A Simple Type System

Types play a pivotal role in the design of modern programming languages. We here present a simple type system ST and establish its type soundness. The syntax of ST is given as follows:

- **booleans**: $b ::= \text{true} | \text{false}$
- **integers**: $i ::= 0 | -1 | 1 | -2 | 2 | \ldots$
- **terms**: $t ::= b | i | x | c(t_1, \ldots, t_n) | \langle t_1, t_2 \rangle | \text{fst}(t) | \text{snd}(t) | \text{lam} x.t | \text{app}(t_1, t_2) | \text{if}(t_1, t_2, t_3) | \text{fix} f(x).t$
- **values**: $v ::= b | i | x | \langle v_1, v_2 \rangle | \text{lam} x.t$
- **types**: $T ::= \text{bool} | \text{int} | T_1 * T_2 | T_1 \rightarrow T_2$
- **contexts**: $\Gamma ::= \emptyset | \Gamma, x : T$

We use b and i for booleans and integers, respectively, and x for variables. There are terms and types in ST, and we are to present rules for assigning types to terms. We say that a term t is of type T if T can be assigned to t according to such type assignment rules. We use c for a builtin constant function such as addition ($+$) and subtraction ($-$), and $c(t_1, \ldots, t_n)$ for the application of a constant function c to n arguments t_1, \ldots, t_n. We use $\langle t_1, t_2 \rangle$ for forming a pair and $\text{fst}(t)$ and $\text{snd}(t)$ for the first and second projections. In addition, we use $\text{lam} x.t$ for lambda-abstraction and $\text{app}(t_1, t_2)$ for function application.

We use v for values, which are a special form of terms; both booleans and integers are values; a pair of values is a value; a lambda-abstraction is also a value.

The types bool and int are for booleans and integers, respectively. Given types T_1 and T_2, we can form a type $T_1 * T_2$ for pairs whose first and second components are of types T_1 and T_2, respectively; also we can form a type $T_1 \rightarrow T_2$ for functions that returns a value of type T_2 when applied to an argument of type T_1.

We use $\emptyset \vdash t : T$ for a typing judgment meaning that the term t can be assigned the type T under the context \emptyset. The rule for deriving typing judgments are give in Figure 1.

Lemma 1 (Canonical Forms) Assume that $\emptyset \vdash v : T$ is derivable.

1. If $T = \text{bool}$, then v is a boolean value b.
2. If $T = \text{int}$, then v is an integer value b.
3. If $T = T_1 * T_2$, then v is of the form $\langle v_1, v_2 \rangle$.
4. If $T = T_1 \rightarrow T_2$, then v is of the form $\text{lam} x.t$.

Lemma 2 (Substitution) Assume that $\emptyset \vdash t_1 : T_1$ and $\emptyset, x : T_1 \vdash t_2 : T_2$ are derivable. Then $\emptyset \vdash t_2[x \mapsto t_1] : T_2$ is also derivable.

We write $t_1 \rightarrow t_2$ to mean that t_1 reduces to t_2 in one step, and the reduction rules are given in Figure 2.
\[\begin{align*}
\Gamma \vdash b : \text{bool} & \quad \text{(bool)} \\
\Gamma \vdash i : \text{int} & \quad \text{(int)} \\
x : T \in \Gamma & \quad \text{(var)} \\
\Gamma \vdash x : T & \\
\vdash c(T_1, \ldots, T_n) : T & \quad \Gamma \vdash t_1 : T_1 \quad \ldots \quad \Gamma \vdash t_n : T_n \quad \text{(const)} \\
& \quad \Gamma \vdash c(t_1, \ldots, t_n) : T \\
& \quad \Gamma \vdash t_1 : T_1 \quad \Gamma \vdash t_2 : T_2 \\
& \quad \Gamma \vdash \langle t_1, t_2 \rangle : T_1 \times T_2 \quad \text{(tup)} \\
& \quad \Gamma \vdash t : T_1 \times T_2 \\
& \quad \Gamma \vdash \text{fst}(t) : T_1 \\
& \quad \Gamma \vdash \text{snd}(t) : T_2 \\
& \quad \Gamma \vdash \text{lam } x . t : T_1 \rightarrow T_2 \quad \text{(lam)} \\
& \quad \Gamma \vdash t_1 : T_1 \rightarrow T_2 \quad \Gamma \vdash t_2 : T_1 \\
& \quad \Gamma \vdash \text{app}(t_1, t_2) : T_2 \quad \text{(app)} \\
& \quad \Gamma \vdash \text{if}(t_1, t_2, t_3) : T \\
& \quad \Gamma, f : T_1 \rightarrow T_2, x : T_1 \vdash t : T_2 \\
& \quad \Gamma \vdash \text{fix } f(x). t : T_1 \rightarrow T_2 \quad \text{(fix)} \\
\end{align*}\]

