Chapter 3

Simple Types

Definition 3.0.7 (Redexes) The redexes in L_0 and their reducts are defined below.

- $cf(\vec{v})$ is a redex, and each defined value of $cf(\vec{v})$ is a reduct of $cf(\vec{v})$.
- $\text{if}(\text{true}, e_1, e_2)$ is a redex, and its reduct is e_1.
- $\text{if}(\text{false}, e_1, e_2)$ is a redex, and its reduct is e_2.
- $\text{fst}(\langle v_1, v_2 \rangle)$ is a redex, and its reduct is v_1.
- $\text{snd}(\langle v_1, v_2 \rangle)$ is a redex, and its reduct is v_2.
- $(\lambda x.e)v$ is a redex, and its reduct is $e[x := v]$.
- $\text{fix } f.e$ is a redex, and its reduct is $e[f := \text{fix } f.e]$.

For instance, if we assume that $+$ represents the usual addition function on integers, then $1 + 2$ is a redex and 3 is the only reduct of $1 + 2$. More interestingly, we may also assume the existence of a nullary constant function random such that $\text{random}()$ is a redex and every natural number is a reduct of $\text{random}()$.

Definition 3.0.8 (Evaluation) We use \rightarrow for the binary evaluation relation on expressions. Given e_1 and e_2, $e_1 \rightarrow e_2$ holds if $e_1 = E[e]$ and $e_2 = E[e']$ for some evaluation context E, redex e and a reduct e' of e. We use \rightarrow^* for the reflexive and transitive closure of \rightarrow.

expressions $\quad e ::= x | c(\vec{e}) | \text{if}(e_0, e_1, e_2) | <e_1, e_2> | \text{fst}(e) | \text{snd}(e) | \lambda x.e | (e_1)e_2 | \text{fix } f.e$

definitions $\quad v ::= x | cc(\vec{v}) | <v_1, v_2> | \lambda x.e$

values $\quad T ::= \delta | T_1 * T_2 | T_1 \rightarrow T_2$

types $\quad \Gamma ::= \emptyset | \Gamma, x : T$

typing contexts $\quad E ::= [] | c(\vec{e}, E, \vec{e}) | \text{if}(E, e_1, e_2) | <E, e> | <v, E> | \text{fst}(E) | \text{snd}(E) | (E)e | (v)E$

Figure 3.1: The syntax for L_0
\begin{align*}
\Gamma(x) &= T \\
\Gamma &\vdash x : T \tag{ty-var}
\end{align*}
\begin{align*}
\Gamma &\vdash c : (T_1, \ldots, T_n) \to T \\
\Gamma &\vdash e_i : T_i \text{ for } 1 \leq i \leq n \\
\Gamma &\vdash c(e_1, \ldots, e_n) : T \tag{ty-cst}
\end{align*}
\begin{align*}
\Gamma &\vdash e_0 : \text{bool} \\
\Gamma &\vdash e_1 : T \\
\Gamma &\vdash e_2 : T \\
\Gamma &\vdash \text{if}(e_0, e_1, e_2) : T \tag{ty-if}
\end{align*}
\begin{align*}
\Gamma &\vdash e_1 : T_1 \\
\Gamma &\vdash e_2 : T_2 \\
\Gamma &\vdash \langle e_1, e_2 \rangle : T_1 \ast T_2 \tag{ty-tup}
\end{align*}
\begin{align*}
\Gamma &\vdash e : T_1 \ast T_2 \\
\Gamma &\vdash \text{fst}(e) : T_1 \tag{ty-fst}
\end{align*}
\begin{align*}
\Gamma &\vdash e : T_1 \ast T_2 \\
\Gamma &\vdash \text{snd}(e) : T_2 \tag{ty-snd}
\end{align*}
\begin{align*}
\Gamma, x : T_1 &\vdash e : T_2 \\
\Gamma &\vdash \lambda x. e : T_1 \to T_2 \tag{ty-lam}
\end{align*}
\begin{align*}
\Gamma &\vdash e_1 : T_1 \to T_2 \\
\Gamma &\vdash e_2 : T_1 \\
\Gamma &\vdash (e_1)e_2 : T_2 \tag{ty-app}
\end{align*}
\begin{align*}
\Gamma, f : T &\vdash e : T \\
\Gamma &\vdash \text{fix } f. e : T \tag{ty-fix}
\end{align*}

Figure 3.2: The typing rules for expressions in \mathcal{L}_0
A typing judgment in L_0 is of the form $\Gamma \vdash e : T$.

