Let us define \(\text{List}(T) \) as \(\forall X.X \rightarrow (T \rightarrow X) \rightarrow X \). Then the two list constructors \(\text{Nil} \) and \(\text{Cons} \) can be defined as follows.

\[
\text{Nil} \equiv \Lambda X.\lambda \text{nil} : X.\lambda \text{cons} : T \rightarrow X \rightarrow X.\text{nil} \\
\text{Cons}(x : T)(xs : \text{List}(T)) \equiv \Lambda X.\lambda \text{nil} : X.\lambda \text{cons} : T \rightarrow X \rightarrow X.\text{cons}(x)(xs[X](\text{nil})(\text{cons}))
\]

Exercise 1 (40 points) Given the above list encoding, please implement the append and reverse functions on lists in System F. Notice that you may not use the fixed point operator in exercise.

Exercise 2 (60 points) Please encode the following datatype \('a\ gtree \) and its associated constructors \(E \) and \(B \) in system F (30 points).

\[
\text{datatype } 'a\ gtree = E | B \text{ of } ('a \rightarrow 'a\ gtree)
\]

The type constructor \(gtree \) can be used to form general tree types. For instance, \(\text{bool\ gtree} \) can be considered as a type for binary trees; \(B (\text{fn}\ (x:\text{bool}) \Rightarrow E) \) represents a binary tree \(t_1 \) whose left and right subtrees are empty; \(B (\text{fn}\ (x:\text{bool}) \Rightarrow \text{if } x \text{ then } E \text{ else } B (\text{fn}\ (x:\text{bool}) \Rightarrow E) \) represents a binary tree \(t_2 \) whose left subtree is empty and right subtree is \(t_1 \).

Please implement the following function \(\text{leftGtree} \) in system F (30 points).

\[
\text{fun } \text{leftGtree } E = E \\
| \text{leftGtree } (B \ f)) = f (\text{false})
\]

Note that you may not use fixed point operator in your implementation of \(\text{leftGtree} \).

We can define a type erasure function \(|\cdot| \) as follows, which translates a term in System F into an untyped \(\lambda \)-term.

\[
|x| = x \quad |\lambda x : T.t| = \lambda x.|t| \quad |t_1(t_2)| = |t_1|(|t_2|) \quad |\Lambda X.t| = |t| \quad |t[T]| = |t|
\]

Notice that for a value \(v \) in System F, \(|v| \) may not necessarily be a value. Therefore, given a term \(t \) in System F, \(|t| \rightarrow^* u_0 \) does not necessarily imply that we have \(t \rightarrow^* v \) for some value \(v \) such that \(|v| = u_0 \).
To have this property, we can impose a restriction on \(\text{(T-Tabs)} \) by requiring that \(t \) be a value whenever the following rule is applied.

\[
\frac{\vec X, X; \Gamma \vdash t : T \quad \vec X \vdash \Gamma [ctx]}{\vec X; \Gamma \vdash \Lambda X.t : \forall X.T} \quad \text{(T-Tabs)}
\]

This restriction is often called value restriction.

Exercise 3 (40 points) Assume \(D :: \vec X; \Gamma \vdash t : T \) is derivable in System F with value restriction and \(|t| \rightarrow u \). Show that \(t \rightarrow^* t' \) for some term \(t' \) such that \(|t'| = u \).