used in practice to capture program invariants. We mention some closely related work in Section 8 and then conclude.

2 λ_pat: A starting point

We introduce a simply typed programming language λ_pat, which essentially extends the simply typed λ-calculus with pattern matching. We emphasize that there are no new contributions in this section. Instead, we primarily use λ_pat as an example to show how a type system is developed. In particularly, we show how various properties of λ_pat are chained together in order to establish the type soundness of λ_pat. The subsequent development of the dependent type system in Section 4 and all of its extensions will be done in parallel to the development of λ_pat. Except Lemma 2.14, all the results in this section are well-known and thus their proofs are omitted.

The syntax of λ_pat is given in Figure 3. We use δ for base types such as int and bool and τ for types. We use x for lam-bound variables and f for fix-bound variables, and xf for either x or f. Given an expression e, we write FV(e) for the set of free variables xf in e, which is defined as usual.

A lam-bound variable is considered a value but a fix-bound variable is not. We use the name observable value for a closed value that does not contain a lambda expression lam x. e as its substructure. We use c for a constant, which is either a constant constructor cc or a constant function cf. Each constant c is assigned a constant type (or c-type, for short) of the form τ ⇒ δ. Note that a c-type is not regarded as a (regular) type. For each constant constructor cc assigned the type 1 ⇒ δ, we may write cc as a shorthand for cc⟨⟩, where ⟨⟩ stands for the unit of the unit type 1. In the following presentation, we assume that the boolean values true and false are assigned the type 1 ⇒ bool and every integer i is assigned the type 1 ⇒ int.

Note that we do not treat the tuple constructor ⟨·, ·⟩ as a special case of constructors. Instead, we introduce tuples into λ_pat explicitly. The primary reason for this decision is that tuples are to be handled specially in Section 5, where an elaboration procedure is presented for supporting a form of partial type inference in the presence of dependent types.

Fig. 3. The syntax for λ_pat
We use θ for a substitution, which is a finite mapping that maps lam-bound
variables x to values and fix-bound variables to fixed-point expressions. We use $[]$
for the empty substitution and $\theta[[xf \mapsto e]]$ for the substitution that extends θ with
a link from xf to e, where it is assumed that xf is not in the domain $\text{dom}(\theta)$ of θ.
Also, we may write $[xf_1 \mapsto e_1, \ldots, xf_n \mapsto e_n]$ for a substitution that maps xf_i to e_i
for $1 \leq i \leq n$. We omit the further details on substitution, which are completely
standard. Given a piece of syntax \bullet (representing expressions, evaluation contexts,
etc.), we use $\bullet[\theta]$ for the result of applying θ to \bullet.

We use \emptyset for the empty context and $\Gamma, xf : \tau$ for the context that extends Γ with
one additional declaration $xf : \tau$, where we assume that xf is not already declared
in Γ. A context $\Gamma = \emptyset, xf_1 : \tau_1, \ldots, xf_n : \tau_n$ may also be treated as a finite mapping
that maps xf_i to τ_i for $1 \leq i \leq n$, and we use $\text{dom}(\Gamma)$ for the domain of Γ. Also, we
may use Γ, Γ' for the context $\emptyset, xf_1 : \tau_1, \ldots, xf_n : \tau_n, xf'_1 : \tau'_1, \ldots, xf'_n : \tau'_n$, where
$\Gamma = \emptyset, xf_1 : \tau_1, \ldots, xf_n : \tau_n$ and $\Gamma' = \emptyset, xf'_1 : \tau'_1, \ldots, xf'_n : \tau'_n$ and
all variables $xf_1, \ldots, xf_n, xf'_1, \ldots, xf'_n$ are distinct.

As a form of syntactic sugar, we may write $\text{let } \langle x_1, x_2 \rangle = e_1 \text{ in } e_2 \text{ end}$ for the
following expression:

$$\text{let } x = e_1 \text{ in let } x_1 = \text{fst}(x) \text{ in let } x_2 = \text{snd}(x) \text{ in } e_2 \text{ end end end}$$

where x is assumed to have no free occurrences in e_1, e_2.

2.1 Static semantics

We use p for patterns and require that a variable occur at most once in a pattern.
Given a pattern p and a type τ, we can derive a judgment of the form $p \downarrow \tau \Rightarrow \Gamma$
with the rules in Figure 4, which reads that checking pattern p against type τ
yields a context Γ. Note that the rule (pat-prod) is unproblematic since p_1 and p_2
cannot share variables. Also note that we write $\vdash cc(\tau) : \delta$ in the rule (pat-const)
to indicate that cc is a constant constructor of c-type $\tau \Rightarrow \delta$. As an example, let
us assume that intlist is a base type, and nil and cons are constructors of c-types
$1 \Rightarrow \text{intlist}$ and $\text{int} * \text{intlist} \Rightarrow \text{intlist}$, respectively; then the following judgments

\[
\begin{align*}
\frac{}{x \downarrow \tau \Rightarrow x : \tau} & \quad \text{(pat-var)} \\
\frac{}{\emptyset \downarrow 1 \Rightarrow \emptyset} & \quad \text{(pat-unit)} \\
p_1 \downarrow \tau_1 \Rightarrow \Gamma_1 & \quad p_2 \downarrow \tau_2 \Rightarrow \Gamma_2 \quad \text{(pat-prod)} \\
\frac{\vdash cc(\tau) : \delta \quad p \downarrow \tau \Rightarrow \Gamma}{cc(p) \downarrow \delta \Rightarrow \Gamma} & \quad \text{(pat-const)}
\end{align*}
\]

Fig. 4. The typing rules for patterns in λ_{pat}
are derivable:

\[
\text{cons}(\langle x, xs \rangle) \downarrow \text{intlist} \Rightarrow x : \text{int}, xs : \text{intlist} \\
\text{cons}(\langle x, \text{nil}(\langle \rangle) \rangle) \downarrow \text{intlist} \Rightarrow x : \text{int}
\]

We present the typing rules for expressions in Figure 5. The rule (ty-clause) is for assigning types to clauses. Generally speaking, a clause \(p \Rightarrow e \) can be assigned the type \(\tau_1 \rightarrow \tau_2 \) if \(e \) can be assigned the type \(\tau_2 \) under the assumption that \(p \) is given the type \(\tau_1 \).

In the following presentation, given some form of judgment \(J \), we use \(D :: J \) for a derivation of \(J \). The structure of a derivation \(D \) is a tree, and we use \(\text{height}(D) \) for its height, which is defined as usual.

The following standard lemma simply reflects that extra assumptions can be
discarded in intuitionistic reasoning. It is needed, for instance, in the proof of Lemma 2.3, the Substitution Lemma for \(\lambda_{pat} \).

Lemma 2.1 (Thinning)
Assume \(D :: \Gamma \vdash e : \tau \). Then there is a derivation \(D' :: \Gamma, xf : \tau' \vdash e : \tau \) such that \(\text{height}(D) = \text{height}(D') \), where \(\tau' \) is any well-formed type.

The following lemma indicates a close relation between the type of a closed value and the form of the value. This lemma is needed to establish Theorem 2.9, the Progress Theorem for \(\lambda_{pat} \).

Lemma 2.2 (Canonical Forms)
Assume that \(\emptyset \vdash v : \tau \) is derivable.

1. If \(\tau = \delta \) for some base type \(\delta \), then \(v \) is of the form \(\text{cc}(v_0) \), where \(\text{cc} \) is a constant constructor assigned a c-type of the form \(\tau_0 \Rightarrow \delta \).
2. If \(\tau = 1 \), then \(v \) is \(\langle \rangle \).
3. If \(\tau = \tau_1 \ast \tau_2 \) for some types \(\tau_1 \) and \(\tau_2 \), then \(v \) is of the form \(\langle v_1, v_2 \rangle \).
4. If \(\tau = \tau_1 \rightarrow \tau_2 \) for some types \(\tau_1 \) and \(\tau_2 \), then \(v \) is of the form \(\text{lam} \, x. \, e \).

Note the need for c-types in the proof of Lemma 2.2 when the last case is handled. If c-types are not introduced, then a (primitive) constant function needs to be assigned a type of the form \(\tau_1 \rightarrow \tau_2 \) for some \(\tau_1 \) and \(\tau_2 \). As a consequence, we can no longer claim that a value of the type \(\tau_1 \rightarrow \tau_2 \) for some \(\tau_1 \) and \(\tau_2 \) must be of the form \(\text{lam} \, x. \, e \) as the value may also be a constant function. So the precise purpose of introducing c-types is to guarantee that only a value of the form \(\text{lam} \, x. \, e \) can be assigned a type of the form \(\tau_1 \rightarrow \tau_2 \).

Given \(\Gamma, \Gamma_0 \) and \(\theta \), we write \(\Gamma \vdash \theta : \Gamma_0 \) to indicate that \(\Gamma \vdash \theta(xf) : \Gamma_0(xf) \) is derivable for each \(xf \) in \(\text{dom}(\theta) = \text{dom}(\Gamma_0) \). The following lemma is often given the name **Substitution Lemma**, which is needed in the proof of Theorem 2.8, the Subject Reduction Theorem for \(\lambda_{pat} \).

Lemma 2.3 (Substitution)
Assume that \(\Gamma \vdash \theta : \Gamma_0 \) holds. If \(\Gamma, \Gamma_0 \vdash e : \tau \) is derivable, then \(\Gamma \vdash e[\theta] : \tau \) is also derivable.

2.2 Dynamic semantics

We assign dynamic semantics to expressions in \(\lambda_{pat} \) through the use of evaluation contexts defined as follows.