Lemma 3.0.9 (Canonical Forms) Assume that $\emptyset \vdash v : T$ is derivable.

- If $T = T_1 \ast T_2$ for some types T_1 and T_2, then v is of the form (v_1, v_2).
- If $T = T_1 \rightarrow T_2$ for some types T_1 and T_2, then v is of the form $\lambda x.v_0$
- If $T = \delta$ for some base type δ, then v is of the form $cc(\vec{v})$, where cc is a constructor associated with δ.

Proof By an inspection of the typing rules in Figure 3.3.

Lemma 3.0.10 (Substitution) Assume that $\Gamma_0, \Gamma \vdash e : T$ is derivable and $\Gamma_0 \vdash \theta : \Gamma$ holds. Then $\Gamma_0 \vdash e[\theta] : T$ is also derivable.

Proof We proceed by structural induction on the typing derivation D of $\Gamma_0, \Gamma \vdash e : T$.

- e is some variable x. Then $x \in \text{dom}(\Gamma_0, \Gamma)$. If $x \in \text{dom}(\Gamma)$, then $\Gamma_0 \vdash \theta : \Gamma$ implies that $\Gamma_0 \vdash e[\theta] : \Gamma(x)$ is derivable since $e[\theta] = \theta(x)$. If $x \notin \text{dom}(\Gamma)$, then $x \in \text{dom}(\Gamma_0)$ and thus $\Gamma_0 \vdash x : T$ is derivable.
- e is of the form (e_1, e_2). Then D must be of the following form:

$$
\frac{D_1 :: \Gamma_0, \Gamma \vdash e_1 : T_1 \quad D_2 :: \Gamma_0, \Gamma \vdash e_2 : T_2}{\Gamma_0, \Gamma \vdash e : T}
$$

where $T = T_1 \ast T_2$. By induction hypotheses on D_1 and D_2, both $\Gamma_0 \vdash e_1[\theta] : T_1$ and $\Gamma_0 \vdash e_2[\theta] : T_2$ are derivable. Hence, $\Gamma_0 \vdash (e_1[\theta], e_2[\theta]) : T$ is derivable. Note that $e[\theta] = (e_1[\theta], e_2[\theta])$, and we are done.

Lemma 3.0.11 Assume that $\Gamma \vdash e : T$ is derivable. If e is a redex and e' is a reduct of e, then $\Gamma \vdash e' : T$ is also derivable.

Proof As an exercise.

A typing judgment for assigning types to evaluation contexts in L_0 is of the form $\Gamma \vdash E : T_0/T$, meaning that E can be assigned the type T under Γ if the hole $[]$ in E is given the type T_0. The rules for deriving such a judgment are given in Figure ??.

Lemma 3.0.12 If both $\Gamma \vdash E : T_0 \rightarrow T$ and $\Gamma \vdash e : T_0$ are both derivable, then $\Gamma \vdash E[e] : T$ is also derivable.

Proof As an exercise.

Lemma 3.0.13 If $\Gamma \vdash E[e] : T$ is derivable, then there exists a type T_0 such that both $\Gamma \vdash E : T_0 \rightarrow T$ and $\Gamma \vdash e : T_0$ are both derivable.

