Chapter 3

Simple Types

We study simple types in this chapter. We first formalize a simply-typed programming language \mathcal{L}_0 and then establish its type soundness, setting some machinery for development in the following chapters. We also prove a classic result based on the reducibility method (Tait 1967) that simply-typed λ-calculus is strongly normalizing, namely, there is no infinite β-reduction sequence starting from any simply-typed λ-term. This proof method is to be employed later for building a theorem-proving system in which proofs are constructed as total functions.

3.1 A Simply-Typed Programming Language

We present in Figure 3 the syntax for a simply-typed language \mathcal{L}_0. We use δ for base types, which include int for integers and bool for booleans. We use c for a constant, which is either a constant constructor cc or a constant function cf. For instance, we have true and false for boolean constants, and $0, -1, 1, -2, 2, \ldots$ for integer constants, and functions such as $+$ and $-$ on integers. We can simply write c for the expression $c()$ if the constant c is of arity 0. We also have lam-variables x and fix-variables f, and may use xf for either a lam-variable or a fix-variable. Note that each lam-variable following lam is a bound variable and so is each fix-variable following fix. We use v for values, which are a special form of expressions. Note that a lam-variable is a value but a fix-variable is not. We use \vec{e} for a (possibly empty) sequence of expressions, and this notation may also be applied to variables, values, etc.

types	$T ::= \delta	T_1 * T_2	T_1 \rightarrow T_2$						
expressions	$e ::= x	c(\vec{e})	\text{if}(e_0, e_1, e_2)	\langle e_1, e_2 \rangle	\text{fst}(e)	\text{snd}(e)	\text{lam}x.e	\text{app}(e_1, e_2)	\text{fix}f.e$
values	$v ::= x	cc(\vec{v})	\langle v_1, v_2 \rangle	\text{lam}x.e$					
typing contexts	$\Gamma ::= \emptyset	\Gamma, x : T$							
evaluation contexts	$E ::= []	c(\vec{v}, E, \vec{e})	\text{if}(E, e_1, e_2)	\langle E, e \rangle	\langle v, E \rangle	\text{fst}(E)	\text{snd}(E)	\text{app}(E, e)	\text{app}(v, E)$

Figure 3.1: The syntax for \mathcal{L}_0
Various functions on \(\lambda \)-terms can be readily defined on expressions in \(\mathcal{L}_0 \) as well. For instance, it should be obvious how \(\text{FV}(\cdot) \) can be defined in \(\mathcal{L}_0 \). In particular, we have \(\text{FV}(\text{lam } x.e) = \text{FV}(e) \setminus \{x\} \) \(\text{FV}(\text{fix } f.e) = \text{FV}(e) \setminus \{f\} \). Also, it should be clear how \(\alpha \)-renaming can be performed on expressions in \(\mathcal{L}_0 \).

We are to present the dynamic semantics of \(\mathcal{L}_0 \) based on redexes and evaluation contexts. A redex \(\mathcal{L}_0 \) is a special form of an expression, which can be reduced to another expression referred to as a reduct of the redex. In \(\mathcal{L}_0 \), each redex has at least one reduct.

Definition 3.1.1 (Redexes) The redexes in \(\mathcal{L}_0 \) and their reducts are defined below.

- \(\text{cf}(\vec{v}) \) is a redex, and each defined value of \(\text{cf}(\vec{v}) \) is a reduct of \(\text{cf}(\vec{v}) \).
- \(\text{if}(\text{true}, e_1, e_2) \) is a redex, and its reduct is \(e_1 \).
- \(\text{if}(\text{false}, e_1, e_2) \) is a redex, and its reduct is \(e_2 \).
- \(\text{fst}(\langle v_1, v_2 \rangle) \) is a redex, and its reduct is \(v_1 \).
- \(\text{snd}(\langle v_1, v_2 \rangle) \) is a redex, and its reduct is \(v_2 \).
- \(\text{app}(\text{lam } x.e, v) \) is a redex, and its reduct is \(e[x := v] \).
- \(\text{fix } f.e \) is a redex, and its reduct is \(e[f := \text{fix } f.e] \).