Definition 2.4 (Evaluation Contexts)

\[
E ::= [] | e(E) | \langle E, e \rangle | \langle v, E \rangle | \text{fst}(E) | \text{snd}(E) | \text{case } E \text{ of } ms | E(e) | v(E) | \text{let } x = E \text{ in } e \text{ end}
\]

We use \(\text{FV}(E) \) for the set of free variables \(xf \) in \(E \). Note that every evaluation context contains exactly one hole \([\] \) in it. Given an evaluation context \(E \) and an expression \(e \), we use \(E[e] \) for the expression obtained from replacing the hole \([\] \) in \(E \) with \(e \). As the hole \([\] \) in no evaluation context can appear in the scope of a
We define evaluation redexes (or ev-redex, for short) and their reducts in the following:

\[
\begin{align*}
\text{match}(v, x) & \Rightarrow [x \mapsto v] \quad \text{(mat-var)} \\
\text{match}([], []) & \Rightarrow [] \quad \text{(mat-unit)} \\
\text{match}(v_1, p_1) & \Rightarrow \theta_1 \quad \text{match}(v_2, p_2) \Rightarrow \theta_2 \quad \text{(mat-prod)} \\
\text{match}([v_1, v_2], [p_1, p_2]) & \Rightarrow \theta_1 \cup \theta_2 \\
\text{match}(c(v), c(p)) & \Rightarrow \theta \quad \text{(mat-const)}
\end{align*}
\]

Fig. 6. The pattern matching rules for \(\lambda_{\text{pat}} \)

The one-step evaluation relation \(\vdash_{ev} \) is defined as follows: We write \(e_1 \vdash_{ev} e_2 \) if \(e_1 = E[e] \) for some evaluation context \(E \) and ev-redex \(e \), and \(e_2 = E[e'] \), where \(e' \) is a reduct of \(e \). We use \(\vdash^*_{ev} \) for the reflexive and transitive closure of \(\vdash_{ev} \) and say that \(e_1 \) ev-reduces (or evaluates) to \(e_2 \) if \(e_1 \vdash^*_{ev} e_2 \) holds. There is certain amount of nondeterminism in the evaluation of expressions: case \(v \) of \(ms \) may reduce to \(e[\theta] \) for any clause \(p \Rightarrow e \) in \(ms \) such that \(\text{match}(v, p) \Rightarrow \theta \) is derivable. This form of nondeterminism can cause various complications, which we want to avoid in the first place. In this paper, we require that the patterns \(p_1, \ldots, p_n \) in a matching clause sequence \((p_1 \Rightarrow e_1 \mid \cdots \mid p_n \Rightarrow e_n) \) be disjoint, that is, for \(1 \leq i \neq j \leq n \), there are no values \(v \) that can match both \(p_i \) and \(p_j \).
In the actual implementation, we do allow overlapping patterns in a matching clause sequence, and we avoid nondeterminism by performing pattern matching in a deterministic sequential manner. We could certainly do the same in the theoretical development, but this may complicate the evaluation of open programs, that is, programs containing free variables. For instance, let \(e_1 \) and \(e_2 \) be the following expressions

\[
\text{case cons}(x, xs) \rightarrow \begin{cases}
\text{true} & \text{if } x' \text{ matches } \text{nil} \\
\text{false} & \text{otherwise}
\end{cases}
\]

and

\[
\text{case } x \rightarrow \begin{cases}
\text{true} & \text{if } x' \text{ matches } \text{nil} \\
\text{false} & \text{otherwise}
\end{cases}
\]

respectively. Clearly, we should evaluate \(e_1 \) to \(\text{false} \), but we should not evaluate \(e_2 \) to \(\text{false} \) as we do not know whether \(x \) matches \(\text{nil} \) or not.

This complication is simply avoided when patterns in a matching clause sequence are required to be disjoint.

The meaning of a judgment of the form \(p \downarrow \tau \Rightarrow \Gamma \) is captured precisely by the following lemma.

Lemma 2.6

Assume that the typing judgment \(\emptyset \vdash v : \tau \) is derivable. If \(p \downarrow \tau \Rightarrow \Gamma \) and \(\text{match}(v, p) \Rightarrow \theta \) are derivable, then \(\emptyset \vdash \theta : \Gamma \) holds.

Definition 2.7

We introduce some forms to classify closed expressions in \(\lambda_{\text{pat}} \). Given a closed expression \(e \) in \(\lambda_{\text{pat}} \), which may or may not be well-typed,

- \(e \) is in \text{V-form} if \(e \) is a value.
- \(e \) is in \text{R-form} if \(e = E[e_0] \) for some evaluation context \(E \) and ev-redex \(e_0 \). So if \(e \) is in R-form, then it can be evaluated further.
- \(e \) is in \text{M-form} if \(e = E[\text{case } v \text{ of } ms] \) such that \(\text{case } v \text{ of } ms \) is not an ev-redex. This is a case where pattern matching fails because none of the involved patterns match \(v \).
- \(e \) is in \text{U-form} if \(e = E[cf(v)] \) and \(cf(v) \) is undefined. For instance, division by zero is such a case.
- \(e \) is in \text{E-form} otherwise. We will prove that this is a case that can never occur during the evaluation of a well-typed program.

We introduce three symbols \textbf{Error}, \textbf{Match} and \textbf{Undefined}, and use \textbf{EMU} for the set \{\textbf{Error, Match, Undefined}\} and \textbf{EMUV} for the union of \textbf{EMU} and the set of observable values. We write \(e \leftarrow^*_e \textbf{Error} \), \(e \leftarrow^*_e \textbf{Match} \) and \(e \leftarrow^*_e \textbf{Undefined} \) if \(e \leftarrow^*_e e' \) for some \(e' \) in E-form, M-form and U-form, respectively.

It can be readily checked that the evaluation of a (not necessarily well-typed) program in \(\lambda_{\text{pat}} \) may either continue forever or reach an expression in V-form, M-form, U-form, or E-form. We will show that an expression in E-form can never be encountered if the evaluation starts with a well-typed program in \(\lambda_{\text{pat}} \). This is precisely the type soundness of \(\lambda_{\text{pat}} \).

2.3 Type soundness

We are now ready to state the subject reduction theorem for \(\lambda_{\text{pat}} \), which implies that the evaluation of a well-typed expression in \(\lambda_{\text{pat}} \) does not alter the type of the expression.
For each constant function \(cf \) of c-type \(\tau \Rightarrow \delta \), if \(\emptyset \vdash v : \tau \) is derivable and \(c(v) \) is defined to be \(v' \), then we require that \(\emptyset \vdash v' : \delta \) be also derivable. In other words, we require that each constant function meet its specification, that is, the c-type assigned to it.

Theorem 2.8 (Subject Reduction)
Assume that \(\emptyset \vdash e_1 : \tau \) is derivable and \(e_1 \twoheadrightarrow_{ev} e_2 \) holds. Then \(\emptyset \vdash e_2 : \tau \) is also derivable.

Lemma 2.3 is used in the proof of Theorem 2.8.

Theorem 2.9 (Progress)
Assume that \(\emptyset \vdash e_1 : \tau \) is derivable. Then there are only four possibilities:

- \(e_1 \) is a value, or
- \(e_1 \) is in M-form, or
- \(e_1 \) is in U-form, or
- \(e_1 \twoheadrightarrow_{ev} e_2 \) holds for some expression \(e_2 \).

Note that it is implied here that \(e_1 \) cannot be in E-form.

Lemma 2.2 is needed in the proof of Theorem 2.9.

By Theorem 2.8 and Theorem 2.9, we can readily claim that for a well-typed closed expression \(e \), either \(e \) evaluates to a value, or \(e \) evaluates to an expression in M-form, or \(e \) evaluates to an expression in U-form, or \(e \) evaluates forever. In particular, it is guaranteed that \(e \twoheadrightarrow^{*}_{ev} \text{Error} \) can never happen for any well-typed expression \(e \) in \(\lambda_{\text{pat}} \).

2.4 Operational equivalence

We will present an elaboration procedure in Section 5, which maps a program written in an external language into one in an internal language. We will need to show that the elaboration of a program preserves the operational semantics of the program. For this purpose, we first introduce the notion of general contexts as follows:

\[
\begin{align*}
general \ contexts \ G \ ::= \ & \mathbb{[]} \mid \mathbf{c}(G) \mid \mathbf{\langle e, G \rangle} \mid \mathbf{\langle G, e \rangle} \mid \mathbf{\text{fst}(G)} \mid \mathbf{\text{snd}(G)} \mid \mathbf{\text{lam} \ x. G} \mid \mathbf{G(e)} \mid \mathbf{e(G)} \mid \\
& \text{case} \mathbf{G} \ \mathbf{of} \ \\ & \quad \mathbf{(p_1 \Rightarrow e_1 \mid \cdots \mid p_n \Rightarrow e_n)} \mid \\
& \text{case} \mathbf{e} \ \mathbf{of} \ \\ & \quad \mathbf{(p_1 \Rightarrow e_1 \mid \cdots \mid p_{i-1} \Rightarrow e_{i-1} \mid p_i \Rightarrow G \mid p_{i+1} \Rightarrow e_{i+1} \mid \cdots \mid p_n \Rightarrow e_n)} \mid \\
& \text{fix} \ f. G \mid \mathbf{\text{let} \ x = G \ \text{in} \ e} \mid \mathbf{\text{let} \ x = e \ \text{in} \ G}
\end{align*}
\]

Given a general context \(G \) and an expression \(e \), \(G[e] \) stands for the expression obtained from replacing with \(e \) the hole \(\mathbb{[]} \) in \(G \). We emphasize that this replacement may capture free variables in \(e \). For instance, \(G[x] = \text{lam} \ x. x \) if \(G = \text{lam} \ x. \mathbb{[]} \). The notion of operational equivalence can then be defined as follows.

Definition 2.10

Given two expressions \(e_1 \) and \(e_2 \) in \(\lambda_{\text{pat}} \), which may contain free variables, we say that \(e_1 \) is operationally equivalent to \(e_2 \) if the following holds.
Given any context G, $G[e_1] \twoheadleftarrow^{*_{ev}} v^*$ holds if and only if $G[e_2] \twoheadleftarrow^{*_{ev}} v^*$, where v^* ranges over EMUV, that is, the union of EMU and the set of observable values.

We write $e_1 \cong e_2$ if e_1 is operationally equivalent to e_2, which is clearly an equivalence relation.

