
CPS Transform for Dependent ML

Hongwei Xi, University of Cincinnati, Cincinnati, OH 45221, USA

Carsten Schürmann, Yale University, New Haven, CT 06520, USA

Abstract

Dependent ML is a functional programming language that extends ML with a restricted form of

dependent types. In this paper, we study a call-by-value continuation-passing style (CPS) transform

for MLΠ,Σ
0 , a core of DML that excludes effects. In particular, we demonstrate how the type deriva-

tion of an expression in MLΠ,Σ
0 can be transformed into the type derivation of the CPS transform of

the expression, lifting CPS transform from the level of expressions to the level of type derivations.

This work serves as the first step in our attempt to build a type-preserving compiler for DML by
compiling the type derivation of a program instead of the program itself.

Keywords: CPS transform, Dependent ML, Compilation certification

1 Introduction

The question of establishing the correctness of a compiler has been raised since the
beginning moments of compiler studies. Let C be a compiler that translates a source
program e into a target program C(e). Then the task to establish the correctness of
C amounts to proving that the semantics of e is the same as that of C(e). In other
words, a compiler is correct if it is semantics-preserving. However, it is often of great
difficulty to prove that a compiler is semantics-preserving given that (a) the semantics
of a realistic programming language is often difficult to formalize, (b) the execution
models of source and target languages are often far different, and (c) a (minor) change
to the complier (e.g., implementation of a new optimization strategy), which is likely
to occur during the development cycle of a compiler, may require a renewed effort
to reconstruct the correctness proof of the compiler. Therefore, it currently seems
impractical to establish compiler correctness in a realistic setting.

We now take a look from a different angle at the question of establishing the cor-
rectness of a compiler. Suppose that the source program e possesses a property P ,
i.e., P (e) holds. For instance, P (e) could mean that e is terminating. Then we may
know that C(e) should also possess the property P if C is a correct compiler. In other
words, C must be P -preserving if C is semantics-preserving. If P is such a property
for which there is a practical means to check whether both P (e) and P (C(e)) hold,
then we can raise our confidence in the correctness of C through the following prac-
tice. Given a program e such that P (e) is verified; after compiling e into C(e), we
verify whether P (C(e)) holds; if the verification succeeds, we gain confidence in the
correctness of C(e), i.e., C(e) being semantically equivalent to e; otherwise, we know
that C(e) is incorrect and some errors in the compiler C need to be fixed.

In a typed programming language, a well-typed program possesses some properties
guaranteed by the type system. Assume that the source language of a compiler C is
typed. Then it seems natural to expect that a type system for the target language
of the compiler can be designed to guarantee similar properties and C can then be

1L. J. of the IGPL, Vol. 0 No. 0, pp. 1–10 0000 c© Oxford University Press

2 CPS Transform for Dependent ML

constructed to always compile a well-typed source program e into a well-typed target
program C(e). We call such a C a type-preserving compiler and we are interested in
constructing a type-preserving compiler for Dependent ML (DML).

DML is a functional programming language that enriches ML with a restricted form
of dependent types [19, 17]. This enrichment allows for specification and inference
of significantly more precise type information, facilitating program error detection at
compile-time. The reader can find various programming examples in DML on-line
[18]. For instance, the following is a program in DML.

fun f (x) = if x = 0 then 1 else f (x-1)
withtype {a:nat} int(a) -> [b:int] int(b)

The novelty here is the withtype clause, which assigns the dependent type Πa :
nat.int(a) → Σb : int.int(b) to the function f . We have refined the usual integer
type int into infinitely many singleton types int(a) such that only expressions with
integer value a can be of type int(a), where a ranges over integers. The type of f
indicates that this is a function that takes a natural number(or literally, a value of
type int(a) for some natural number a) and returns an integer. After elaboration,
f is transformed into the following explicitly typed expression ef in Church typing
style.

fix f : Πa : nat.int(a)→ int.
λi a : nat.λe x : int(a).if(= [a][0](x, 0), 1, f [a− 1](−[a][1](x, 1)))

Note that we have assigned = and − the following types, respectively.