For instance, if we assume that \(+ \) represents the usual addition function on integers, then \(1 + 2 \) is a redex and \(3 \) is the only reduct of \(1 + 2 \). More interestingly, we may also assume the existence of a nullary constant function \(\text{random} \) such that \(\text{random}() \) is a redex and every natural number is a reduct of \(\text{random}() \).

Definition 3.1.2 (Evaluation) We use \(\rightarrow \) for the binary evaluation relation on expressions. Given \(e_1 \) and \(e_2, e_1 \rightarrow e_2 \) holds if \(e_1 = E[e] \) and \(e_2 = E[e'] \) for some evaluation context \(E \), redex \(e \) and a reduct \(e' \) of \(e \). We use \(\rightarrow^* \) for the reflexive and transitive closure of \(\rightarrow \).

There are clearly (closed) non-value expressions in \(\mathcal{L}_0 \) that can not be further evaluated, and we refer to as such expressions as being stuck. For instance, expressions like \(\text{fst}(0) \) and \(\text{app}(1, \text{true}) \) are stuck.

Given a program \(e \), that is, a closed expression, we expect to avoid the scenario where evaluating the program may reach a stuck expression. To address this issue, we set out to enforce a type discipline in \(\mathcal{L}_0 \) so that for each well-typed program, that is, program constructed following the type discipline, evaluating the program can never lead to a stuck expression.

A typing judgment in \(\mathcal{L}_0 \) is of the form \(\Gamma \vdash e : T \), meaning that \(e \) can be assigned the type \(T \) under the typing context \(\Gamma \). The rules for deriving such judgments are given in Figure 3.2. In \(\mathcal{L}_0 \), each constant constructor \(cc \) is given a type of the form \((T_1, \ldots, T_n) \rightarrow \delta \), and we say that \(cc \) is associated with \(\delta \). For instance, \(\text{true} \) and \(\text{false} \) are given the type \(() \rightarrow \text{bool} \), and each integer constant is given the type \(() \rightarrow \text{int} \).

Lemma 3.1.3 (Canonical Forms) Assume that \(\emptyset \vdash v : T \) is derivable.
3.1. A SIMPLY-TYPED PROGRAMMING LANGUAGE

\[\Gamma(x) = T \]
\[\Gamma \vdash x : T \] (ty-var)

\[\vdash c : (T_1, \ldots, T_n) \rightarrow T \quad \Gamma \vdash e_i : T_i \text{ for } 1 \leq i \leq n \]
\[\Gamma \vdash c(e_1, \ldots, e_n) : T \] (ty-cst)

\[\Gamma \vdash e_0 : \text{bool} \quad \Gamma \vdash e_1 : T \quad \Gamma \vdash e_2 : T \]
\[\Gamma \vdash \text{if}(e_0, e_1, e_2) : T \] (ty-if)

\[\Gamma \vdash e_1 : T_1 \quad \Gamma \vdash e_2 : T_2 \]
\[\Gamma \vdash (e_1, e_2) : T_1 \times T_2 \] (ty-tup)

\[\Gamma \vdash e : T_1 \times T_2 \]
\[\Gamma \vdash \text{fst}(e) : T_1 \] (ty-fst)
\[\Gamma \vdash e : T_1 \times T_2 \]
\[\Gamma \vdash \text{snd}(e) : T_2 \] (ty-snd)

\[\Gamma, x : T_1 \vdash e : T_2 \]
\[\Gamma \vdash \text{lam } x.e : T_1 \rightarrow T_2 \] (ty-lam)

\[\Gamma \vdash e_1 : T_1 \rightarrow T_2 \quad \Gamma \vdash e_2 : T_1 \]
\[\Gamma \vdash \text{app}(e_1, e_2) : T_2 \] (ty-app)

\[\Gamma, f : T \vdash e : T \]
\[\Gamma \vdash \text{fix } f.e : T \] (ty-fix)

Figure 3.2: The typing rules for expressions in \(L_0 \)

- If \(T = \delta \) for some base type \(\delta \), then \(v \) is of the form \(\text{cc}(\vec{v}) \), where \(\text{cc} \) is a constructor associated with \(\delta \).