Figure 1: The typing rules
\[
\begin{align*}
t_i & \rightarrow t'_i \\
c(v_1, \ldots, v_{i-1}, t_i, t_{i+1}, \ldots, t_n) & \rightarrow c(v_1, \ldots, v_{i-1}, t'_i, t_{i+1}, \ldots, t_n) \\
c(v_1, \ldots, v_n) & = v \\
c(v_1, \ldots, v_n) & \rightarrow v \\
t_1 & \rightarrow t'_1 \\
\langle t_1, t_2 \rangle & \rightarrow \langle t'_1, t_2 \rangle \\
t_2 & \rightarrow t'_2 \\
\langle v_1, t_2 \rangle & \rightarrow \langle v_1, t'_2 \rangle \\
\text{fst}(\langle v_1, v_2 \rangle) & \rightarrow v_1 \\
\text{snd}(\langle v_1, v_2 \rangle) & \rightarrow v_2 \\
t_1 & \rightarrow t'_1 \\
\text{app}(t_1, t_2) & \rightarrow \text{app}(t'_1, t_2) \\
t_2 & \rightarrow t'_2 \\
\text{app}(v_1, t_2) & \rightarrow \text{app}(v_1, t'_2) \\
\text{app}(\text{lam } x. t, v) & \rightarrow t[x \mapsto v] \\
t_1 & \rightarrow t'_1 \\
\text{if}(t_1, t_2, t_3) & \rightarrow \text{if}(t'_1, t_2, t_3) \\
\text{if}(\text{true}, t_1, t_2) & \rightarrow t_1 \\
\text{if}(\text{false}, t_1, t_2) & \rightarrow t_2 \\
\text{fix } f(x). t & \rightarrow \text{lam } x. t[f \mapsto \text{fix } f(x). t]
\end{align*}
\]

Figure 2: The reduction rules
Theorem 1 (Subject Reduction) Assume that $\emptyset \vdash t : T$ is derivable and $t \rightarrow t'$ holds. Then $\emptyset \vdash t' : T$ is also derivable.

Theorem 2 (Progress) Assume that $\emptyset \vdash t : T$ is derivable. Then t is either a value, or $t \rightarrow t'$ for some term t'.

We now present a slightly different means to assign dynamic semantics to terms in ST. We first introduce the notion of evaluation contexts:

\[
evaluation contexts \quad E ::= [] | c(v_1, \ldots, v_n, E, \ldots) | \langle v, E \rangle | \text{fst}(E) | \text{snd}(E) | \text{app}(E, t) | \text{app}(v, E) | \text{if}(E, t_1, t_2)
\]

We then introduce the notion of redexes as follows:

Definition 3 We define redexes and their reductions as follows:

1. $c(v_1, \ldots, v_n)$ is a redex if c is a built-in function and $c(v_1, \ldots, v_n)$ is defined to equal v, and the reduction of $c(v_1, \ldots, v_n)$ is v.

2. $\text{app}($lam$x.t, v)$ is a redex, and its reduction is $t[x \mapsto v]$.

3. $\text{fst}((v_1, v_2))$ is a redex, and its reduction is v_1.

4. $\text{snd}((v_1, v_2))$ is a redex, and its reduction is v_2.

5. $\text{if}(\text{true}, t_1, t_2)$ is a redex, and its reduction is t_1.

6. $\text{if}(\text{false}, t_1, t_2)$ is a redex, and its reduction is t_2.

7. $\text{fix } f(x).t$ is a redex and its reduction is lam$x.t[f \mapsto \text{fix } f(x).t]$.

Given $t_1 = E[t]$ and $t_2 = E[t']$ for some redex t and its reduction t', we write $t_1 \rightarrow t_2$ and say that t_1 reduces to t_2 in one step. Let \rightarrow^* be the reflexive and transitive closure of \rightarrow.

We now make some additional adjustments in order to support the language constructs callcc and throw.

\[
terms \quad t ::= \ldots | \text{callcc}(lamx.t) | \text{throw}(t_1, t_2) | *E
\]

\[
evaluation contexts \quad E ::= \ldots | \text{throw}(E, t) | \text{throw}(v, E)
\]

The new forms of evaluation rules are given as follows:

\[
E[\text{callcc}(lamx.t)] \rightarrow E[t[x \mapsto *E]] \quad E[\text{throw}(*E', v)] \rightarrow E'[v]
\]