Πa : int.Πb : int.int(a) ∗ int(b)→ int(eq(a, b))

and
Πa : int.Πb : int.int(a) ∗ int(b)→ int(a− b)

We use eq(a, b) for the function that returns 1 and 0 depending on whether a equals
b. In order to type-check ef , we need to derive a : nat, eq(a, 0) = 0 ` a− 1 : nat, that
is, to show that a − 1 is a natural number under the assumption that a is a natural
number and a is not 0. This involves proving the following,

∀a : int.a ≥ 0 ⊃ (a 6= 0 ⊃ a− 1 ≥ 0)

which we call a constraint. In general, type-checking in DML often involves a great
deal of constraint constraint solving.

Suppose that we are to construct a type-preserving compiler C for DML. Given
e : τ , that is, program e is of type τ , in DML, we need to translate e and τ into C(e)
and C(τ), respectively, such that C(e) : C(τ) can be derived in the (dependent) type
system of the target language of C. In our experiment, we observe that type-checking
C(e) : C(τ) then involves solving constraints that are essentially the same as those
solved during type-checking e : τ . As constraint solving can be time-consuming, a
natural question is whether we can avoid solving the same constraints repeatedly
by preserving the proofs of these constraints. This question prompts us to study the
possibility of compiling the type derivation of a program instead of the program itself.

Given a type derivation D of e : τ in DML, we intend to represent D as pDq in the
logical framework LF [4] and then build a compiler that translates pDq into C(pDq),
which represents a type derivation of C(e) : C(τ) in the target language of C. This
practice offers two immediate advantages.

CPS Transform for Dependent ML 3

• It is no longer necessary to implement a type-checker for the target language as
the type-checker for LF suffices. This is particularly attractive when a compiler
consists of a number of phases and we want to verify that each phase is type-
preserving.
• The proofs of constraints encountered during type-checking e : τ are encoded

into pDq and are then carried into C(pDq), obviating the need to solve the same
constraints repeatedly.

Many compilers such as TIL [15] (and its successor TILT) and FLINT [14] for func-
tion programming languages start with a continuation-passing style (CPS) transform.
In this paper, we demonstrate how CPS transform for MLΠ,Σ

0 , a core of DML that
excludes effects, can be lifted from the level of expressions to the level of type deriva-
tions, presenting a concrete example of compiling type derivations. This serves as the
first step in our attempt to build a type-preserving compiler for DML.

The main contribution of the paper lies in our forming the notion of compiling type
derivations, which we believe suggests a promising novel approach to building type-
preserving compilers. The technical contribution of the paper consists the formation
of the CPS transform for MLΠ,Σ

0 and a formalization of the transform in Twelf [13].
The rest of paper is organized as follows. We form a language MLΠ,Σ

0 in Section 2,
which essentially extends the simply typed call-by-value λ-calculus with a form of
dependent types, developed in DML. We then present the CPS transform for MLΠ,Σ

0

in Section 3 and lift to the level of type derivations. In Section 4, we briefly explain
how the CPS transform can be formalized in Twelf. We then mention some related
work and conclude. The reader can find omitted details on-line [20].

2 MLΠ,Σ
0

We start with a language MLΠ,Σ
0 , which essentially extends the simply typed call-by-

value λ-calculus with a form of dependent types and (general) recursion. The syntax
for MLΠ,Σ

0 is given in Figure 1.

2.1 Syntax

We fix an integer domain and restrict type index expressions, namely, the expressions
that can be used to index a type, to this domain. This is a sorted domain and subset
sorts can be formed. For instance, we use nat for the subset sort {a : int | a ≥ 0}. We
use δ(i) for a base type indexed with an index expression i, which may be empty. For
instance, bool(0) and bool(1) are types for boolean values false and true, respectively;
for each integer i, int(i) is the singleton type for integer expressions with value equal
to i.