Unfortunately, this operational equivalence relation is too strong to suit our purpose. The reason can be explained with a simple example. Suppose we have a program $\text{lam } x : \text{int } \ast \text{int } x$ in which the type $\text{int } \ast \text{int}$ is provided by the programmer; for some reason (to be made clear later), we may elaborate the program into the following one:

$$e = \text{lam } x, \text{let } (x_1, x_2) = x \text{ in } (x_1, x_2) \text{ end}$$

Note that if we erase the type $\text{int } \ast \text{int}$ in the original program, we obtain the expression $\text{lam } x, x$ which is not operationally equivalent to e; for instance they are distinguished by the simple context $G = [(())]$. To address this rather troublesome issue, we introduce a reflexive and transitive relation \leq_{dyn} on expressions in λ_{pat}.

Definition 2.11

Given two expressions e_1 and e_2 in λ_{pat}, which may contain free variables, we say that $e_1 \leq_{\text{dyn}} e_2$ holds if for any context G,

- either $G[e_2] \twoheadleftarrow^{*_{ev}} \text{Error}$ holds, or
- $G[e_1] \twoheadleftarrow^{*_{ev}} v^*$ if and only if $G[e_2] \twoheadleftarrow^{*_{ev}} v^*$, where v^* ranges over EMUV, that is, the union of EMU and the set of observable values.

It is straightforward to verify the reflexivity and transitivity of \leq_{dyn}.

Corollary 2.12

Assume that $e_1 \leq_{\text{dyn}} e_2$ holds. For any context G such that $G[e_2]$ is a closed well-typed expression in λ_{pat}, $G[e_1]$ evaluates to v^* if and only if $G[e_2]$ evaluates to v^*, where v^* ranges over EMUV.

Proof

This simply follows the definition of \leq_{dyn} and Theorem 2.9.

In other words, $e_1 \leq_{\text{dyn}} e_2$ implies that e_1 and e_2 are operationally indistinguishable in a typed setting. We now present an approach to establishing the relation \leq_{dyn} in certain special cases.

Definition 2.13

We define general redexes (or g-redexes, for short) and their reducts in λ_{pat} as follows:

- An ev-redex is a g-redex, and the reduct of the ev-redex is also the reduct of the g-redex.
- $\text{let } x = e \text{ in } E[x] \text{ end}$ is a g-redex if x has no free occurrences in E, and its reduct is $E[e]$.
- $(\text{fst}(v), \text{snd}(v))$ is a g-redex and its reduct is v.
We are to enrich \(\lambda_{\text{pat}} \) with a restricted form of dependent types. The enrichment is to parameterize over a type index language from which type index terms are drawn.
In this section, we show how a generic type index language \(\mathcal{L} \) can be formed and then present some concrete examples of type index languages. For generality, we will include both tuples and functions in \(\mathcal{L} \). However, we emphasize that a type index language can but does not necessarily have to support tuples or functions.

The generic type index language \(\mathcal{L} \) itself is typed. In order to avoid potential confusion, we call the types in \(\mathcal{L} \) type index sorts (or sorts, for short). The syntax of \(\mathcal{L} \) is given in Figure 7. We use \(b \) for base sorts. In particular, there is a base sort \(\mathit{bool} \) for boolean values. We use \(a \) for index variables and \(C \) for constants, which are either constant functions or constant constructors. Each constant is assigned a constant sort (or c-sort, for short) of the form \((s) \). We use \(\mathit{true} \) for boolean values. We use \(\mathit{P} \) for index propositions, which are index terms that can be formed and does not necessarily have to support tuples or functions.

For generality, we may use \(\phi \). A constraint relation \(\phi \vdash P : \mathit{bool} \) is derivable for every \(P \) in \(\vec{P} \). In addition, we may use \(\phi \vdash \Theta : \phi_0 \) to indicate that \(\phi \vdash \Theta(a) : \phi_0(a) \) holds for each \(a \) in \(\text{dom}(\Theta) = \text{dom}(\phi_0) \).

3.1 Regular constraint relation

A constraint relation \(\phi ; \vec{P} \models P_0 \) is defined on triples \(\phi ; \vec{P} ; P_0 \) such that both \(\phi \vdash \vec{P} : \mathit{bool} \) and \(\phi \vdash P_0 : \mathit{bool} \) are derivable. We may also write \(\phi ; \vec{P} \models \vec{P}_0 \) to mean that \(\phi ; \vec{P} \models P_0 \) holds for each \(P_0 \) in \(\vec{P}_0 \). We say that a constraint relation \(\phi ; \vec{P} \models P_0 \) is...
regular if all the regularity rules in Figure 9 are valid, that is, the conclusion of a regularity rule holds whenever all the premises of the regularity rule do. Note that the rules \((\text{reg-eq-refl})\), \((\text{reg-eq-symm})\) and \((\text{reg-eq-tran})\) indicate that for each sort \(s\), \(\cong_s\) needs to be interpreted as an equivalence relation on expressions of the sort \(s\).

Essentially, we want to treat a constraint relation as an abstract notion. However, in order to use it, we need to specify certain properties it possesses, and this is precisely the motivation for introducing regularity rules. For instance, we need the regularity rules to prove the following lemma.

Lemma 3.1 (Substitution)

- Assume \(\phi, \phi_0; \vec{P} \models P_0\) and \(\phi \vdash \Theta : \phi_0\). Then \(\phi; \vec{P}\lbrack\Theta\rbrack \models P_0\lbrack\Theta\rbrack\) holds.
- Assume \(\phi; \vec{P}, \vec{P}_0 \models P_0\) and \(\phi; \vec{P} \models \vec{P}_0\). Then \(\phi; \vec{P} \models P_0\) holds.

Note that these two properties are just simple iterations of the rules \((\text{reg-subst})\) and \((\text{reg-cut})\).

In the rest of this section, we first present a model-theoretic approach to establishing the consistency of a regular constraint relation, and then show some concrete examples of type index languages. At this point, an alternative is for the reader to proceed directly to the next section and then return at a later time.

3.2 Models for type index languages

We now present an approach to constructing regular constraint relations for type index languages. The approach, due to Henkin (Henkin, 1950), is commonly used in the construction of models for simple type theories. The presentation of this approach given below is entirely adopted from Chapter 5 (Andrews, 1986). Also, some details on constructing Henkin models can be found in (Andrews, 1972; Mitchell & Scott, 1989).

We use \(D\) for domains (sets). Given two domains \(D_1\) and \(D_2\), we use \(D_1 \times D_2\) for the usual product set \(\{\langle a_1, a_2 \rangle \mid a_1 \in D_1 \text{ and } a_2 \in D_2\}\), and \(\pi_1\) and \(\pi_2\) for the standard projection functions from \(D_1 \times D_2\) to \(D_1\) and \(D_2\), respectively.

Let \(\text{sort}\) be the (possibly infinite) set of all sorts in \(L\). A frame is a collection \(\{D_s\}_{s \in \text{sort}}\) of nonempty domains \(D_s\), one for each sort \(s\). We require that \(D_{\text{bool}} = \{tt, ff\}\), where \(tt\) and \(ff\) refer to two distinct elements representing truth and falsehood, respectively, and \(D_{s_1 \times s_2} = D_{s_1} \times D_{s_2}\) and \(D_{s_1 \rightarrow s_2}\) be some collection of functions from \(D_{s_1}\) to \(D_{s_2}\) (but not necessarily all the functions from \(D_{s_1}\) to \(D_{s_2}\)). An interpretation \(\langle\{D_s\}_{s \in \text{sort}}, I\rangle\) of \(L\) consists of a frame \(\{D_s\}_{s \in \text{sort}}\) and a function \(I\) that maps each constant \(C\) of \(c\)-sort \((s_1, \ldots, s_n) \Rightarrow b\) to a function \(I(C)\) from \(D_{s_1} \times \ldots \times D_{s_n}\) into \(D_b\) (or to an element in \(D_b\) if \(n = 0\)), where \(b\) stands for a base sort. In particular, we require that

- \(I(true) = tt\) and \(I(false) = ff\), and
- \(I(\cong_s)\) be the equality function of the domain \(D_s\) for each sort \(s\).

Assume that the arity of a constructor \(C\) is \(n\). Then \(C(I_1, \ldots, I_n) \equiv C(I'_1, \ldots, I'_n)\)
 implies that \(I_i = I_i' \) for \(1 \leq i \leq n \). Therefore, for each constructor \(C \), we require that \(I(C) \) be an injective (a.k.a. 1-1) function.

An assignment \(\eta \) is a finite mapping from index variables to \(D = \cup_{s \in \text{sort}} D_s \), and we use \(\text{dom}(\eta) \) for the domain of \(\eta \). As usual, we use \(\emptyset \) for the empty mapping and \(\eta[a \mapsto a] \) for the mapping that extends \(\eta \) with one additional link from \(a \) to \(a \), where \(a \not\in \text{dom}(\eta) \) is assumed. We write \(\eta : \phi \) if \(\eta(a) \in D_{\phi(a)} \) holds for each \(a \in \text{dom}(\eta) = \text{dom}(\phi) \).

An interpretation \(\mathcal{M} = \langle \{ D_s \}_{s \in \text{sort}}, I \rangle \) of \(\mathcal{S} \) is a model for \(\mathcal{L} \) if there exists a (partial) binary function \(\mathcal{V}_\mathcal{M} \) such that for each assignment \(\eta \) satisfying \(\eta : \phi \) for some \(\phi \) and each index term \(I \), \(\mathcal{V}_\mathcal{M}(\eta, I) \) is properly defined such that \(\mathcal{V}_\mathcal{M}(\eta, I) \in D_s \) holds whenever \(\phi \vdash I : s \) is derivable for some sort \(s \), and the following conditions are also met:

1. \(\mathcal{V}_\mathcal{M}(\eta, a) = \eta(a) \) for each \(a \in \text{dom}(\eta) \), and
2. \(\mathcal{V}_\mathcal{M}(\eta, C(I_1, \ldots, I_n)) = I(C)(\mathcal{V}_\mathcal{M}(\eta, I_1)), \ldots, \mathcal{V}_\mathcal{M}(\eta, I_n)) \), and
3. \(\mathcal{V}_\mathcal{M}(\eta, \langle I_1, I_2 \rangle) = \langle \mathcal{V}_\mathcal{M}(\eta, I_1), \mathcal{V}_\mathcal{M}(\eta, I_2) \rangle \), and
4. \(\mathcal{V}_\mathcal{M}(\eta, \pi_1(I)) = \pi_1(\mathcal{V}_\mathcal{M}(\eta, I)) \) whenever \(\phi \vdash I : s_1 \ast s_2 \) is derivable for some sorts \(s_1 \) and \(s_2 \), and
5. \(\mathcal{V}_\mathcal{M}(\eta, \pi_2(I)) = \pi_2(\mathcal{V}_\mathcal{M}(\eta, I)) \), whenever \(\phi \vdash I : s_1 \ast s_2 \) is derivable for some sorts \(s_1 \) and \(s_2 \), and
6. \(\mathcal{V}_\mathcal{M}(\eta, I_1(I_2)) = \mathcal{V}_\mathcal{M}(\eta, I_1)(\mathcal{V}_\mathcal{M}(\eta, I_2)) \) whenever \(\phi \vdash I_1(I_2) : s \) is derivable for some sort \(s \), and
7. \(\mathcal{V}_\mathcal{M}(\eta, \lambda a : s_1. I) \) is the function that maps each element \(a \) in the domain \(D_{s_1} \) to \(\mathcal{V}_\mathcal{M}(\eta[a \mapsto a], I) \) whenever \(\phi \vdash \lambda a : s_1. I : s_1 \rightarrow s_2 \) is derivable for some sort \(s_2 \).