- If \(T = T_1 \times T_2 \) for some types \(T_1 \) and \(T_2 \), then \(v \) is of the form \(\langle v_1, v_2 \rangle \).

- If \(T = T_1 \rightarrow T_2 \) for some types \(T_1 \) and \(T_2 \), then \(v \) is of the form \(\text{lam } x.e \)

Proof By an inspection of the typing rules in Figure 3.2.

We use \(\theta \) for substitutions in \(L_0 \), which are finite mappings from variables to expressions. Given a substitution \(\theta \) and an expression, \(e[\theta] \) is the result from applying \(\theta \) to \(e \), which can be formally defined as is done in Chapter 2. In particular, when applying \(\theta \) to \(\text{lam } x.e \), we may need to first \(\alpha \)-rename \(\text{lam } x.e \) to some \(\text{lam } x'.e' \) so that \(x' \) does not occur in \(\text{vars}(\theta) \) and then obtain \(\text{lam } x'.e'[\theta] \). Similarly, when applying \(\theta \) to \(\text{fix } f.e \), we may need to \(\alpha \)-rename the bound variable \(f \).

Lemma 3.1.4 (Substitution) Assume that \(\Gamma_0, \Gamma \vdash e : T \) is derivable and \(\Gamma_0 \vdash \theta : \Gamma \) holds. Then \(\Gamma_0 \vdash e[\theta] : T \) is also derivable.

Proof We proceed by induction on the height of the typing derivation \(D \) of \(\Gamma_0, \Gamma \vdash e : T \).

- \(e \) is some variable \(x \). Then \(x \in \text{dom}(\Gamma_0, \Gamma) \). If \(x \in \text{dom}(\Gamma) \), then \(\Gamma_0 \vdash \theta : \Gamma \) implies that \(\Gamma_0 \vdash e[\theta] : \Gamma(x) \) is derivable since \(e[\theta] = \theta(x) \). If \(x \notin \text{dom}(\Gamma) \), then \(x \in \text{dom}(\Gamma_0) \) and thus \(\Gamma_0 \vdash x : T \) is derivable.
• \(e \) is of the form \((e_1, e_2) \). Then \(D \) must be of the following form:

\[
D_1 ::: \Gamma_0, \Gamma \vdash e_1 : T_1 \quad D_2 ::: \Gamma_0, \Gamma \vdash e_2 : T_2
\]

\[
\Gamma_0, \Gamma \vdash e : T
\]

where \(T = T_1 \ast T_2 \). By induction hypotheses on \(D_1 \) and \(D_2 \), both \(\Gamma_0 \vdash e_1[\theta] : T_1 \) and \(\Gamma_0 \vdash e_2[\theta] : T_2 \) are derivable. Hence, \(\Gamma_0 \vdash (e_1[\theta], e_2[\theta]) : T \) is derivable. Note that \(e[\theta] = (e_1[\theta], e_2[\theta]) \), and we are done.

• \(e \) is of the form \(\text{lam} \ x.e_1 \). Then \(D \) must be of the following form:

\[
D_1 ::: \Gamma_0, \Gamma, x : T_1 \vdash e_1 : T_2
\]

\[
\Gamma_0, \Gamma \vdash \text{lam} \ x.e_1 : T
\]

We may assume that \(x \) is distinct from each variable in \(\Gamma \). Clearly, we can construct a derivation \(D' \) of \(\Gamma_0, x : T_1, \Gamma \vdash e_1 : T_2 \) that is of the same height as \(D_1 \). By induction hypothesis on \(D' \), we can derive \(\Gamma_0, x : T_1 \vdash e_1[\theta] : T_2 \), which leads to a derivation of \(\Gamma_0 \vdash \text{lam} \ x.e_1[\theta] : T_2 \). Note that \(e[\theta] = \text{lam} \ x.e_1[\theta] \), and we are done.

The rest of the cases are omitted, which can all be handled similarly.

Lemma 3.1.5 Assume that \(\Gamma \vdash e : T \) is derivable. If \(e \) is a redex and \(e' \) is a reduct of \(e \), then \(\Gamma \vdash e' : T \) is also derivable.

Proof As an exercise.