We use Πa : γ.τ and Σa : γ.τ for the usual dependent function and sum types,
respectively. We also introduce λ-variables and ρ-variables in MLΠ,Σ

0 and use x and
f for them, respectively. A lambda-abstraction can only be formed over a λ-variable
while recursion (via fixed point operator) must be formed over a ρ-variable. A λ-
variable is a value but a ρ-variable is not.

We use λi for abstracting over index variables, λe for abstracting over variables,
and fix for forming recursive functions. Note that the body after either λe or fix
must be a value. We use 〈i | e〉 for packing an index i with an expression e to form
an expression of a dependent sum type, and open for unpacking an expression of a

4 CPS Transform for Dependent ML

index constants cI ::= · · · | −2 | −1 | 0 | 1 | 2 | · · ·
index expressions i ::= a | cI | i1 + i2 | i1 − i2 | i1 ∗ i2 | i1/i2 |

lt(i1, i2) | gt(i1, i2) | lte(i1, i2) | gte(i1, i2) |
eq(i1, i2) | neq(i1, i2)

index propositions P ::= i1 < i2 | i1 ≤ i2 | i1 > i2 | i1 ≥ i2 |
i1 = i2 | i1 6= i2 | P1 ∧ P2 | P1 ∨ P2

index sorts γ ::= int | {a : γ | P}
index var. contexts φ ::= · | φ, a : γ | φ, P
index constraints Φ ::= P | P ⊃ Φ | ∀a : γ.Φ
types τ ::= δ(i) | τ1 → τ2 | Πa : γ.τ | Σa : γ.τ
contexts Γ ::= · | Γ, x : τ | Γ, f : τ
constants c ::= true | false | 0 | 1 | −1 | 2 | −2 | · · ·
expressions e ::= c | x | f | if(e, e1, e2) | λi a : γ.v | λe x : τ.e | e1(e2) |

fix f : τ.v | e[i] | 〈i | e〉 | open e1 as 〈a | x〉 in e2

values v ::= c | x | λi a : γ.v | λe x : τ.e | 〈i | v〉

Fig. 1. The syntax for MLΠ,Σ
0

dependent sum type.

2.2 Constraint Domain

Unlike in general dependent type theory, type index expressions in DML can only be
drawn from a given constraint domain C, which is fixed to be the integer domain in
this paper.

We use φ |= P for a satisfaction relation, which means P holds under φ, that is,
the formula (φ)P , defined below, is satisfied in the domain of integers.

(·)Φ = Φ (φ, a : int)Φ = (φ)∀a : int.Φ
(φ, a : {a : γ | P})Φ = (φ, a : γ)(P ⊃ Φ) (φ, P)Φ = (φ)(P ⊃ Φ)

For instance, the satisfaction relation a : nat, a 6= 0 |= a − 1 ≥ 0 holds since the
following formula is true in the integer domain.

∀a : int.a ≥ 0 ⊃ (a 6= 0 ⊃ a− 1 ≥ 0)

Note that the decidability of the satisfaction relation depends on the constraint do-
main. For the integer constraint domain we use here, the satisfaction relation is
decidable (as we do not accept nonlinear integer constraints). The sorting rules for
the constraint domain are given below. We omit the rules for forming legal sorts and
legal index variable contexts.