Note that not all interpretations are models (Andrews, 1972). Given a model \(\mathcal{M} \) for \(\mathcal{L} \), we can define a constraint relation \(\models_\mathcal{M} \) as follows: \(\phi ; \vec{P} \models_\mathcal{M} P_0 \) holds if and only if for each assignment \(\eta \) such that \(\eta : \phi \) holds, \(\mathcal{V}_\mathcal{M}(\eta, P_0) = \text{tt} \) or \(\mathcal{V}_\mathcal{M}(\eta, P) = \text{ff} \) for some \(P \in \vec{P} \).

Proposition 3.2
The constraint relation \(\models_\mathcal{M} \) is regular.

Proof
It is a simple routine to verify that each of the regularity rules listed in Figure 9 is valid. □

Therefore, we have shown that for any given type index language \(\mathcal{L} \), there always exists a regular constraint relation if a model can be constructed for \(\mathcal{L} \). Of course, in practice, we need to focus on regular constraint relations that can be decided in an algorithmically effective manner.

3.3 Some examples of type index languages

3.3.1 A type index language \(\mathcal{L}_{\text{alg}} \)

We now describe a type index language \(\mathcal{L}_{\text{alg}} \) in which only algebraic terms can be formed. Suppose that there are some base sorts in \(\mathcal{L}_{\text{alg}} \). For each base sort \(b \), there
exists some constructors of c-sorts \((b_1, \ldots, b_n) \Rightarrow b\) for constructing terms of the base sort \(b\), and we say that these constructors are associated with the sort \(b\). In general, the terms in \(\mathcal{L}_{\text{alg}}\) can be formed as follows,

\[
\text{index terms } I ::= a \mid C(I_1, \ldots, I_n)
\]

where \(C\) is a constructor or an equality constant function \(\doteq_s\) for some sort \(s\). For instance, we may have a sort \(\text{Nat}\) and two constructors \(Z\) and \(S\) of c-sorts \((\) \Rightarrow \text{Nat}\) and \((\text{Nat}) \Rightarrow \text{Nat}\), respectively, for constructing terms of sort \(\text{Nat}\). A constraint in \(\mathcal{L}_{\text{alg}}\) is of the following form:

\[
a_1 : b_1, \ldots, a_n : b_n; I_1 \doteq I'_1, \ldots, I_n \doteq I'_n \models I \doteq I'
\]

where each \(\doteq\) is \(\doteq_s\) for some sort \(s\). A simple rule-based algorithm for solving this kind of constraints can be found in (Xi et al., 2003), where algebraic terms are used to represent types.

In practice, we can provide a mechanism for adding into \(\mathcal{L}_{\text{alg}}\) a new base sort \(b\) as well as the constructors associated with \(b\). As an example, we may use the following concrete syntax:

\[
\text{data sort stp} =
\]

\[
\text{Bool} \mid \text{Integer} \mid \text{Arrow of (stp, stp)} \mid \text{Pair of (stp, stp)}
\]

to introduce a sort \(stp\) and then associate with it some constructors of the following c-sorts:

\[
\begin{align*}
\text{Bool} & : (\) \Rightarrow stp \\
\text{Integer} & : (\) \Rightarrow stp \\
\text{Arrow} & : (stp, stp) \Rightarrow stp \\
\text{Pair} & : (stp, stp) \Rightarrow stp
\end{align*}
\]

We can then use index terms of the sort \(stp\) to represent the types in a simply typed \(\lambda\)-calculus where tuples are supported and there are also base types for booleans and integers. In Section 7.3, we will present a concrete programming example involving the type index language \(\mathcal{L}_{\text{alg}}\).

3.3.2 Another type index language \(\mathcal{L}_{\text{int}}\)

We now formally describe another type index language \(\mathcal{L}_{\text{int}}\) in which we can form integer expressions. The syntax for \(\mathcal{L}_{\text{int}}\) is given as follows:

\[
\begin{align*}
\text{index sorts} & \quad s ::= \text{bool} \mid \text{int} \\
\text{index terms} & \quad I ::= a \mid C(I_1, \ldots, I_n)
\end{align*}
\]

There are no tuples and functions (formed through \(\lambda\)-abstraction) in \(\mathcal{L}_{\text{int}}\), and the constants \(C\) in \(\mathcal{L}_{\text{int}}\) together with their c-sorts are listed in Figure 10. Let \(D_{\text{int}}\) be the domain (set) of integers and \(M_{\text{int}}\) be \(\langle D_{\text{int}}, I_{\text{int}} \rangle\), where \(I_{\text{int}}\) maps each constant in \(\mathcal{L}_{\text{int}}\) to its standard interpretation. For instance, \(I(\text{+})\) and \(I(-)\) are the standard addition and subtraction functions on integers, respectively. It can be readily verified that \(M_{\text{int}}\) is a model for \(\mathcal{L}_{\text{int}}\). Therefore, the constraint relation \(\models_{M_{\text{int}}}\) is regular.
true : () → bool
false : () → bool
i : () → int for every integer i
¬ : (bool) → bool negation
∧ : (bool, bool) → bool conjunction
∨ : (bool, bool) → bool disjunction
+ : (int, int) → int
− : (int, int) → int
/ : (int, int) → int
max : (int, int) → int
min : (int, int) → int
mod : (int, int) → int modulo operation
≥ : (int, int) → bool
> : (int, int) → bool
≤ : (int, int) → bool
< : (int, int) → bool
= : (int, int) → bool
̸= : (int, int) → bool

Fig. 10. The constants and their c sorts in \(\mathcal{L}_{\text{int}} \)

datasync \(\text{typ} = \text{Arrow of } (\text{typ}, \text{typ}) \mid \text{All of } (\text{typ} \to \text{typ}) \)

datatype \(\text{EXP} (\text{typ}) = \)
| \{a1:typ, a2:typ\} \(\text{EXPlam} (\text{Arrow} (a1, a2)) \) of (\(\text{EXP} (a1) \to \text{EXP} (a2) \))
| \{f:typ -> typ\} \(\text{EXPapp} (a2) \) of (\(\text{EXP} (\text{Arrow} (a1, a2)), \text{EXP} (a1) \))
| \{f:typ -> typ\} \(\text{EXPalli} (\text{All} (f)) \) of (\{a:typ\} \(\text{EXP} (f \ a) \))
| \{f:typ -> typ,a:typ\} \(\text{EXPalle} (f \ a) \) of (\(\text{EXP} (\text{All} f) \))

Fig. 11. An example involving higher-order type index terms

Given a constraint \(\phi; \vec{P} \models_{\mathcal{L}_{\text{int}}} P_0 \), where \(\phi = a_1 : \text{int}, \ldots, a_n : \text{int} \), and each \(P \) in \(\vec{P} \) is a linear inequality on integers, and \(P_0 \) is also a linear inequality on integers, we can use linear integer programming to solve such a constraint. We will mention later that we can make use of the type index language \(\mathcal{L}_{\text{int}} \) in the design of a dependently type functional programming language where type equality between two types can be decided through linear integer programming. Though the problem of linear integer programming itself is NP-complete, we have observed that the overwhelming majority of constraints encountered in practice can be solved in a manner that is efficient enough to support realistic programming.

3.3.3 Higher-order type index terms

There are no higher-order type indexes, that is, type index terms of function sorts, in either \(\mathcal{L}_{\text{alg}} \) or \(\mathcal{L}_{\text{int}} \). In general, the constraint relation involving higher-order type indexes are often difficult or simply intractable to solve. We now present a type
index language \mathcal{L}_λ, which extends \mathcal{L}_{alg} with higher-order type indexes as follows:

$$I \ ::= \ldots | \lambda a : s. I | I_1(I_2)$$

Like in \mathcal{L}_{alg}, a constraint in \mathcal{L}_λ is of the following form:

$$a_1 : b_1, \ldots, a_n : b_n; I_1 \equiv I'_1, \ldots, I_n \equiv I'_n \models I \equiv I'$$

For instance, we may ask whether the following constraint holds:

$$a_1 : b \rightarrow b, a_2 : b; a_1(a_1(a_2)) \equiv a_1(a_2) \models a_1(a_2) = a_2$$

If there are two distinct constants C_1 and C_2 of sort b, then the answer is negative since a counterexample can be constructed by letting a_1 and a_2 be $\lambda a : b.C_1$ and C_2, respectively. Clearly, the problem of solving constraints in \mathcal{L}_λ is undecidable as (a special case of) it can be reduced to the problem of higher-order unification. For instance, $\phi; I_1 \equiv I_2 \models false$ holds if and only if there exists no substitution $\Theta : \phi$ such that $I_1[\Theta]$ and $I_2[\Theta]$ are $\beta\eta$-equivalent.