A typing judgment for assigning types to evaluation contexts in \(L_0 \) is of the form \(\Gamma \vdash E : T_0/T \), meaning that \(E \) can be assigned the type \(T \) under \(\Gamma \) if the hole \([-] \) in \(E \) is given the type \(T_0 \). The rules for deriving such judgments are given in Figure 3.3. As these rules can be easily constructed by studying the typing rules in Figure 3.2, we may omit presenting such rules in the future.

Lemma 3.1.6 If both \(\Gamma \vdash E : T_0/T \) and \(\Gamma \vdash e : T_0 \) are derivable, then \(\Gamma \vdash E[e] : T \) is also derivable.

Proof As an exercise.

Lemma 3.1.7 If \(\Gamma \vdash E[e] : T \) is derivable, then there exists a type \(T_0 \) such that both \(\Gamma \vdash E : T_0/T \) and \(\Gamma \vdash e : T_0 \) are both derivable.

Proof As an exercise.

Theorem 3.1.8 (Subject Reduction) Assume that \(\Gamma \vdash e_1 : T \) is derivable and \(e_1 \rightarrow e_2 \) holds. Then \(\Gamma \vdash e_2 : T \) is also derivable.

Proof Assume that \(e_1 = E[e] \) for some evaluation context \(E \) and redex \(e \), and \(e_2 = E[e'] \) for some reduct \(e' \) of \(e \). By Lemma 3.1.7, there exists a type \(T_0 \) such that \(\Gamma \vdash E : T_0 \rightarrow T \) and \(\Gamma \vdash e : T_0 \) are derivable. By Lemma 3.1.5, \(\Gamma \vdash e' : T_0 \) is derivable, and by Lemma 3.1.6, \(\Gamma \vdash e_2 : T \) is derivable since \(e_2 = E[e'] \).

Lemma 3.1.9 Assume that \(\emptyset \vdash e : T \) is derivable. If \(e \) is not a value, then \(e = E[e'] \) for some evaluation context \(E \) and redex \(e' \).
3.1. A SIMPLY-TYPED PROGRAMMING LANGUAGE

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\Gamma \vdash \emptyset : T_0/T_0]</td>
<td>(tc-id)</td>
</tr>
<tr>
<td>[\vdash c : (T_1, \ldots, T_n) \rightarrow T \quad \Gamma \vdash E : T_0/T_i]</td>
<td>(tc-cst)</td>
</tr>
<tr>
<td>[\Gamma \vdash v_k : T_k \text{ for } 1 \leq k < i \quad \Gamma \vdash e_k : T_k \text{ for } i < k \leq n]</td>
<td></td>
</tr>
<tr>
<td>[\Gamma \vdash c(v_1, \ldots, v_{i-1}, E, e_{i+1}, \ldots, e_n) : T_0/T]</td>
<td></td>
</tr>
<tr>
<td>[\Gamma \vdash E : T_0/\text{bool} \quad \Gamma \vdash e_1 : T \quad \Gamma \vdash e_2 : T]</td>
<td>(tc-if)</td>
</tr>
<tr>
<td>[\Gamma \vdash \text{if}(E, e_1, e_2) : T_0/T]</td>
<td>(tc-tup-1)</td>
</tr>
<tr>
<td>[\Gamma \vdash E : T_0/T_1 \quad \Gamma \vdash e : T_2]</td>
<td></td>
</tr>
<tr>
<td>[\Gamma \vdash \langle E, e \rangle : T_0/T_1 \ast T_2]</td>
<td>(tc-tup-2)</td>
</tr>
<tr>
<td>[\Gamma \vdash E : T_0/T_1 \ast T_2]</td>
<td></td>
</tr>
<tr>
<td>[\Gamma \vdash \text{fst}(E) : T_0/T_1]</td>
<td>(tc-fst)</td>
</tr>
<tr>
<td>[\Gamma \vdash E : T_0/T_1 \ast T_2]</td>
<td>(tc-snd)</td>
</tr>
<tr>
<td>[\Gamma \vdash E : T_0/T_1 \ast T_2]</td>
<td>(tc-app)</td>
</tr>
<tr>
<td>[\Gamma \vdash e : T_1 \rightarrow T_2 \quad \Gamma \vdash E : T_0/T_1]</td>
<td></td>
</tr>
<tr>
<td>[\Gamma \vdash \text{app}(e, E) : T_0/T_2]</td>
<td>(tc-app)</td>
</tr>
<tr>
<td>[\Gamma \vdash E : T_0/T_1 \rightarrow T_2 \quad \Gamma \vdash e : T_1]</td>
<td></td>
</tr>
<tr>
<td>[\Gamma \vdash \text{app}(E, e) : T_0/T_2]</td>
<td>(tc-app)</td>
</tr>
</tbody>
</table>