φ(a) = γ

φ ` a : γ
φ ` i : {a : γ | P}

φ ` i : γ
φ ` i : γ φ |= P [a 7→ i]

φ ` i : {a : γ | P}

CPS Transform for Dependent ML 5

φ; Γ ` e : τ1 φ ` τ1 ≡ τ2
φ; Γ ` e : τ2

(tp-eq)

φ, a : γ; Γ ` v : τ
φ; Γ ` λi a : γ.v : Πa : γ.τ

(tp-ilam)

φ; Γ ` e : Πa : γ.τ φ ` i : γ
φ; Γ ` e[i] : τ [a 7→ i]

(tp-iapp)

φ; Γ ` e1 : Σa : γ.τ1 φ, a : γ; Γ, x : τ1 ` e2 : τ2
φ; Γ ` open e1 as 〈a | x〉 in e2 : τ2

(tp-open)

φ ` i : γ φ; Γ ` e : τ [a 7→ i]
φ; Γ ` 〈i | e〉 : Σa : γ.τ

(tp-pack)

Fig. 2. Some Typing Rules for MLΠ,Σ
0

2.3 Static and Dynamic Semantics

We omit the rules for forming legal types and contexts, which are standard.

index substitutions θI ::= [] | θI [a 7→ i]
substitutions θ ::= [] | θ[x 7→ e] | θ[f 7→ e]

A substitution is a finite mapping and [] represents an empty mapping. We use θI
for a substitution mapping index variables to index expressions and dom(θI) for the
domain of θI . Similar notations are used for substitutions on variables. We write •[θI]
(•[θ]) for the result from applying θI (θ) to •, where • can be a type, an expression,
etc. The standard definition is omitted. The following rules are for judgments of form
φ ` θI : φ′, which roughly means that θI has “type” φ′.

φ ` [] : ·
φ ` θI : φ′ φ ` i : γ[θI]
φ ` θI [a 7→ i] : φ′, a : γ

φ ` θI : φ′ φ |= P [θI]
φ ` θI : φ′, P

We write dom(Γ) for the domain of Γ, that is, the set of variables declared in Γ.
Given substitutions θI and θ, we say φ; Γ ` (θI ; θ) : (φ′; Γ′) holds if φ ` θI : φ′ and
dom(θ) = dom(Γ′) and φ; Γ ` θ(x) : Γ′(x)[θI] for all x ∈ dom(Γ′).

We write φ |= τ ≡ τ ′ for the congruent extension of φ |= i = j from index expres-
sions to types, determined by the following rules. It is the application of these rules
that generates constraints during type-checking.

φ |= i = j

φ |= δ(i) ≡ δ(j)
φ |= τ ′1 ≡ τ1 φ |= τ2 ≡ τ ′2
φ |= τ1 → τ2 ≡ τ ′1 → τ ′2

φ, a : γ |= τ ≡ τ ′

φ |= Πa : γ.τ ≡ Πa : γ.τ ′
φ, a : γ |= τ ≡ τ ′

φ |= Σa : γ.τ ≡ Σa : γ.τ ′

We present the typing rules for MLΠ,Σ
0 in Figure 2. Some of these rules have obvious

side conditions, which are omitted. For instance, in the rule (tp-ilam), a cannot have
free occurrences in Γ. The following lemma plays a pivotal rôle in proving the subject
reduction theorem for MLΠ,Σ

0 , whose standard proof is available in [17].

6 CPS Transform for Dependent ML

‖δ(i)‖∗ = δ(i) ‖τ1 → τ2‖∗ = ‖τ1‖∗ → ‖τ2‖
‖Πa : γ.τ‖∗ = Πa : γ.‖τ‖∗ ‖Σa : γ.τ‖∗ = Σa : γ.‖τ‖∗

‖τ‖ = (‖τ‖∗ → ans)→ ans
‖c‖∗ = c ‖x‖∗ = x ‖f‖∗ = f ‖λe x.e‖∗ = λe x.‖e‖ ‖v‖ = λe k.k(‖v‖∗)

‖if(e, e1, e2)‖ = λe k.‖e‖(λe x.if(x, ‖e1‖(k), ‖e2‖(k)))
‖e1(e2)‖ = λe k.‖e1‖(λe x1.‖e2‖(λe x2.x1(x2)(k)))
‖λi a.e‖ = λi a.‖e‖ ‖e[i]‖ = λe k.‖e‖(λe x.x[i](k))