In practice, we can decide to only handle constraints of the following simplified form:

$$\phi; a_1 \equiv I_1, \ldots, a_n \equiv I_n \models I \equiv I'$$

where for $1 \leq i \leq j \leq n$, there are no free occurrences of a_j in I_i. Solving such a constraint can essentially be reduced to deciding the $\beta\eta$-equality on two simply typed λ-terms, which is done by comparing whether the two λ-terms have the same long $\beta\eta$-normal form.

We now present an example that makes use of higher-order type indexes. The constraints on type indexes involved in this example have the above simplified form and thus can be easily solved using $\beta\eta$-normalization. The concrete syntax in Figure 11 declares a sort typ and a type constructor EXP that takes an index term I of sort typ to form a type $\text{EXP}(I)$. The value constructors associated with EXP are assigned the following c-types:

$$\text{EXP} \quad \Pi a_1 : typ. \Pi a_2 : typ.
\quad (\text{EXP}(a_1) \rightarrow \text{EXP}(a_2)) \Rightarrow \text{EXP}(\text{Arrow}(a_1, a_2))$$

$$\text{EXP} \quad \Pi a_1 : typ. \Pi a_2 : typ.
\quad (\text{EXP}(\text{Arrow}(a_1, a_2)), \text{EXP}(a_1)) \Rightarrow \text{EXP}(a_2)$$

$$\text{EXP} \quad \Pi f : typ \rightarrow typ.
\quad (\Pi a : typ. \text{EXP}(f(a))) \Rightarrow \text{EXP}(\text{All}(f))$$

$$\text{EXP} \quad \Pi f : typ \rightarrow typ. \Pi a : typ.
\quad (\text{EXP}(\text{All}(f))) \Rightarrow \text{EXP}(f(a))$$

The intent is to use an index term I of sort typ to represent a type in the second-order polymorphic λ-calculus λ_2 (a.k.a. system F), and a value of type $\text{EXP}(I)$ to represent a λ-term in λ_2 that can be assigned the type represented by I. For instance, the type $\forall \alpha. \alpha \rightarrow \alpha$ is represented as $\text{All}(\lambda a : typ. \text{Arrow}(a,a))$, and the following term:

$$\text{EXP} \quad \Pi a : typ. \Pi a : typ.
\quad (\text{EXP}(\text{All}(f))) \Rightarrow \text{EXP}(f(a))$$
types \(\tau \) ::= \ldots | \delta(\vec{I}) | P \supset \tau | P \land \tau | \Pi a : s. \tau | \Sigma a : s. \tau \\
expressions \(e \) ::= \ldots | \supset^+(v) | \supset^-(v) | \Pi^+(v) | \Pi^-(v) | \land(e) | \let \land (x) = e_1 \text{ in } e_2 \text{ end} | \Sigma(e) | \let \Sigma(x) = e_1 \text{ in } e_2 \text{ end} \\
values \(v \) ::= \ldots | \supset^+(v) | \Pi^+(v) | \land(v) | \Sigma(v)

Fig. 12. The syntax for \(\lambda_{\Pi, \Sigma} \)

which can be given the following type:

\[
\text{EXP}(\text{All}(\lambda a_1 : \text{typ}, \text{All}(\lambda a_2 : \text{typ}, \text{Arrow}(a_1, \text{Arrow}(a_1, a_2), a_2))))
\]

represents the \(\lambda \)-term \(\Lambda \alpha_1.\Lambda \alpha_2.\lambda x : \alpha_1.\lambda y : \alpha_1 \rightarrow \alpha_2. y(x) \). This is a form of higher-order abstract syntax (h.o.a.s.) representation for \(\lambda \)-terms (Church, 1940; Pfenning

& Elliott, 1988; Pfenning, n.d.). As there is some unfamiliar syntax involved in this example, we suggest that the reader revisit it after studying Section 4.

4 \(\lambda_{\Pi, \Sigma} \): Extending \(\lambda_{\text{pat}} \) with dependent types

In this section, we introduce both universal and existential dependent types into the type system of \(\lambda_{\text{pat}} \), leading to the design of a programming language schema \(\lambda_{\Pi, \Sigma} (\mathcal{L}) \) that parameterizes over a given type index language \(\mathcal{L} \).

4.1 Syntax

Let us fix a type index language \(\mathcal{L} \). We now present \(\lambda_{\Pi, \Sigma} = \lambda_{\Pi, \Sigma} (\mathcal{L}) \), which is an extension of \(\lambda_{\text{pat}} \) with universal and existential dependent types. The syntax of \(\lambda_{\Pi, \Sigma} \) is given in Figure 12, which extends the syntax in Figure 3. For instance, we use \(\ldots \) in the definition of types in \(\lambda_{\Pi, \Sigma} \) for the following definition of types in \(\lambda_{\text{pat}} \):

\[
1 | \tau_1 \ast \tau_2 | \tau_1 \rightarrow \tau_2
\]

We now use \(\delta \) for base type families. We may write \(\delta() \), which is just an unindexed type. We do not specify here as to how new type families can actually be declared. In our implementation, we do provide a means for the programmer to declare type families. For instance, in Section 1, there is such a declaration in the example presented in Figure 1.

We use the names universal (dependent) types, existential (dependent) types, guarded types and asserting types for types of the forms \(\Pi a : s. \tau \), \(\Sigma a : s. \tau \), \(P \supset \tau \) and \(P \land \tau \), respectively. Note that the type constructor \(\land \) is asymmetric. In addition, we use the names universal expressions, existential expressions, guarded expressions and asserting expressions for expressions of the forms \(\Pi^+(v) \), \(\Sigma(e) \), \(\supset^+(v) \) and \(\land(e) \), respectively.

In the following presentation, we may write \(\vec{I} \) for a (possibly empty) sequence of index terms \(I_1, \ldots, I_n \); \(\vec{P} \) for a (possibly empty) sequence of index propositions \(P_1, \ldots, P_n \); \(\Pi \phi \) for a (possibly empty) sequence of quantifiers: \(\Pi a_1 : s_1 \ldots \Pi a_n : s_n \),
\[\vdash \delta(s_1, \ldots, s_n) \quad \phi \vdash I_k : s_k \text{ for } 1 \leq k \leq n \quad \text{(tp-base)}\]

\[
\phi \vdash \delta(I_1, \ldots, I_n) \quad \text{[type]} \]

\[
\phi \vdash 1 \quad \text{[type]} \quad \text{(tp-unit)}
\]

\[
\phi \vdash \tau_1 \quad \text{[type]} \quad \phi \vdash \tau_2 \quad \text{[type]} \quad \text{(tp-prod)}
\]

\[
\phi \vdash \tau_1 \quad \text{[type]} \quad \phi \vdash \tau_2 \quad \text{[type]} \quad \phi \vdash \tau_1 \rightarrow \tau_2 \quad \text{[type]} \quad \text{(tp-fun)}
\]

\[
\phi \vdash P : \text{bool} \quad \phi \vdash \tau \quad \text{[type]} \quad \phi \vdash P \supset \tau \quad \text{[type]} \quad \text{(tp-\supset)}
\]

\[
\phi, a : s \vdash \tau \quad \text{[type]} \quad \phi \vdash \Pi a : s. \tau \quad \text{[type]} \quad \text{(tp-\Pi)}
\]

\[
\phi \vdash P : \text{bool} \quad \phi \vdash \tau \quad \text{[type]} \quad \phi \vdash P \land \tau \quad \text{[type]} \quad \phi \vdash \Sigma a : s. \tau \quad \text{[type]} \quad \text{(tp-\Sigma)}
\]

\[
\phi \vdash \emptyset \quad \text{[ctx]} \quad \text{(ctx-emp)}
\]

\[
\phi \vdash \Gamma \quad \phi \vdash \tau \quad \text{[type]} \quad \text{if } \tau \notin \text{dom}(\Gamma) \quad \phi \vdash \Gamma, x : \tau \quad \text{[ctx]} \quad \text{(ctx-ext)}
\]

Fig. 13. The type and context formation rules in \(\lambda^{\Pi, \Sigma}_{\text{pat}}\)

where the index context \(\phi\) is \(a_1 : s_1, \ldots, a_n : s_n; \overline{P} \supset \tau\) for \(P = P_1 \supset (\ldots (P_n \supset \tau) \ldots)\) if \(\overline{P} = P_1, \ldots, P_n\).

Notice that a form of value restriction is imposed in \(\lambda^{\Pi, \Sigma}_{\text{pat}}\): It is required that \(e\) be a value in order to form expressions \(\Pi^+(e)\) and \(\supset^+(e)\). This form of value restriction can in general greatly simplify the treatment of effectful features such as references (Wright, 1995), which are to be added into \(\lambda^{\Pi, \Sigma}_{\text{pat}}\) in Section 6. We actually need to slightly relax this form of value restriction in Section 6.3 by only requiring that \(e\) be a value-equivalent expression (instead of a value) when \(\Pi^+(e)\) or \(\supset^+(e)\) is formed. Generally speaking, a value-equivalent expression, which is to be formally defined later, refers to an expression that is operationally equivalent to a value.

Intuitively, in order to turn a value of a guarded type \(P \supset \tau\) into a value of type \(\tau\), we must establish the proposition \(P\); if a value of an asserting type \(P \land \tau\) is generated, then we can assume that the proposition \(P\) holds. For instance, the following type can be assigned to the usual division function on integers,

\[
\Pi a_1 : \text{int}. \Pi a_2 : \text{int.} \quad (a_2 \neq 0) \supset (\text{int}(a_1) * \text{int}(a_2) \rightarrow \text{int}(a_1/a_2))
\]

where / stands for the integer division function in some type index language. The
following type is a rather interesting one:

$$\Pi a : \text{bool} \Rightarrow (a \rightarrow \text{true}) \land 1$$

This type can be assigned to a function that checks at run-time whether a boolean expression holds. In the case where the boolean expression fails to hold, some form of exception is to be raised. Therefore, this function acts as a verifier for run-time assertions made in programs.