Figure 3.3: The typing rules for evaluation contexts in \mathcal{L}_0
\textbf{Proof} We proceed by structural induction on the typing derivation D of $\emptyset \vdash e : T$.

- The last rule applied in D is (\textsc{ty-cst}). Then D is of the following form:

$$
\frac{
\vdash c : (T_1, \ldots, T_n) \rightarrow T \\
D_i :: \emptyset \vdash e_i : T_i \text{ for } 1 \leq i \leq n
}{\emptyset \vdash c(e_1, \ldots, e_n) : T} \quad \text{(ty-cst)}
$$

where $e = c(e_1, \ldots, e_n)$. We have two subcases.

 - There exists e_i for some $1 \leq i \leq n$ that is not a value but e_j are values for all $1 \leq j < i$. By induction hypothesis on D_i, $e_i = E_1[e']$ for some evaluation context E_1 and redex e'. Let $E = c(e_1, \ldots, e_{i-1}, E_1, e_{i+1}, \ldots, e_n)$, and we are done.

 - All e_i are values for $1 \leq i \leq n$. Since e is not a value, c must be a constant function and thus e is a redex. Let E be $[]$ and e' be e, and we are done.

- The last rule applied in D is (\textsc{ty-if}). Then D is of the following form:

$$
\frac{
D_0 :: \emptyset \vdash e_0 : \text{bool} \\
D_1 :: \emptyset \vdash e_1 : T_1 \\
D_2 :: \emptyset \vdash e_2 : T_2
}{\emptyset \vdash \text{if}(e_0, e_1, e_2) : T} \quad \text{(ty-if)}
$$

where $e = \text{if}(e_0, e_1, e_2)$. We have two subcases.

 - e_0 is not a value. Then by induction hypothesis on D_0, $e_0 = E_1[e']$ for some evaluation context E_1 and redex e'. Let $E = \text{if}(E_1, e_1, e_2)$, and we are done.

 - e_0 is a value. By Lemma 3.1.3, e_0 is either true or false. Hence, e is a redex. Let E be $[]$ and e', and we are done.

- The last rule applied in D is (\textsc{ty-fst}). Then D is of the following form:

$$
\frac{
D_0 :: \emptyset \vdash e_0 : T_1 * T_2
}{\emptyset \vdash \text{fst}(e_0) : T_1} \quad \text{(ty-fst)}
$$

where $e = \text{fst}(e_0)$ and $T = T_1$. We have two subcases.

 - e_0 is not a value. By induction hypothesis on D_0, $e_0 = E_1[e']$ for some evaluation context E_1 and redex e'. Let $E = \text{fst}(E_1)$, and we are done.

 - e_0 is a value. By Lemma 3.1.3, e_0 is of the form $\langle v_1, v_2 \rangle$. So e is a redex. Let E be $[]$ and e', and we are done.

- The last rule applied in D is (\textsc{ty-snd}). Then this case is symmetric to the previous one.

- The last rule applied in D is (\textsc{ty-app}). Then D is of the following form:

$$
\frac{
D_1 :: \emptyset \vdash e_1 : T_1 \rightarrow T_2 \\
D_2 :: \emptyset \vdash e_2 : T_1
}{\emptyset \vdash \text{app}(e_1, e_2) : T_2} \quad \text{(ty-app)}
$$

where $e = \text{app}(e_1, e_2)$ and $T = T_2$. We have a few subcases.
3.2. P A T T E R N M A T C H I N G

- e_1 is not a value. By induction hypothesis on D_1, $e_1 = E_1[e^r]$. Let $E = \text{app}(E_1, e_2)$ and we are done.

