Problem Set #1 (Logic & Sets)
Due: Thursday, September 13 by 3:30 pm

To be completed individually. No late submission will be accepted

Reading: Chapter 1, particularly sections 1.3 and 1.4.
Chapter 2, and Chapter 3, section 3.1.

Problems:

1. Let \(A = \{ \text{all odd integers bigger than 11} \} \) and \(B = \{ 15, 25, 35 \} \)
 i. Is \(A \subseteq B \) ? Explain why or why not.
 ii. Is \(B \subseteq A \) ? Explain why or why not.

2. Give an example of sets \(A, B \) and \(C \) where,
 \(A \cap B = A \cap C \) but \(B \neq C \).

3. Give an example of sets \(A \) and \(B \) where,
 \(A \cap B \subseteq A-B \).

4. Prove that for any sets \(A \) and \(B \), \(A \cap B \subseteq A \cup B \).

5. Let \(A = \{ v, w,x,y,z, \} \), \(B = \{ v,w \} \), \(C = \{ v,w,x,y \} \), \(D = \{ y \} \), \(E = \) the empty set
 For each pair of sets above tell if one is a subset of the other.

6. Use the same sets \(A,B,C,D,E \) above and answer the following questions.
 i. Name 2 of the sets above which are disjoint.
 ii. Name 2 of the sets above which are not disjoint, but neither is a subset of the other.
 iii. Define 2 sets \(F \) and \(G \) which are subsets of \(C \) but not of \(B \).
 iv. Define a set \(H \) which is disjoint from \(C \) and a subset of \(A \).
 v. Define a set \(I \) whose intersection with \(A \) is equal to \(B \), but \(I \) and \(B \) are not equal.

7. Write the negation of these statements.
 Do NOT use the word “not” in your answer, as in “It is not the case that \(x+4 = 7 \).”
 (a) \((n > 4) \land (7 = n + 2) \)
 (b) If \(a > b \) and \(b \geq c \), then \(a > c \) is an integer.
 (c) \(\exists a \forall b (a + b = b) \)
8. Prove that

\[2^n + 2^n = 2^{n+1} \]

for all \(n \geq 1 \).

Note: There are several ways to do this, one is a proof by induction, but any convincing proof method will do.