‖open e1 as 〈a | x〉 in e2‖ = λe k.‖e1‖(λe x1.open x1 as 〈a | x〉 in ‖e2‖(k))
‖〈i | e〉‖ = 〈i | ‖e‖〉 ‖fix f.v‖ = λe k.(fix f.‖v‖)(k)

Fig. 3. CPS transform for types and expressions in MLΠ,Σ
0

Lemma 2.1

Assume φ, φ′; Γ,Γ′ ` e : τ is derivable and φ; Γ ` (θI ; θ) : (φ′; Γ′) holds. Then we can
derive φ; Γ ` e[θI][θ] : τ [θI].

The dynamic semantics of MLΠ,Σ
0 is standard and thus omitted.

3 CPS Transform for MLΠ,Σ
0

The expressions in MLΠ,Σ
0 are explicitly typed. In the following presentation, we

are to use the type derivation of an expression to witness the well-typedness of the
expression. Therefore, we are to omit types in expressions.

In Figure 3, we present the CPS transform for types and expressions in MLΠ,Σ
0 ,

where ans is assumed to be a newly introduced type. This is a standard call-by-value
CPS transform. The treatment of type index expressions in the transform clearly
indicates that they have no effect on the operational semantics of expressions.

Theorem 3.1

Given a type derivation D for φ; Γ ` e0 : τ0, we are to construct a type derivation
‖D‖ for φ; ‖Γ‖ ` ‖e0‖ : ‖τ0‖, where ‖Γ‖(x) = ‖Γ(x)‖∗ and for x ∈ dom(Γ) and
‖Γ‖(f) = ‖Γ(f)‖ for f ∈ dom(Γ). In other words, we are to lift the transform ‖ · ‖
from expressions to their type derivations.

Proof. The theorem follows from a structural induction on D.

Theorem 3.2

Assume φ; Γ ` e : τ is derivable in MLΠ,Σ
0 . Then φ; ‖Γ‖ ` ‖e‖ : ‖τ‖ is also derivable.

Proof. This follows from the lifted transform ‖ · ‖ for type derivations.

We can simply transform MLΠ,Σ
0 into a language ML0 by erasing all syntax related

to type index expressions in MLΠ,Σ
0 . Then ML0 basically extends simply typed λ-

calculus with recursion. Let |e|i be the erasure of expression e. We have e1 reducing
to e2 in MLΠ,Σ

0 implies |e1|i reducing to |e2|i in ML0, where |·|i is the erasure function.
Please find more details on this issue in [19, 17]. Clearly, we have that the erasure of

CPS Transform for Dependent ML 7

the CPS transform of an expression is the same as the CPS transform of the erasure
of the expression. This again indicates that type index expressions have no effect on
the operational semantics of expressions.

4 Formalization in LF

In our design, proofs of type preservation properties are treated as first class objects.
They are being generated, manipulated, and transformed to other proofs. The proof
of Theorem ?? (the subject reduction theorem of DML) in Section 2, for example,
states how a valid typing derivation of source expressions can be transformed into
valid typing derivations for the result of the dynamic semantics. Below however we
discuss the formalization of the proof of Theorem 3.1 (CPS conversion), and show
how valid typing derivations can be transformed into valid typing derivations of the
the outcome of CPS conversion.

Conveniently, the result of executing CPS conversion can be read out of the result
of the proof transformation. Consequently, this transformation algorithm bears many
advantages over standard CPS conversion, because it does not only yield the same
result, but simultaneously produces a valid typing derivation of the type correctness of
this result. Unlike standard CPS conversion schemes, where separate type checking is
necessary, this algorithm preserves information about well-typedness, and hence this
transformation algorithm provides an implementable compilation algorithm for DML.
The proof of Theorem 3.1 can in fact be interpreted as a type-preserving compiler! It
is this property that makes our research on compilation with explicit proofs attractive,
and we consider it the main contribution of this work.