- e_1 is a value but e_2 is not a value. By induction hypothesis on D_2, $e_2 = E_1[e^r]$. Let $E = \text{app}(e_1, E_1)$ and we are done.

- e_1 and e_2 are values. By Lemma 3.1.3, e_1 is of the form $\text{lam} \ x.e_{10}$. Hence, e is a redex. Let $E = []$ and e^r, and we are done.

- The last rule applied in D is (ty-fix). Then D is of the following form:

\[
\frac{\emptyset, f : T \vdash e_0 : T}{\emptyset \vdash \text{fix} \ f. e_0 : T} \quad \text{(ty-fix)}
\]

where $e = \text{fix} \ f. e_0$. Then e is a redex. Let $E = []$ and e^r, and we are done.

We conclude the proof as all the possible cases are covered.

\[\square\]

Theorem 3.1.10 (Progress) Assume that $\emptyset \vdash e : T$ is derivable. Then either e is value or $e \rightarrow e'$ for some e'.

Proof Assume that e is not a value. By Lemma 3.1.9, $e = E[e^r]$ for some evaluation context E and redex e^r. Hence, $e \rightarrow E[e^c]$ holds for each e^c that is a reduct of e^r.

By Theorem 3.1.8 and Theorem 3.1.10, it is clear that for every well-typed (closed) expression e in L_0, an evaluation starting from e either terminates with a value or continues forever. In particular, e can never be evaluated to a non-value expression that cannot be further evaluated. This is phrased by Robin Milner in the slogan: a well-typed program can never go wrong.

3.2 Pattern Matching

3.3 Simply-Typed Lambda-Calculus

The types in simply-typed lambda-calculus are given as follows, where we use δ for some base types.

\[
\text{types} \quad T ::= \delta \mid T_1 \rightarrow T_2
\]

These types are often referred to as simply types. For each type T, we assume the existence of a denumerable set of (typed) variables x_T^1, x_T^2, \ldots and use x_T^1, y_T, z_T^1 to ranges over this set. We may write x to mean x_T for some T.

Definition 3.3.1 The simply-typed λ-terms are defined as follows.

- A typed variable x_T^1 is a term of type T.
- $\lambda x_{T_1}. t$ is a term of type $T_1 \rightarrow T_2$ if t is a term of type T_2.
- $t_1(t_2)$ is a term of type T_2 if t_1 and t_2 are terms of types $T_1 \rightarrow T_2$ and T_1, respectively.
We say that a term is neutral if it is a variable or an application. We may write t^T to indicate that t is a term of type T.

Definition 3.3.2 (Reducibility) Given a term t of type T, t is reducible of type T if $\mu(t) < \infty$ and

- $T = \delta$ for some δ, or
- $T = T_1 \rightarrow T_2$ and for every term t_1 that is reducible of type T_1, $t_0[x := t_1]$ is reducible of type T_2 whenever $t \rightarrow^{\ast}_{\beta} \lambda x. t_0$ holds.

Given a term of type T, we say that t is reducible if t is reducible of type T.

Clearly, the notion of being reducible of type T is well-defined based on structural induction on T. This notion is often referred to as reducibility of type T. In Definition 3.3.2, the notion of reducibility is presented in a style we refer to as *introduction-major*. This is in contrast to the definition given in (Girard, Lafont, and Taylor 1989), which is of a style we refer to as *elimination-major*.

Lemma 3.3.3 (Forward Property) Assume that t is reducible and $t \rightarrow^{\ast}_{\beta} t'$. Then t' is also reducible.

Proof The lemma follows from the definition of reducibility immediately.

Lemma 3.3.4 (Backward Property) Assume that t is neutral. If t' is reducible whenever $t \rightarrow^{\ast}_{\beta} t'$ holds, then t is also reducible.

Proof Assume that t is of type T. Clearly, $\mu(t)$ is finite as $\mu(t') < \infty$ whenever $t \rightarrow^{\ast}_{\beta} t'$ holds. If T is some δ, we are done. Otherwise, assume $T = T_1 \rightarrow T_2$. If $t \rightarrow^{\ast}_{\beta} \lambda x. t_0$, then there must be t' such that $t \rightarrow^{\ast}_{\beta} t'$ and $t' \rightarrow^{\ast}_{\beta} \lambda x. t_0$. Since t''s is reducible, $t_0[x := t_1]$ is reducible for every t_1 that is reducible of type T_1. By definition, t is reducible of type T.