Proof As an exercise.
\[
\begin{align*}
\vdash c : (T_1, \ldots, Ty_n) \rightarrow T & \quad \Gamma \vdash E : T_0/T \\
\Gamma \vdash v_k : T_k \text{ for } 1 \leq k < i & \quad \Gamma \vdash e_k : T_k \text{ for } i < k \leq n \\
\Gamma \vdash c(v_1, \ldots, v_{i-1}, E, e_{i+1}, \ldots, e_n) : T_0/T & \quad \text{(tc-cst)} \\
\Gamma \vdash E : T_0/\text{bool} & \quad \Gamma \vdash e_1 : T & \quad \Gamma \vdash e_2 : T \\
\Gamma \vdash \text{if}(E, e_1, e_2) : T_0/T & \quad \text{(tc-if)} \\
\Gamma \vdash E : T_0/T_1 & \quad \Gamma \vdash e : T_2 & \\
\Gamma \vdash \langle E, e \rangle : T_0/T_1 \ast T_2 & \quad \text{(tc-tup-1)} \\
\Gamma \vdash e : T_1 & \quad \Gamma \vdash E : T_0/T_2 & \\
\Gamma \vdash \langle e, E \rangle : T_0/T_1 \ast T_2 & \quad \text{(tc-tup-2)} \\
\Gamma \vdash E : T_0/T_1 \ast T_2 & \quad \text{(tc-fst)} \\
\Gamma \vdash \text{fst}(E) : T_0/T_1 & \\
\Gamma \vdash E : T_0/T_1 \ast T_2 & \quad \text{(tc-snd)} \\
\Gamma \vdash \text{snd}(E) : T_0/T_2 & \\
\Gamma \vdash e : T_1 \rightarrow T_2 & \quad \Gamma \vdash E : T_0/T_1 & \\
\Gamma \vdash (e)E : T_0/T_2 & \quad \text{(tc-app)} \\
\Gamma \vdash E : T_0/T_1 \rightarrow T_2 & \quad \Gamma \vdash e : T_1 & \\
\Gamma \vdash (E)e : T_0/T_2 & \quad \text{(tc-app)}
\end{align*}
\]

Figure 3.3: The typing rules for evaluation contexts in L_0
Theorem 3.0.14 (Subject Reduction) Assume that $\Gamma \vdash e_1 : T$ is derivable and $e_1 \rightarrow e_2$ holds. Then $\Gamma \vdash e_2 : T$ is also derivable.

Proof Assume that $e_1 = E[e]$ for some evaluation context E and redex e, and $e_2 = E[e']$ for some reduct e' of e. By Lemma 3.0.13, there exists a type T_0 such that $\Gamma \vdash E : T_0 \rightarrow T$ and $\Gamma \vdash e : T_0$ are derivable. By Lemma 3.0.11, $\Gamma \vdash e' : T_0$ is derivable, and by Lemma 3.0.12, $\Gamma \vdash e_2 : T$ is derivable since $e_2 = E[e']$.

Theorem 3.0.15 (Progress) Assume that $\emptyset \vdash e : T$ is derivable. Then either e is value or $e \rightarrow e'$ for some e'.

Proof We proceed by structural induction on the typing derivation D of $\emptyset \vdash e : T$.

- The last rule applied in D is (ty-cst). Then D is of the following form:
\[
\begin{align*}
\Gamma \vdash c : (T_1, \ldots, T_n) \rightarrow T \quad D_i :: \Gamma \vdash e_i : T_i \text{ for } 1 \leq i \leq n \\
\end{align*}
\]

where $e = c(e_1, \ldots, e_n)$. We have two subcases.

 - There exists e_i for some $1 \leq i \leq n$ that is not a value but e_j are values for all $1 \leq j < i$. By induction hypothesis on D_i, $e_i \rightarrow e'_i$. So we have $e \rightarrow c(e_1, \ldots, e_{i-1}, e'_i, e_{i+1}, \ldots, e_n)$.

 - All e_i are values for $1 \leq i \leq n$. If c is a constant constructor, then e is a value. If c is a constant function, then $e \rightarrow v$ for some v of type T that is a defined value of e.

- The last rule applied in D is (ty-if). Then D is of the following form:
\[
\begin{align*}
D_0 :: \Gamma \vdash e_0 : Bool \\
D_1 :: \Gamma \vdash e_1 : T_1 \\
D_2 :: \Gamma \vdash e_2 : T_2 \\
\end{align*}
\]

where $e = \text{if}(e_0, e_1, e_2)$. We have two subcases.

 - e_0 is not a value. Then by induction hypothesis on D_0, $e_0 \rightarrow e'_0$ holds for some e'_0. So we have $e \rightarrow \text{if}(e'_0, e_1, e_2)$.

 - e_0 is a value. By Lemma 3.0.9, e_0 is either true or false. If e_0 is true, then $e \rightarrow e_1$ holds. Otherwise, e_0 is false, and $e \rightarrow e_2$ holds.

- The last rule applied in D is (ty-fst). Then D is of the following form:
\[
D_0 :: \Gamma \vdash e_0 : T_1 \ast T_2 \\
\]

where $e = \text{fst}(e_0)$ and $T = T_1$. We have two subcases.