The quintessential question is how to represent proofs in general, and typing deriva-
tions in particular. Those proofs are complex objects, and it is a challenging question
of how to represent them elegantly and concisely while preserving adequacy. In fact,
what is most challenging is the encoding of side conditions such as the newness of
hypotheses and the freshness of parameters. For instance, such assumptions are as-
sociated with (tp-ilam), (tp-lam), and (tp-fix).

Among different possibilities we have chosen the logical framework LF [4] for rep-
resentation and its implementation — the meta-logical framework Twelf [13] — for
experimentation. Twelf allows concise and elegant higher-order encodings of many
inference systems including their side conditions, such as natural deduction, sequent
calculi, and most importantly type systems, operational semantics, compilers, etc. It
draws its expressive power from dependent types together with higher-order repre-
sentation techniques both of which directly support common concepts in deductive
systems such as variable binding, capture-avoiding substitutions, parametric and hy-
pothetical judgments and substitution properties.

Alternatively, typing derivations and CPS conversion can also be represented in
logical frameworks such as Coq [2] and Isabelle [6], however only at the expense of
conciseness. In general, the inference systems defined above cannot be easily cast into
inductively defined types while taking advantage of higher-order encodings because
they often violate the fundamental positivity condition [10]. As a consequence, all
properties of substitutions that are evoked in a proof (for example of Theorem ?? and
Theorem 3.1) must be made explicitly and concrete formalization of substitutions
must be defined explicitly which are otherwise implicitly provided in LF. Thus, this
kind of representation of typing derivations is not easily amenable to manipulation

8 CPS Transform for Dependent ML

by functions, and has therefore not been considered in the past.
The function that realizes the proof that CPS conversion preserves well-typedness

must be defined with respect to the higher-order nature of the encoding of typing
derivations. However, only few languages support this feature, and hence it is best
implemented as a total function (realizer) in the meta-logic M+

2 [12] of type:

∀E : exp.∀T : tp.∀D : of E T.∃C : exp.
∃T ′ : tp.∃R : E exp=⇒ C.∃R∗ : T tp*=⇒ T ′.∃Q : of C T ′.>

where the participating judgments are represented in LF as types.

pis expression q = exp exp : type
pis index expression q = iexp iexp : type

pis type q = tp tp : type
pis index prop q = prop prop : type
pis index sortq = sort sort : type
pφ ` i : γq = ofi piq pγq ofi : idx→ sort→ type

pφ; Γ ` e : τq = of peq pτq of : exp→ tp→ type
p‖e‖ = e′q = peq

exp=⇒ pe′q exp=⇒ : exp→ exp→ type
p‖e‖∗ = e′q = peq

exp*=⇒ pe′q exp*=⇒ : exp→ exp→ type
p‖τ‖ = τ ′q = pτq

tp=⇒ pτ ′q tp=⇒ : tp→ tp→ type
p‖τ‖∗ = τ ′q = pτq

tp*=⇒ pτ ′q tp*=⇒ : tp→ tp→ type

From this list, only ‘of’ and ‘ofi’ deserve special attention. They are hypothetical
judgments which means that the contexts (φ; Γ) and φ are represented respectively
by the means of the LF context:

pφ, a : γq = pφq, a : idx, ua : ofi a pγq
pφ, Pq = pφq, pPq : prop

pφ; Γ, x : τq = pφ; Γq, x : exp, ux : of x pτq
pφ; Γ, f : τq = pφ; Γq, f : exp, uf : of f pτq