In practice, we also have a notion of subset sort. We use δ to range over subset
sorts, which are formally defined as follows:

\[
\hat{s} ::= s \mid \{a : \hat{s} \mid P\}
\]

where the index variable \(a\) in \(\{a : \hat{s} \mid P\}\) binds the free occurrences of \(a\) in \(P\). Note that subset sorts, which extend sorts, are just a form of syntactic sugar. Intuitively, the subset sort \(\{a : \hat{s} \mid P\}\) is for index terms \(I\) of subset sort \(\hat{s}\) that satisfy the proposition \(P[a \rightarrow I]\). For instance, the subset sort \(nat\) is defined to be \(\{a : int \mid a \geq 0\}\). In general, we may write \(\{a : s \mid P_1, \ldots, P_n\}\) for the subset sort \(\hat{s}_n\) defined as follows:

\[
\hat{s}_0 = s \quad \hat{s}_k = \{a : \hat{s}_{k-1} \mid P_k\}
\]

Fig. 16. The typing rules for \(\lambda_{\text{pat}}^{R,S}\) (1)
where \(k = 1, \ldots, n \).

We use \(\phi; P \vdash I : \{ a : s \mid P_1, \ldots, P_n \} \) to mean that \(\phi; P \vdash I : s \) is derivable and \(\phi; P \vdash P_i[a \mapsto I] \) hold for \(i = 1, \ldots, n \). Given a subset sort \(\hat{s} \), we write \(\Pi a: \hat{s}. \tau \) for \(\Pi a:s. \tau \) if \(\hat{s} \) is \(s \), or for \(\Pi a: \hat{s}_1. P \supset \tau \) if \(\hat{s} \) is \(\{ a : \hat{s}_1 \mid P \} \). Similarly, we write \(\Sigma a: \hat{s}. \tau \) for \(\Sigma a:s. \tau \) if \(\hat{s} \) is \(s \), or for \(\Sigma a: \hat{s}_1. P \land \tau \) if \(\hat{s} \) is \(\{ a : \hat{s}_1 \mid P \} \). For instance, we write \(\Pi a_1: \text{nat. int}(a_1) \to \Sigma a_2: \text{nat. int}(a_2) \) for the following type:

\[
\Pi a_1: \text{int} \cdot (a_1 \geq 0) \supset (\text{int}(a_1) \to \Sigma a_2: \text{int} \cdot (a_2 \geq 0) \land \text{int}(a_2)),
\]

which is for functions that map natural numbers to natural numbers.

4.2 Static semantics

We start with the rules for forming types and contexts, which are listed in Figure 13. We use the syntax \(\Gamma \vdash \delta(s_1, \ldots, s_n) \) to indicate that we can construct a type \(\delta(I_1, \ldots, I_n) \) when given type index terms \(I_1, \ldots, I_n \) of sorts \(s_1, \ldots, s_n \), respectively.

A judgment of the form \(\phi \vdash \tau \) means that \(\tau \) is a well-formed type under the index context \(\phi \), and a judgment of the form \(\phi \vdash \Gamma \) means that \(\Gamma \) is a well-formed (expression) context under \(\phi \). The domain \(\text{dom}(\Gamma) \) of a context \(\Gamma \) is defined to be the set of variables declared in \(\Gamma \). We write \(\phi; \bar{P} \vdash P_0 \) for a regular constraint relation in the fixed type index language \(\mathcal{L} \).
In \(\lambda^B_{\Sigma} \), type equality, that is, equality between types, is defined in terms of the static subtype relation \(\leq_{tp} \). We say that \(\tau \) and \(\tau' \) are equal if both \(\tau \leq_{tp} \tau' \) and \(\tau' \leq_{tp} \tau \) hold. By overloading \(\models \), we use \(\phi; \vec{P} \models \tau \leq_{tp} \tau' \) for a static subtype judgment and present the rules for deriving such a judgment in Figure 14. Note that all of these rules are syntax-directed.

The static subtype relation \(\leq_{tp} \) is often too weak in practice. For instance, we may need to use a function of the type \(\tau_1 = \Pi a : \text{int} \rightarrow \text{int} \) as a function of the type \(\tau_2 = (\Sigma a : \text{int}) \rightarrow (\Sigma a : \text{int}) \), but it is clear that \(\tau_1 \leq_{tp} \tau_2 \) does not hold (as \(\leq_{tp} \) is syntax-directed). We are to introduce in Section 4.6 another subtype relation \(\leq_s \), which is much stronger than \(\leq_{tp} \) and is given the name **dynamic subtype relation**.

The following lemma, which is parallel to Lemma 3.1, essentially states that the rules in Figure 14 are closed under substitution.

Lemma 4.1

1. If \(\phi, \phi_0 ; \vec{P} \models \tau \leq_{tp} \tau' \) is derivable and \(\phi \vdash \Theta : \phi_0 \) holds, then \(\phi; \vec{P}[\Theta] \models \tau[\Theta] \leq_{tp} \tau'[\Theta] \) is also derivable.
2. If \(\phi; \vec{P}, \vec{P}_0 \models \tau \leq_{tp} \tau' \) is derivable and \(\phi; \vec{P} \models \vec{P}_0 \), then \(\phi; \vec{P} \models \tau \leq_{tp} \tau' \) is also derivable.

Proof

(Sketch) (1) and (2) are proven by structural induction on the derivations of \(\phi, \phi_0 ; \vec{P} \models \tau \leq_{tp} \tau' \) and \(\phi; \vec{P}, \vec{P}_0 \models \tau \leq_{tp} \tau' \), respectively. Lemma 3.1 is needed in the proof. \(\square \)

As can be expected, the static subtype relation is both reflexive and transitive.

Proposition 4.2 (Reflexitivity and Transitivity of \(\leq_{tp} \))

1. \(\phi; \vec{P} \models \tau \leq_{tp} \tau \) holds for each \(\tau \) such that \(\phi \vdash [\text{type}] \) is derivable.
2. \(\phi; \vec{P} \models \tau_1 \leq_{tp} \tau_3 \) holds if \(\phi; \vec{P} \models \tau_1 \leq_{tp} \tau_2 \) and \(\phi; \vec{P} \models \tau_2 \leq_{tp} \tau_3 \).

Proof

Straightforward. \(\square \)

We now present the typing rules for patterns in Figure 15 and then the typing rules for expressions in Figure 16 and Figure 17.

The typing judgments for patterns are of the form \(p \vdash \tau \Rightarrow (\phi; \vec{P}, \Gamma) \), and the rules for deriving such judgments are given in Figure 15. A judgment of the form \(p \vdash \tau \Rightarrow (\phi; \vec{P}, \Gamma) \) means that for any value \(v \) of the type \(\tau \), if \(v \) matches \(p \), that is, \(\text{match}(v,p) \Rightarrow \theta \) holds for some substitution \(\theta \), then there exists an index substitution \(\Theta \) such that \(\emptyset \vdash \Theta : \phi; \emptyset; 0 \models \vec{P}[\Theta] \) and \((\emptyset; 0; \emptyset) \vdash \Theta : \Gamma[\Theta] \). This is captured precisely by Lemma 4.10. In the rule (pat-prod), it is required that \(\phi_1 \) and \(\phi_0 \) share no common index variables in their domains. In the rule (pat-const), we write \(\phi_0; \vec{P}_0 \vdash cc(\tau) : (\delta(1, \ldots, I_n)) \) to mean that \(cc \) is a constant constructor assigned (according to some signature for constants) the following c-type:

\[
\Pi \phi_0, \vec{P}_0 \triangleright (\tau \Rightarrow (I_1, \ldots, I_n))
\]
In other words, given a constant constructor \(cc \), we can form a rule \((\text{pat-const})\) for this particular \(cc \) based on the c-type assigned to \(cc \).

The typing rules given in Figure 16 are mostly expected. The rule \((\text{ty-clause})\) requires that \(\tau_2 \) contain only type index variables declared in \(\phi \). For universal dependent types, existential dependent types, guarded types, and assertion types, the typing rules are given in Figure 17. Note that we have omitted certain obvious side conditions that need to be attached to some of these rules. For instance, in the rule \((\text{ty-II-intro})\), the type index variable \(a \) is assumed to have no free occurrences in either \(\vec{P} \) or \(\Gamma \). Also, in the rule \((\text{ty-\Sigma-elim})\), the type index variable \(a \) is assumed to have no free occurrences in either \(\vec{P}, \Gamma \) or \(\tau_2 \). We now briefly go over some of the typing rules in Figure 17.

- If a value \(v \) can be assigned a type \(\tau \) under an assumption \(P \), then the typing rule \((\text{ty-\rightarrow-intro})\) assigns \(\triangleright^+ (v) \) the guarded type \(P \supset \tau \). Notice the presence of value restriction here.
- Given an expression \(e \) of type \(P \supset \tau \), the typing rule \((\text{ty-\rightarrow-elim})\) states that the expression \(\triangleright^- (e) \) can be formed if the proposition \(P \) holds. Intuitively, a guarded expression is useful only if the guard can be discharged.
- If \(e \) can be assigned a type \(\tau \) and \(P \) holds, then the typing rule \((\text{ty-\land-intro})\) assigns \(\land (e) \) the asserting type \(P \land \tau \).
- The elimination rule for the type constructor \(\land \) is \((\text{ty-\land-elim})\). Assume that \(e_2 \) can be assigned a type \(\tau_2 \) under the assumption that \(P \) holds and \(x \) is of type \(\tau_1 \). If \(e_1 \) is given the asserting type \(P \land \tau_1 \), then the rule \((\text{ty-\land-elim})\) assigns the type \(\tau_2 \) to the expression \(\text{let } \land (x) = e_1 \text{ in } e_2 \text{ end} \). Clearly, this rule resembles the treatment of existentially quantified packages (Mitchell & Plotkin, 1988).

The following lemma is parallel to Lemma 2.1. We need to make use of the assumption that the constraint relation involved here is regular when proving the first two statements in this lemma.

\textit{Lemma 4.3 (Thinning)}

Assume \(D :: \phi; \vec{P}; \Gamma \vdash e : \tau \).

