Continuation

(Author: Hongwei Xi)

Types	$T ::= \ldots	cont(T_1, T_2)$	
Expressions	$e ::= \ldots	callcc(e)	throw(e_1, e_2)$
Eval. ctx.	$E ::= \ldots	callcc(E)	throw(E, e)$
Values	$v ::= \ldots	E^*$	

\[
\frac{x : T_1 \vdash E[x] : T_2 \quad \Gamma \vdash e : cont(T_1, T_2) \rightarrow T_1}{\Gamma \vdash E[callcc(e)] : T_2} \quad \text{(ty-callcc)}
\]

\[
\frac{x : T_0 \vdash E[x] : T_2 \quad \Gamma \vdash e_1 : cont(T_1, T_2) \quad \Gamma \vdash e_2 : T_1}{\Gamma \vdash E[throw(e_1, e_2)] : T_2} \quad \text{(ty-throw)}
\]

\[
\frac{x : T_1 \vdash E[x] : T_2}{\Gamma \vdash E^* : cont(T_1, T_2)} \quad \text{(ty-cont)}
\]

- $E[\text{callcc}(\lambda x.e)]$ is a redex, and its reduct is $E[e[x := E^*]]$.
- $E[\text{throw}(E^*_0, e)]$ is a redex, and its reduct is $E_0[e]$.

Lemma 1 (Canonical Forms) Assume that $\emptyset \vdash v : T$ is derivable.

- If $T = \text{cont}(T_1, T_2)$, then $v = E^*$ for some evaluation context E.

Theorem 2 (Progress) Assume that $\emptyset \vdash e : T$ is derivable. Then either e is a value, or $e \rightarrow e'$ for some expression e'.

Proof By structural induction on e.

Theorem 3 (Subject Reduction) Assume that $\emptyset \vdash e : T$ is derivable and $e \rightarrow e'$. Then $\emptyset \vdash e' : T$ is derivable.

Proof By structural induction on the derivation D of $\emptyset \vdash e : T$.

- The last applied rule in D is (ty-callcc). Then D is of the following form:

\[
\frac{x : T_1 \vdash E[x] : T_2 \quad \emptyset \vdash e_0 : cont(T_1, T_2) \rightarrow T_1}{\emptyset \vdash E[\text{callcc}(e_0)] : T_2} \quad \text{(ty-callcc)}
\]
where \(e = E[\text{callcc}(e_0)] \) and \(T = T_2 \).

If \(e_0 \) is not a value, then \(e_0 \to e'_0 \) for some \(e'_0 \) and \(e' = \text{callcc}(e'_0) \). By induction hypothesis on \(D_1 \), we know that \(\emptyset \vdash e'_0 : \text{cont}(T_1, T_2) \) is derivable. Hence, \(\emptyset \vdash e' : T_2 \) can be derived as follows:

\[
\begin{array}{c}
x : T_1 \vdash E[x] : T_2 \quad D_1 :: \emptyset \vdash e'_0 : \text{cont}(T_1, T_2) \to T_1 \\
\emptyset \vdash E[\text{callcc}(e'_0)] : T_2
\end{array}
\] (ty-callcc)

We now assume that \(e_0 \) is a value. By the lemma of canonical forms, \(e_0 \) must be of the form \(\lambda x.e_1 \). Hence, \(e' = E[e_1[x := E^*]] \). Note that \(\emptyset \vdash E^* : \text{cont}(T_1, T_2) \) is derivable. By the substitution lemma, we know that \(\emptyset \vdash e_1[x := E^*] : T_1 \) is derivable. Hence, \(\emptyset \vdash e' : T_2 \) is also derivable.

- The last applied rule in \(D \) is (ty-throw). Then \(D \) is of the following form:

\[
\begin{array}{c}
x : T_0 \vdash E[x] : T_2 \quad D_1 :: \Gamma \vdash e_1 : \text{cont}(T_1, T_2) \quad D_2 :: \Gamma \vdash e_2 : T_1 \\
\Gamma \vdash E[\text{throw}(e_1, e_2)] : T_2
\end{array}
\] (ty-throw)

where \(e = E[\text{throw}(e_1, e_2)] \) and \(T = T_2 \).

If \(e_1 \) is not a value, then \(e_1 \to e'_1 \) holds for some \(e'_1 \) and \(e' = \text{throw}(e'_1, e_2) \). By induction hypothesis on \(D_1 \), \(\emptyset \vdash e'_1 : \text{cont}(T_1, T_2) \) is derivable. Hence, we can derive \(\emptyset \vdash e' : T \) as follows:

\[
\begin{array}{c}
x : T_0 \vdash E[x] : T_2 \quad D_1 :: \Gamma \vdash e'_1 : \text{cont}(T_1, T_2) \quad D_2 :: \Gamma \vdash e_2 : T_1 \\
\Gamma \vdash E[\text{throw}(e'_1, e_2)] : T_2
\end{array}
\] (ty-throw)

We now assume that \(e_1 \) is a value. By the lemma of canonical forms, \(e_1 \) must be of the form \(E_0^* \) for some evaluation context \(E_0 \). Hence, \(e' = E_0[\text{throw}(e'_1, e_2)] \). Clearly, \(x : T_1 \vdash E_0[x] : T_2 \) is derivable, which implies that \(\emptyset \vdash e' : T \) is also derivable.

The other cases have all been handled before.