 - e_0 is not a value. By induction hypothesis on D_0, $e_0 \rightarrow e'_0$ for some e'_0. So we have $e \rightarrow \text{fst}(e'_0)$.

 - e_0 is a value. By Lemma 3.0.9, e_0 is of the form (v_1, v_2). So we have $e \rightarrow v_1$.

\[\square\]
• The last rule applied in \(D \) is \((ty\text{-fst})\). Then this case is symmetric to the previous one.

• The last rule applied in \(D \) is \((ty\text{-lam})\). Then \(e \) is a value.

• The last rule applied in \(D \) is \((ty\text{-app})\). Then \(D \) is of the following form:

\[
\frac{D_1 : \Gamma \vdash e_1 : T_1 \rightarrow T_2 \quad D_2 : \Gamma \vdash e_2 : T_1}{\Gamma \vdash (e_1) e_2 : T_2} \quad \text{(ty-app)}
\]

where \(e = (e_1) e_2 \) and \(T = T_2 \). We have a few subcases.

- \(e_1 \) is not a value. By induction hypothesis on \(D_1 \), \(e_1 \rightarrow e_1' \). Therefore, \(e \rightarrow (e_1') e_2 \).

- \(e_1 \) is a value but \(e_2 \) is not a value. By induction hypothesis on \(D_2 \), \(e_2 \rightarrow e_2' \). Therefore, \(e \rightarrow (e_1) e_2' \).

- \(e_1 \) and \(e_2 \) are values. By Lemma 3.0.9, \(e_1 \) is of the form \(\lambda x. e_{10} \), and thus we have \(e \rightarrow e_{10}[x := e_2] \).

• The last rule applied in \(D \) is \((ty\text{-fix})\). Then \(D \) is of the following form:

\[
\frac{\Gamma, f : T \vdash e_0 : T}{\Gamma \vdash \text{fix } f. e_0 : T} \quad \text{(ty-fix)}
\]

where \(e = \text{fix } f. e_0 \). Then \(e \rightarrow e_0[f := \text{fix } f. e_0] \).

We conclude the proof as all the cases are covered.

3.1 Normalization

Definition 3.1.1 (Reducibility Predicates) Given a simple type \(T \), a predicate \(\hat{R}_T \) on values in \(\mathcal{L}_0 \) and another predicate \(R_T \) on expressions in \(\mathcal{L}_0 \) are defined below by structural induction on \(T \).

- \(R_T(e) \) holds if \(e \downarrow \) and for every value \(v \), \(e \rightarrow^* v \) implies \(\hat{R}_T(v) \).

- \(T \) is some base type \(\delta \). Then \(\hat{R}_T(v) \) holds for every value \(v \).

- \(T = T_1 \ast T_2 \) for some types \(T_1 \) and \(T_2 \). Then \(\hat{R}_T(\langle v_1, v_2 \rangle) \) holds if both \(\hat{R}(v_1) \) and \(\hat{R}_{T_2}(v_2) \).

- \(T = T_1 \rightarrow T_2 \) for some types \(T_1 \) and \(T_2 \). Then \(\hat{R}_T(\lambda x. e_0) \) holds if for every value \(v \), \(\hat{R}_{T_1}(v) \) implies \(R_{T_2}(e_0[x := v]) \).

Lemma 3.1.2 We have the following.

1. Given \(T, e \) and \(e' \), if \(R_T(e) \) and \(e \rightarrow e' \), then \(R_T(e') \).

2. Given \(T \) and \(e \), where \(e \) is not a value, if \(e \rightarrow e' \) implies \(R_T(e') \) for every \(e' \), then \(R_T(e) \).

Proof The lemma follows from the definition of reducibility predicates immediately.

Lemma 3.1.3 We have the following.
3.1. NORMALIZATION

1. If \(R_{T_1}(e_1) \) and \(R_{T_2}(e_2) \), then \(R_{T_1 \cdot T_2}((e_1, e_2)) \).

2. If \(R_{T_1}(v) \) implies \(R_{T_2}(e_0[x := v]) \) for every value \(v \), then \(R_{T_1 \to T_2}(\lambda x. e_0) \).

