where \(x_1 = 3 \) and for all
 \(i > 1, x_{i+1} = 3x_i + 5 \).
 i. Write the first 5 \(x \) values.
 ii. What if the value for \(x_k \) in terms of \(k \)?
2. Let \(T(1) = 4 \) and \(T(n) = 2T(n-1) + 4 \)
 Write the first 5 terms of \(T \). See if you can guess what the nth term \(T(n) \)
 equals.
 And then try to prove it.
3. Solve the recurrence relation
 \(T(n) = 4T(n-1) - 3T(n-2) \), where \(T(0) = 0 \) and \(T(1) = 2 \).
 Prove by induction that
 \(T(n) = 3^n - 1 \).

ANSWERS:
Problem 1: Base case \(n+1 \). The \(7^n - 1 = 7-1 = 6 \) is evenly divisible by 1.
Induction: Given \(7^n - 1 \) evenly div. by 6, prove the same for \(7^{n+1} - 1 \).
Well... \(7^{n+1} - 1 = 7(7^n) - 1 = 6(7^n) + 7^n - 1 \)
Since \(7^n - 1 \) evenly div. by 6 (this is the induction hypothesis), we have
\(7^n - 1 = 6k \) for some integer \(k \).
Putting this together gives, \(7^{n+1} - 1 = 6(7^n) + 7^n - 1 = 6(7^n) + 6k \) which is
evenly divisible by 6 as we wanted to prove.
Problem 3 - 2nd part on recurrence.

T(n) = 4T(n-1) - 3T(n-2), where T(0) = 0 and T(1) = 2

Proof:

Base cases; n=0, T(0) = 0 = 3^0 - 1; n=1, T(1) = 2 = 3^1 - 1.

Induction step: Assume n ≥ 2 and T(n) = 3^n - 1 and prove T(n+1)

= 3^{n+1} - 1

Well, ... T(n+1) = 4T((n+1)-1) - 3T((n+1)-2) = 4T(n) - 3T(n-1) = 4(3^n - 1) - 3(3^{n-1} - 1) = 4(3^n - 1) - (3^{n-1} - 3) = 3^n - 4 + 3 = 3^n - 1 as was to be proved.