1. For every index variable \(a \) that is not declared in \(\phi \), we have a derivation \(D' :: \phi, a : s; \vec{P}; \Gamma \vdash e : \tau \) such that \(\text{height}(D) = \text{height}(D') \).
2. For every \(P \) such that \(\phi \vdash P : \text{bool} \) is derivable, we have a derivation \(D' :: \phi; \vec{P}, P; \Gamma \vdash e : \tau \) such that \(\text{height}(D) = \text{height}(D') \).
3. For every variable \(x f \) that is not declared in \(\Gamma \) and \(\tau' \) such that \(\phi \vdash \tau' \) \([\text{type}] \) is derivable, we have a derivation \(D' :: \phi; \vec{P}; \Gamma, x f : \tau' \vdash e : \tau \) such that \(\text{height}(D) = \text{height}(D') \).

\textit{Proof}

Straightforward. \(\square \)

The following lemma indicates a close relation between the type of a closed value in \(\lambda^{H, \Sigma}_{\text{pat}} \) and the form of the value, which is needed in the proof of Theorem 4.12, the Progress Theorem for \(\lambda^{H, \Sigma}_{\text{pat}} \).
Lemma 4.4 (Canonical Forms)
Assume that $\emptyset; \emptyset; \emptyset \vDash \varepsilon : \tau$ is derivable.

1. If $\tau = \delta(\vec{I})$ for some type family δ, then ε is of the form $cc(v_0)$, where cc is a constant constructor assigned a c-type of the form $\Pi \phi. \vec{P} \supset (\tau_0 \Rightarrow \delta(\vec{I}_0))$.
2. If $\tau = 1$, then ε is $\langle \rangle$.
3. If $\tau = \tau_1 \ast \tau_2$, then ε is of the form $\langle v_1, v_2 \rangle$.
4. If $\tau = \tau_1 \rightarrow \tau_2$, then ε is of the form $\text{lam} x.e$.
5. If $\tau = P \supset \tau_0$, then ε is of the form $\supset \tau'$. $+$.
6. If $\tau = \Pi a : s. \tau_0$, then ε is of the form $\Pi \supset \tau_0$. $+$.
7. If $\tau = P \land \tau_0$, then ε is of the form $\land \tau_0$.
8. If $\tau = \Sigma a : s. \tau_0$, then ε is of the form $\Sigma \tau_0$.

Proof
By a thorough inspection of the typing rules in Figure 16 and Figure 17.

Clearly, the following rule is admissible in $\lambda_{\Pi, \Sigma}^{\Pi, \Sigma}$ as it is equivalent to the rule (ty-var) followed by the rule (ty-sub):

$$
\phi \vdash \Gamma \left[\text{ctx} \right] \quad \Gamma(xf) = \tau \quad \phi; \vec{P}; \Gamma \vdash \varepsilon \vdash s_{tp} \tau'
$$

In the following presentation, we retire the rule (ty-var) and simply replace it with the rule (ty-var').

The following technical lemma is needed for establishing Lemma 4.6.

Lemma 4.5
Assume $D :: \phi; \vec{P}; \Gamma, xf : \tau_1 \vdash e : \tau_2$. If $\phi; \vec{P}; \Gamma \vdash \tau_1 \leq s_{tp} \tau_1$, then there exists $D' :: \phi; \vec{P}; \Gamma, xf : \tau'_1 \vdash e : \tau_2$ such that $\text{height}(D) = \text{height}(D')$.

Proof
(Sketch) By structural induction on the derivation D. We need to make use of the fact that the rule (ty-var) is replaced with the rule (ty-var') in order to show $\text{height}(D) = \text{height}(D')$.

The following lemma is needed in the proof of Theorem 4.11, the Subject Reduction Theorem for $\lambda_{\Pi, \Sigma}^{\Pi, \Sigma}$.

Lemma 4.6
Assume $D :: \phi; \vec{P}; \Gamma \vdash \varepsilon : \tau$. Then there exists a derivation $D' :: \phi; \vec{P}; \Gamma \vdash \varepsilon : \tau$ such that $\text{height}(D') \leq \text{height}(D)$ and the last typing rule applied in D' is not (ty-sub).

Proof
(Sketch) The proof proceeds by structural induction on D. When handling the case where the last applied rule in D is (ty-lam), we make use of Lemma 4.5 and thus see the need for replacing (ty-var) with (ty-var').

Note that the value ε in Lemma 4.6 cannot be replaced with an arbitrary expression. For instance, if we replace ε with an expression of the form $\Pi \neg (e)$, then the lemma cannot be proven.

The following lemma plays a key role in the proof of Theorem 4.11, the Subject Reduction Theorem for $\lambda_{\Pi, \Sigma}^{\Pi, \Sigma}$.
Lemma 4.7 (Substitution)
1. Assume that $φ, φ_0; P; Γ \vdash e : τ$ is derivable. If $φ \vdash Θ : φ_0$ holds, then $φ; P[Θ]; Γ[Θ] \vdash e : τ[Θ]$ is also derivable.
2. Assume that $φ; P, P_0; Γ \vdash e : τ$ is derivable. If $φ; P \models P_0$ holds, then $φ; P; Γ \vdash e : τ$ is also derivable.
3. Assume that $φ; P, Γ, Γ_0 \vdash e : τ$ is derivable. If $φ; P, Γ \vdash θ : Γ_0$ holds, then $φ; P; Γ \vdash e[θ] : τ$ is also derivable.

Proof
(Sketch) All (1), (2) and (3) are proven straightforwardly by structural induction on the derivations of the typing judgments $φ, φ_0; P; Γ \vdash e : τ$, and $φ; P, P_0; Γ \vdash e : τ$, and $φ; P, Γ, Γ_0 \vdash e : τ$, respectively.

4.3 Dynamic semantics

We now need to extend the definition of evaluation contexts (Definition 2.4) as follows.

Definition 4.8 (Evaluation Contexts)

evaluation contexts $E ::= \ldots | ⊃^+(E) | ⊃^-(E) | Π^+(E) | Π^-(E) | Λ(E) | \text{let } λ(x) = E \text{ in } e \text{ end} | Σ(E) | \text{let } Σ(x) = E \text{ in } e \text{ end}$

We are also in need of extending the definition of redexes and their reducts (Definition 2.5).

Definition 4.9
In addition to the forms of redexes in Definition 2.5, we have the following new forms of redexes:

- $⊃^-(⊂^+(v))$ is a redex, and its reduct is v.
- $Π^-(Π^+(v))$ is a redex, and its reduct is v.
- $\text{let } λ(x) = λ(v) \text{ in } e \text{ end}$ is a redex, and its reduct is $e[x \mapsto v]$.
- $\text{let } Σ(x) = Σ(v) \text{ in } e \text{ end}$ is a redex, and its reduct is $e[x \mapsto v]$.

Note that Definition 2.7, where V-form, R-form, M-form, U-form and E-form are defined, can be readily carried over from $λ_{\text{pat}}$ into $λ_{\text{Π,Σ}}$.

The following lemma captures the meaning of the typing judgments for patterns; such judgments can be derived according to the rules in Figure 15.

Lemma 4.10
Assume that $θ; θ; θ \vdash v : τ$ is derivable. If $p \downarrow τ ⇒ (φ; P; Γ)$ and $\text{match}(v, p) ⇒ θ$ are also derivable, then there exists $Θ$ satisfying $θ \vdash Θ : φ$ such that both $θ; θ \models P[Θ]$ and $θ; θ; θ \vdash θ : Γ[Θ]$ hold.

Proof
(Sketch) By structural induction on the derivation of $p \downarrow τ ⇒ (φ; P; Γ)$. □
fun zip (nil, nil) = nil
| zip (cons (x, xs), cons (y, ys)) = (x, y) :: zip (xs, ys)

Fig. 18. An example of exhaustive pattern matching

4.4 Type soundness

In order to establish the type soundness for $\lambda^\Pi,\Sigma\text{pat}$, we make the following assumption:

For each constant function cf assigned c-type $\Pi\phi.\vec{P} \supset (\tau \Rightarrow \delta(\vec{I}))$, if $\emptyset; \emptyset \vdash \vec{P}[\Theta]$ holds for some substitution Θ satisfying $\emptyset \vdash \Theta : \phi$ and $\emptyset; \emptyset \vdash v : \tau[\Theta]$ is derivable and $cf(v)$ is defined to be v', then $\emptyset; \emptyset \vdash v' : \delta(\vec{I}[\Theta])$ is also derivable. In other words, we assume that each constant function meets its specification. That is, each constant function respects its c-type assignment.

Theorem 4.11 (Subject Reduction)
Assume $\emptyset; \emptyset; \emptyset \vdash e_1 : \tau$ and $e_1 \leftrightarrow_{ev} e_2$. Then $\emptyset; \emptyset; \emptyset \vdash e_2 : \tau$ is also derivable.

Proof
A completed proof of this theorem is given in Appendix B.

Theorem 4.12 (Progress)
Assume that $\emptyset; \emptyset; \emptyset \vdash e_1 : \tau$ is derivable. Then there are only four possibilities:

- e_1 is a value, or
- e_1 is in M-form, or
- e_1 is in U-form, or
- $e_1 \leftrightarrow_{ev} e_2$ holds for some expression e_2.

In particular, this implies that e_1 cannot be in E-form.

Proof
(Sketch) The proof immediately follows from structural induction on the derivation of $\emptyset; \emptyset; \emptyset \vdash e_1 : \tau$. Lemma 4.4 plays a key role in this proof.

By Theorem 4.11 and Theorem 4.12, we can readily claim that for a well-typed closed expression e in $\lambda^\Pi,\Sigma\text{pat}$, either e evaluates to a value, or e evaluates to an expression in M-form, or e evaluates to an expression in U-form, or e evaluates forever.