The meta-logicM+
2 is well understood however not yet implemented in Twelf. There-

fore we prefer for this presentation to encode the proof as a primitive recursive relation
relating the different input and output objects, which can be executed in Twelf as a
logic program. Concretely, the type of this relation is

transform : of E T → E
exp=⇒ C → T

tp*=⇒ T ′ → of C T ′ → type

All LF encodings presented this paper are adequate, which means that canonical
LF objects stand in one-to-one relation with derivations they represent. Following
standard practice [11] we omit all implicit Π-abstractions from types and we take
βη-conversion as the notion of definitional equality [1]. For brevity reasons we discuss
only one case:

trans app : transform (of app D1 D2) (r app P1 P2) (r* Q′2)
(of lam (λk. λu. of app R1

(of lam (λx1. λux1 . of app R2

(of lam (λx2. λux2 . of app (of app ux1 ux2) u))))))
← transform D2 P2 (r* Q2) R2

← transform D1 P1 (r* (r arrow Q′1 (r* Q′2))) R1

CPS Transform for Dependent ML 9

where we only assign types to the relevant constants in this case.

r* : T
tp*=⇒ T ′ → T

tp=⇒ (arr (arr T ′ ans) ans)
r app : E1

exp*=⇒ E′1 → E2
exp*=⇒ E′2 → (app E1 E2) exp*=⇒

(lam (λk. app E′1 (lam (λx1. app E′2(lam λx2. (app (app x1 x2) k))))))
r arrow : T1

tp*=⇒ T ′1 → T2
tp=⇒ T ′2 → (arr T1 T2) tp*=⇒ (arr T ′1 T

′
2)

of lam : (Πx : exp. of x T1 → of (E x) T2)→ of (lam E) (arr T1 T2)
of app : of E1 (arr T2 T1)→ of E2 T2 → of (app E1 E2) T1

The logical program ‘transform’ can be executed in Twelf on a derivation D of a
judgment φ; Γ ` e2 : τ1 by evoking transform pDq P Q R. Internally, Twelf matches
pDq against (of app D1 D2). If successful, it performs two recursive calls, one on
D1 and the other on D2. The function returns three result objects P , Q, and R
after inverting and assembling the result of the recursive call. By adequacy, P and Q
correspond to the respective CPS transformations on expressions and types, and R
to the proof that the CPS transform is type correct.

5 Related Work and Conclusion

The study on the typing properties of CPS transform was initiated by Meyer and
Wand for a call-by-value interpretation of the simply-typed λ-calculus [7]. Subse-
quently, Harper and Lillibridge studied the typing properties of several CPS trans-
forms in a language that extends Fω [3] with some control constructs, where explicit
polymorphism is supported [5]. The CPS transform presented in this paper is most
closely related to the ML-CBV CPS transform in [5]. However, what is important
in our case is probably not the CPS transform itself. Instead, we are interested in
lifting the CPS transform from the level of expressions to the level of type derivations,
preparing for building a type-preserving compiler for Dependent ML.

People are interested in type-preserving compilation for various reasons [15, 14, 16,
8], including facilitating compiler debugging, optimizing data representation, lever-
aging language interoperability, producing certified low-level executable code, etc.
We are currently interested in using dependent types in DML to capture important
program properties (e.g., memory safety) and then compiling the dependent types
into low-level to certify that the generated low-level code possesses the captured pro-
gram properties. This opens a promising approach to effectively generating proofs for
proof-carrying code [9].

When studying type-preserving compilation for DML, we notice that the (essen-
tially) same constraints have to be solved at both source and target levels if we follow
the current practice of building type-preserving compilers. This is not only annoying
but can also be time-consuming. In this paper, we use CPS transform as an example
to demonstrate a viable alternative that compiles type derivations of an expression
instead of the expression itself, obviating the need for solving the same constraints
repeatedly. In future, we will continue the study on compiling type derivations, con-
structing a type-preserving compiler for DML that can eventually produce certifiable
binary code.

10 CPS Transform for Dependent ML

References

[1] Thierry Coquand. An algorithm for testing conversion in type theory. In Gordon Plotkin and
Gérard Huet, editors, Logical Frameworks, pages 255–279. Cambridge University Press, 1991.