Corollary 3.3.5 Every variable x^T is reducible of type T.

Proof By Lemma 3.3.4 immediately.

Lemma 3.3.6 Let $t = \lambda x^{T_1}. t_0$. If $t_0[x := t_1]$ is reducible for every t_1 that is reducible of type T_1, then t is reducible.

Proof Assume $t \rightarrow^{\ast}_{\beta} \lambda x. t_0$. Then we have $t_0 \rightarrow^{\ast}_{\beta} t_0'$, which implies $t_0[x := t_1] \rightarrow^{\ast}_{\beta} t_0'[x := t_1]$. By Lemma 3.3.3, $t_0'[x := t_1]$ is reducible. By definition, t is reducible.

Lemma 3.3.7 Assume that t_1 and t_2 are reducible of types $T_1 \rightarrow T_2$ and T_2, respectively. Then $t_1(t_2)$ is reducible of type T_2.

Proof By definition, $\mu(t_i) < \infty$ for $i = 1, 2$. Let $t = t_1(t_2)$, and we proceed by induction on $\mu(t_1) + \mu(t_2)$. Assume $t \rightarrow^{\ast}_{\beta} t'$, and we have the following cases.

- $t_1 \rightarrow^{\ast}_{\beta} t_1'$ and $t' = t_1'(t_2)$. By Lemma 3.3.3, t_1' is reducible. Note that $\mu(t_1') + \mu(t_2) < \mu(t_1) + \mu(t_2)$. By induction hypothesis, t' is reducible.
• $t_2 \rightarrow_\beta t'_2$ and $t' = t_1(t'_2)$. This case is similar to the previous one.

• $t_1 = \lambda x.t_{10}$ and $t' = t_{10}[x := t_2]$. By definition, t_1 and t_2 being reducible implies that t' is reducible.

Therefore, t' is reducible whenever $t \rightarrow_\beta t'$ holds. By Lemma 3.3.4, t is reducible. ■

Theorem 3.3.8 Every simply-typed \(\lambda\)-term t is strongly normalizing, that is, $\mu(t) < \infty$.

Proof We say that a substitution θ is reducible if it maps each variable x^T in its domain to a term reducible of type T. Assume that t is of type T_0. We prove that $t[\theta]$ is reducible of type T_0 whenever θ is reducible. The proof proceeds by structural induction on t.

• Assume $t = x$. If $x \in \text{dom}(\theta)$, then $t[\theta] = \theta(x)$, which is reducible since θ is reducible. If $x \notin \text{dom}(\theta)$, then $t[\theta] = x$, which is reducible by Corollary 3.3.5.

• Assume $t = \lambda x^{T_1}.t_1$, where t_1 is a term of type T_2. We can choose $x^{T_1} \notin \text{vars}(\theta)$ so that $t[\theta] = \lambda x^{T_1}.t_1[\theta]$ holds. Let t_2 be a reducible term of type T_1. Note that $t_1[\theta][x^{T_1} := t_2] = t_1[\theta']$, where $\theta' = \theta[x := t_2]$ is reducible. By induction hypothesis on t_1, $t_1[\theta][x^{T_1} := t_2]$ is reducible. By Lemma 3.3.6, $t[\theta]$ is reducible.

• Assume $t = t_1(t_2)$. By induction hypothesis, $t_i[\theta]$ is reducible for $i = 1, 2$. By Lemma 3.3.7, $t_1[\theta](t_2[\theta])$ is reducible. Note $t[\theta] = t_1[\theta](t_2[\theta])$, and we are done.

As all the cases are covered, we conclude that $t[\theta]$ is reducible whenever θ is reducible. Let $\theta = []$, and we know that t is reducible. By the definition of reducibility, t is strongly normalizing. ■

3.4 Exercises

Exercise 1 Extend the simply-typed \(\lambda\)-calculus with product types. Prove SN.

Exercise 2 Extend the simply-typed \(\lambda\)-calculus with sum types. Prove SN.