When compared to λ_{pat}, it is interesting to see what progress we have made in $\lambda^\Pi,\Sigma\text{pat}$. We may now assign a more accurate type to a constant function cf to eliminate the occurrences of undefined $cf(v)$ for certain values v. For instance, if the division function on integers is assigned the following c-type:

$$\Pi a_1 : \text{int}. \Pi a_2 : \text{int}. (a_2 \neq 0) \supset (\text{int}(a_1) \ast \text{int}(a_2) \Rightarrow \text{int}(a_1/a_2))$$

then division by zero causes to a type error and thus can never occur at run-time. Similarly, we may now assign a more accurate type to a function to eliminate some occurrences of expressions of the form $\text{case } v \text{ of } ms$ that are not ev-redexes. For instance, when applied to two lists of unequal length, the function zip in Figure 18 evaluates to some expression of the form $E[\text{case } v \text{ of } ms]$ where $\text{case } v \text{ of } ms$ is not an ev-redex. If we annotate the definition of zip with the following type annotation,
withtype {n:nat} 'a list (n) * 'b list (n) -> ('a * 'b) list (n)

that is, we assign \textit{zip} the following type (which requires the feature of parametric polymorphism that we are to introduce in Section 6):

\[
\forall \alpha_1, \forall \alpha_2. \Pi a: \text{nat}. (\alpha_1) \text{list}(a) \ast (\alpha_2) \text{list}(a) \to (\alpha_1 \ast \alpha_2) \text{list}(a)
\]

then \textit{zip} can no longer be applied to two lists of unequal length. In short, we can now use dependent types to eliminate various (but certainly not all) occurrences of expressions in M-form or U-form, which would not have been possible previously.

Now suppose that we have two lists \textit{xs} and \textit{ys} of unknown length, that is, they are of the type \(\Sigma a: \text{nat}. (\tau) \text{list}(a)\) for some type \(\tau\). In order to apply \textit{zip} to \textit{xs} and \textit{ys}, we can insert a run-time check as follows:

```plaintext
let val m = length (xs) and n = length (ys)
in if m = n then zip (xs, ys) else raise UnequalLength end
```

where the integer equality function = and the list length function \textit{length} are assumed to be of the following types:

\[
= : \Pi a_1 : \text{int}. \Pi a_2 : \text{int}. \text{int}(a_1) \ast \text{int}(a_2) \to \text{bool}(a_1 \equiv a_2)
\]
\[
\text{length} : \forall \alpha. \Pi a: \text{nat}. (\alpha) \text{list}(a) \to \text{int}(a)
\]

Of course, we also have the option to implement another \textit{zip} function that can directly handle lists of unequal length, but this implementation is less efficient than the one given in Figure 18.

\section*{4.5 Type index erasure}

In general, there are two directions for extending a type system such as the one in \textit{ML}. One is to extend it so that more programs can be admitted as type-correct, and the other is to extend it so that programs can be assigned more accurate types. In this paper, we are primarily interested in the latter as is shown below.

We can define a function \(| |\) in Figure 19 that translates types, contexts and expressions in \(\lambda_{\Pi, \Sigma}^{\Pi, \Sigma}\) into types, contexts and expressions in \(\lambda_{\Pi, \Sigma}^{\Pi, \Sigma}\), respectively. In particular, for each type family \(\delta\) in \(\lambda_{\Pi, \Sigma}^{\Pi, \Sigma}\), we assume that there is a corresponding type \(\delta\) in \(\lambda_{\Pi, \Sigma}^{\Pi, \Sigma}\), and for each constant \(c\) of c-type \(\Pi \phi \ P \Gamma \vdash (\tau \Rightarrow \delta(\bar{I}))\) in \(\lambda_{\Pi, \Sigma}^{\Pi, \Sigma}\), we assume that \(c\) is assigned the c-type \(|\tau| \Rightarrow \delta\) in \(\lambda_{\Pi, \Sigma}^{\Pi, \Sigma}\).

\textbf{Theorem 4.13}

Assume that \(\phi; \bar{P}; \Gamma \vdash e : \tau\) is derivable in \(\lambda_{\Pi, \Sigma}^{\Pi, \Sigma}\). Then \(|\Gamma| \vdash |e| : |\tau|\) is derivable in \(\lambda_{\Pi, \Sigma}^{\Pi, \Sigma}\).

\textbf{Proof}

(Sketch) By structural induction on the derivation of \(\phi; \bar{P}; \Gamma \vdash e : \tau\). \(\Box\)
is derivable for some type \(\tau \), an expression \(e \), given a closed expression \(p \). Assume that Theorem 4.14 holds. If \(\Pi : s. \tau \), then it is already typable in \(\lambda \). In other words, \(\lambda \) does not make more \(\Pi \) of \(\sigma \), but \(\Pi \) and \(\lambda \) \(\Pi \) \(\sigma \). Then by Theorem 4.13, we know that if an expression \(e \) is typable in \(\lambda \), then it is derivable.

Theorem 4.14

Assume that \(\emptyset; e : \tau \) is derivable.

1. If \(e \sim^* v \) in \(\lambda \), then \(|e| \sim^* |v| \) in \(\lambda \).
2. If \(|e| \sim^* v_0 \) in \(\lambda \), then there is a value \(v \) such that \(e \sim^* v \) in \(\lambda \) and \(|v| = v_0 \).
Proof
(Sketch) It is straightforward to prove (1). As for (2), it follows from structural induction on the derivation of \(\emptyset;\emptyset;\emptyset \vdash e : \tau\). □

Theorem 4.14 indicates that we can evaluate a well-typed program in \(\lambda^{\Pi,\Sigma}_{pat}\) by first erasing all the markers \(\Pi^+(), \Pi^-(), \supset^+(), \supset^-, \Sigma()\) and \(\wedge()\) in the program and then evaluating the erasure in \(\lambda_{pat}\). Combining Theorem 4.13 and Theorem 4.14, we say that \(\lambda^{\Pi,\Sigma}_{pat}\) is a conservative extension of \(\lambda_{pat}\) in terms of both static and dynamic semantics.

4.6 Dynamic subtype relation

The dynamic subtype relation defined below is much stronger than the static subtype relation \(\leq_{styp}\) and it plays a key role in Section 5, where an elaboration process is presented to facilitate program construction in \(\lambda^{\Pi,\Sigma}_{pat}\).

Definition 4.15 (Dynamic Subtype Relation)
We write \(\phi; \vec{P} \models E : \tau \leq_{dtyp} \tau'\) to mean that for any expression \(e\) and context \(\Gamma\), if \(\phi; \vec{P}; \Gamma \vdash e : \tau\) is derivable then both \(\phi; \vec{P}; \Gamma \models E[e] : \tau'\) is derivable and \(|e| \leq_{dyn} |E[e]|\) holds. We may write \(\phi; \vec{P} \models \tau \leq_{dtyp} \tau'\) if, for some \(E\), \(\phi; \vec{P} \models E : \tau \leq_{dtyp} \tau'\) holds, where \(E\) can be thought of as a witness to \(\tau \leq_{dtyp} \tau'\).

As is desired, the dynamic subtype relation \(\leq_{dtyp}\) is both reflexive and transitive.

Proposition 4.16 (Reflexitivity and Transitivity of \(\leq_{dtyp}\))
1. \(\phi; \vec{P} \models \tau \leq_{dtyp} \tau\) holds for each \(\tau\) such that \(\phi \models \tau\) is derivable.
2. \(\phi; \vec{P} \models E_2[E_1] : \tau_1 \leq_{dtyp} \tau_3\) holds if \(\phi; \vec{P} \models E_1 : \tau_1 \leq_{dtyp} \tau_2\) and \(\phi; \vec{P} \models E_2 : \tau_2 \leq_{dtyp} \tau_3\) do, where \(E_2[E_1]\) is the evaluation context formed by replacing the hole \(\square\) in \(E_2\) with \(E_1\).

Proof
(Sketch) The proposition follows from the fact that the relation \(\leq_{dyn}\) is both reflexive and transitive. □

4.7 A restricted form of dependent types

Generally speaking, we use the name dependent types to refer to a form of types that correspond to formulas in some first-order many-sorted logic. For instance, the following type in \(\lambda^{\Pi,\Sigma}_{pat}\):

\[\Pi a : \text{int. } a \geq 0 \supset (\text{int}(a) \rightarrow \text{int}(a + a))\]

corresponds to the following first-order formula:

\[\forall a : \text{int. } a \geq 0 \supset (\text{int}(a) \rightarrow \text{int}(a + a))\]

where \(\text{int}\) is interpreted as some predicate on integers, and both \(\supset\) and \(\rightarrow\) stand for the implication connective in logic. However, it is not possible in \(\lambda^{\Pi,\Sigma}_{pat}\) to form a dependent type of the form \(\Pi a : \tau_1, \tau_2\), which on the other hand is allowed in a
(full) dependent type system such as \(\lambda P \) (Barendregt, 1992). To see the difficulty in supporting practical programming with such types that may depend on programs, let us recall the following rule that is needed for determining the static subtype relation \(\leq_{st} \) in \(\lambda_{pat}^{\Pi, \Sigma} \):

\[
\phi; P \models I \doteq I' \quad \phi; P \models \delta(I) \leq_{st} \delta(I')
\]

If \(I \) and \(I' \) are programs, then \(I \doteq I' \) is an equality on programs. In general, if recursion is allowed in program construction, then it is not just undecidable to determine whether two programs are equal; it is simply intractable. In addition, such a design means that the type system of a programming language can be rather unstable as adding a new programming feature into the programming language may significantly affect the type system. For instance, if some form of effect (e.g., exceptions, references) is added, then equality on programs can at best become rather intricate to define and is in general impractical to reason about. Currently, there are various studies aiming at addressing these difficulties in order to support full dependent types in practical programming. For instance, a plausible design is to separate pure expressions from potentially effectful ones by employing monads and then require that only pure expressions be used to form types. As for deciding equalities on (pure) expressions, the programmer may be asked to provide proofs of these equalities. Please see (McBride, n.d.; Westbrook et al., 2005) for further details.

We emphasize that the issue of supporting the use of dependent types in practical programming is largely not shared by Martin-Löf’s development of constructive type theory (Martin-Löf, 1984; Martin-Löf, 1985), where the principal objective is to give a constructive foundation of mathematics. In such a pure setting, it is perfectly reasonable to define type equality in terms of equality on programs (or more accurately, proofs).

5 Elaboration

We have so far presented an explicitly typed language \(\lambda_{pat}^{\Pi, \Sigma} \). This presentation has a serious drawback from the point of view of a programmer: _One may quickly be overwhelmed with the need for writing types when programming in such a setting_. It then becomes apparent that it is necessary to provide an external language \(DML_0 \) together with a mapping from \(DML_0 \) to the _internal language_ \(\lambda_{pat}^{\Pi, \Sigma} \), and we call