Proof We prove (1) by induction on \(\mu(e_1) + \mu(e_2) \). If \(e \) is a value, then \(R_{T_1 \cdot T_2}(e) \) holds by the definition of reducibility predicates, which implies \(R_{T_1 \cdot T_2}(e) \). If \(e \) is not a value and \(e \to e' \) holds, then there are two possibilities:

- \(e' = (e_1', e_2) \) for some \(e_1' \) such that \(e_1 \to e_1' \). Clearly, we have \(\mu(e_1) < \mu(e_1') \). By Lemma 3.1.2 (1), \(R_T(e_1') \) holds. So we have \(R_{T_1 \cdot T_2}(e') \) by induction hypothesis.

- \(e' = (e_1, e_2') \) for some \(e_2' \) such that \(e_2 \to e_2' \). This case is handled in the same manner as the previous one.

By Lemma 3.1.2 (2), \(R_{T_1 \cdot T_2}(e) \) holds. Hence, the proof for (1) is concluded. Clearly, (2) follows from the definition of reducibility predicates immediately.

Lemma 3.1.4 Assume that \(R_{T_0}(e_0) \) holds.

1. If \(T_0 = \text{bool} \), then for every \(T, e_1 \) and \(e_2 \), \(R_T(e_1) \) and \(R_T(e_2) \) implies \(R_T(\text{if}(e_0, e_1, e_2)) \).

2. If \(T_0 = T_1 \cdot T_2 \), then \(R_{T_1}(\text{fst}(e_0)) \) and \(R_{T_2}(\text{snd}(e_0)) \).

3. If \(T_0 = T_1 \to T_2 \), then \(R_{T_1}(e_1) \) implies \(R_{T_2}((e_0)e_1) \) for every \(e_1 \).

Proof We prove (1) by induction on \(\mu(e_0) \). Assume that \(e = \text{if}(e_0, e_1, e_2) \to e' \). Then there are three possibilities:

- \(e' = \text{if}(e_0', e_1, e_2) \) for some \(e_0' \) such that \(e_0 \to e_0' \) holds. Clearly, we have \(\mu(e_0') < \mu(e_0) \). By Lemma 3.1.2 (1), \(R_T(e_0') \) holds. Thus, we have \(R_T(e') \) by induction hypothesis.

- \(e_0 = \text{true} \) and \(e' = e_1 \). By assumption, \(R_T(e') \) holds.

- \(e_0 = \text{false} \) and \(e' = e_2 \). By assumption, \(R_T(e') \) holds.

Thus, we have \(R_T(e) \) by Lemma 3.1.2 (2). Both (2) and (3) can be proven similarly.

Lemma 3.1.5 Assume that \(\Gamma \vdash e : T \) is derivable and \(\theta \) is a substitution such that \(\text{dom}(\theta) = \text{dom}(\Gamma) \) and \(R_{\Gamma(x)}(\theta(x)) \) for every \(x \in \text{dom}(\theta) \). Then \(R_T(e[\theta]) \) holds.

Proof The proof proceeds by structural induction on the typing derivation \(D \) of \(\Gamma \vdash e : T \).

- The last applied rule in \(D \) is (ty-var):

\[
\frac{\Gamma(x) = T}{\Gamma \vdash x : T}
\]

where \(e = x \). Then \(e[\theta] = \theta(x) \), and we have \(R_{\Gamma(x)}(e[\theta]) \).
• The last applied rule in D is (ty-lam):

$$
\frac{D_1 :: \Gamma, x : T_1 \vdash e_1 : T_2}{\Gamma \vdash \lambda x. e_1 : T_1 \to T_2}
$$

where $e = \lambda x. e_1$ and $T = T_1 \to T_2$. Clearly, $e[\theta] = \lambda x. e_1[\theta]$. Assume that v is a value satisfying $R_{T_1}(v)$ and $\theta_1 = \theta[x := v]$. By induction hypothesis on D_1, we have $R_{T_2}(e_1[\theta_1])$. Note that $e_1[\theta_1] = e_1[\theta][x := v]$. By Lemma 3.1.3 (2), we have $R_T(\lambda x. expr_1[\theta])$. Hence, $R_T(e[\theta])$ holds.

The rest of the cases can be handled similarly.

\textbf{Theorem 3.1.6} Assume that $\emptyset \vdash e : T$ is derivable. Then $e \downarrow$ holds.

\textbf{Proof} By Lemma 3.1.5, we have $R_T(e[\theta])$ for the empty substitution θ. Therefore, $e \downarrow$ holds.