[2] Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Chet Murthy, Catherine Parent, Chris-

tine Paulin-Mohring, and Benjamin Werner. The Coq proof assistant user’s guide. Rapport
Techniques 154, INRIA, Rocquencourt, France, 1993. Version 5.8.

[3] Girard, J.-Y. Une Extension de l’Interprétation de Gödel à l’Analyse, et son Application à

l’Élimination des Coupures dans l’Analyse et la Théorie des Types. In Jens Erik Fenstad,
editor, Proceedings of the Second Scandinavian Logic Symposium, volume 63 of Studies in Logic
and the Foundations of Mathematics, pages 63–92, Amsterdam, 1971. North-Holland.

[4] Robert W. Harper, Furio Honsell, and Gordon D. Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, January 1993.

[5] Robert W. Harper and Mark Lillibridge. Explicit polymorphism and cps conversion. In Confer-

ence Record of the Twentieth Annual ACM SIGPLAN Symposium on Principles of Program-
ming Languages, pages 206–219, 1993.

[6] Paul Lawrence. Isabelle: A Generic Theorem Prover. Springer-Verlag LNCS 828, 1994.

[7] Albert Meyer and Mitchell Wand. Continuation Semantics in Typed Lambda Calculi (summary).

In Rohit Parikh, editor, Logics of Programs, pages 219–224. Springer-Verlag LNCS 224, 1985.

[8] Greg Morrisett et al. Talx86: A realistic typed assembly language. In Proceedings of Workshop
on Compiler Support for System Software, 1999.

[9] George Necula. Proof-carrying code. In Conference Record of 24th Annual ACM Symposium
on Principles of Programming Languages, pages 106–119. ACM press, 1997.

[10] Christine Paulin-Mohring. Inductive definitions in the system Coq: rules and properties. In
M. Bezem and J.F. de Groote, editors, Proceedings of the International Conference on Typed

Lambda Calculi and Applications, volume 664 of Lecture Notes in Computer Science, pages
328–345, 1993.

[11] Frank Pfenning. Logic programming in the lf logical framework. In In Gérard Huet and Gordon

Plotkin, editors, Logical Frameworks, pages 149–181. Cambridge University Press, 1991.

[12] Carsten Schürmann. Automating the Meta-Theory of Deductive Systems. PhD thesis, Carnegie
Mellon University, 2000. CMU-CS-00-146.

[13] Carsten Schürmann and Frank Pfenning. Automated theorem proving in a simple meta-logic

for lf. In Proceedings of the 15th International Conference on Automated Deduction (CADE),
pages 286–300. Springer-Verlag LNCS 1421, 1998.

[14] Zhong Shao. An Overview of the FLINT/ML compiler. In Proceedings of ACM SIGPLAN

Workshop on Types in Compilation (TIC ’97), June 1997.

[15] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. A type-directed optimizing
compiler for ML. In Proceedings of ACM SIGPLAN Conference on Programming Language

Design and Implementation, pages 181–192, June 1996.

[16] Andrew Tolmach and Dino P. Oliva. From ML to Ada(!?!): Strongly-typed language interoper-
ability via source translation. Journal of Functional Programming, 8(4):367–412, July 1998.

[17] Hongwei Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon Univer-

sity, 1998. pp. viii+189. Available as http://www.cs.cmu.edu/~hwxi/DML/thesis.ps.

[18] Hongwei Xi. Dependent ML. Available at http://www.ececs.uc.edu/~hwxi/DML/DML.html,
1999.

[19] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Proceedings

of ACM SIGPLAN Symposium on Principles of Programming Languages, pages 214–227, San
Antonio, January 1999.

[20] Hongwei Xi and Carsten Schürmann. CPS Transform and Type Derivations in Dependent ML.

Available as http://www.ececs.uc.edu/~hwxi/academic/papers/DMLcps.ps, 2001.

