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Abstract

Formal specification is widely employed in the construction of high-quality software.
However, there is often a huge gap between formal specification and actual implementation.
While there is already a vast body of work on software testing and verification, the task
to ensure that an implementation indeed meets its specification is still undeniably of great
difficulty. ATS is a programming language equipped with a highly expressive type system
that allows the programmer to specify and implement and then verify within the language
itself that an implementation meets its specification. In this paper, we present largely
through examples a programmer-centric style of program verification that puts emphasis
on requesting the programmer to explain in a literate fashion why his or her code works.
This is a solid step in the pursuit of software construction that is verifiably correct according
to specification.

1 Introduction

In order to be precise in building software systems, we need to specify what such a system
is expected to accomplish. In the current day and age, software specification, which we use
in a rather loose sense, is often done in forms of varying degree of formalism, ranging from
verbal discussions to pencil/paper drawings to various diagrams in modeling languages such
as UML [11] to formal specifications in specification languages such as Z [12], etc. Often the
main purpose of software specification is to establish a mutual understanding among a team of
developers. After the specification for a software system is done, either formally or informally,
we need to implement the specification in a programming language. In general, it is exceedingly
difficult to be reasonably certain whether an implementation actually meets its specification.
Even if the implementation coheres well with its specification initially, it nearly inevitably
diverges from the specification as the software system evolves. The dreadful consequences
of such a divergence are all too familiar; the specification becomes less and less reliable for
understanding the behavior of the software system while the implementation gradually turns
into its own specification; for the developers, it becomes increasingly difficult and risky to
maintain and extend the software system; for the users, it requires extra amount of time and
effort to learn and use the software system.

The design of ATS [15, 16] is partly inspired by Martin-Löf’s constructive type theory [10],
which was originally developed for the purpose of establishing a foundation for mathematics.
Within ATS, there is a static component (statics) and a dynamic component (dynamics). In-
tuitively, the statics and dynamics are each for handling types and programs, respectively. In
particular, specification is done in the statics and implementation in the dynamics. To verify
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sorts σ ::= b | σ1 → σ2

static terms s ::= a | sc[s1, . . . , sn] | λa : σ.s | s1(s2)
static var. ctx. Σ ::= ∅ | Σ, a : σ
dyn. terms d ::= x | dc(d1, . . . , dn) | lam x.d | app(d1, d2) | . . .
dyn. var. ctx. ∆ ::= ∅ | ∆, x : s

Figure 1: Some formal syntax for statics and dynamics of ATS

that an implementation meets a given specification is to show that it is derivable that the
program has certain type, which is stated as a guarantee based on types in this paper. In
theorem-proving systems such as Coq [13] and NuPrl [3], a specification is encoded as a type; if
a proof inhabiting the type is made available, then a program guaranteed to meet the specifica-
tion can be automatically extracted out of the proof. While the very idea of program extraction
is appealing, it is often difficult for the programmer to effectively control the efficiency (time-
wise and memory-wise) of extracted programs.

On the other hand, the efficiency of a program written in ATS can rival that of its counter-
part in C. Note that this is not achieved by performing aggressive compiler optimizations on
the program. Instead, it is primarily due to the support in ATS that allows programs to be con-
structed by directly following typical C-like programming idioms such as native/unboxed data
representation and explict pointer arithmetic. Unsurprisingly, automatically verifying such pro-
grams is beyond what we can really hope for at this moment. As an alternative, we expect that
the programmer who does the implementation also constructs a proof in the theorem-proving
subsystem of ATS to demonstrate the correctness of the implementation. In essence, we advo-
cate a form of program verification that contains both automated and user-assisted components,
and we refer to it as a programmer-centric approach to program verification. The primary con-
tribution of the paper lies in our effort identifying such a style of program verification as well
as putting it into practice based on ATS.

We organize the rest of the paper as follows. In Section 2, we give a brief overview of
ATS. We then present in Section 3 a typical style of program verification in ATS that combines
programming with theorem-proving. In Section 4, we employ some examples to illustrate that
ATS is well-equipped with features to support program verification that is both flexible and
effective for practical use. Lastly, we mention some related work in Section 5 and then conclude.

2 Overview of ATS

We give some formal syntax of ATS in Figure 1. The language ATS has a static component
(statics) and a dynamic component (dynamics). The statics includes types, props, and type
indexes while the dynamics includes programs and proofs. The statics itself is a simply typed
language and a type in it is referred to as a sort. For instance, we have the following base sorts
in ATS: addr , bool , int , prop, type, etc; we use L, B and I for static addresses, booleans, and
integers of the sorts addr , bool , and int , respectively; we use T for static terms of the sort type,
which are types assigned to programs; we use P for static terms of the sort prop, which are
props assigned to proofs.

Types and props may depend on one or more type indexes of static sorts. Among such
indexed types, singleton types, which are each a type for only one specific value, are of great
use in practical programming. For instance, bool(B) is a singleton type for the boolean value



equal to B, and int(I) is a singleton type for the integer equal to I, and ptr(L) is a singleton
type for the pointer that points to the address (or location) L. Also, we can quantify over type
index variables universally and existentially to form quantified types and props.

We use proving-types of the form (P | T ) for combining proofs with programs, where P and
T stand for a prop and a type, respectively. One may think of the proving-type (P | T ) as a
refinement of the type T because P often constrains some of the indexes appearing in T . For
example, the following type:

(ADD(m,n, p) | int(m), int(n), int(p))

is a proving-type of the sort type for a tuple of integers (m,n, p) along with a proof of the prop
ADD(m,n, p) which encodes m+ n = p. Given a static boolean term B and a type T , we can
form two special forms of types: guarded types of the form B ⊃ T and asserting types of the
form B ∧ T . Following is an example involving singleton, guarded and asserting types:

∀a : int .a ≥ 0 ⊃ (int(a)→ ∃a ′ : int .(a ′ < 0 ∧ int(a ′)))

The meaning of this type should be clear: Each value that can be assigned this type represents
a function from nonnegative integers to negative integers.

ATS is also equipped with linear version of prop [17], where the word linear comes from
linear logic [7]. Given a type T and a memory location L, a linear prop of the form T@L can be
formed to indicate a value of the type T being stored in the memory at the location L, where
@ is a special infix operator. Following is a function declaration involving proving-type with
linear prop.

fun ptr_set {i,j: int} {l:addr}

(pf: (int i) @ l | p: ptr l, x: int j): ((int j) @ l | void)

The meaning of this function should be clear by its type. The implementation of the function
should update the content at location l with the input value x.

3 Overview of Program Verification in ATS

We now use a simple example to illustrate the idea of programming with theorem proving.
Suppose we want to compute Fibonacci numbers, which are defined inductively as follows:

fib(0) = 0 fib(1) = 1 fib(n+ 2) = fib(n) + fib(n+ 1) for n >= 0

A implementation of fib in ATS with O(n) complexity can be done as follows:

fun fibats (n: int): int = let

fun loop (r0: int, r1: int, ni: int): (int) =

if ni > 0 then loop (r1, r0+r1, ni-1)

else r0

in loop (0, 1, n) end // end of [fibats]

There is obviously a logic gap between the mathematical definition of fib and its implemen-
tation fibats in ATS.1 In ATS, we can give another implementation (with different type) of fib
that completely bridges this gap. First, we need a way to encode the definition of fib into ATS,
which is fulfilled by the declaration of the following dataprop:

1We do not address the issue of possible arithmetic overflow here.



//

// the syntax [...] is for existential quantification

//

fun fibats2 {n:nat} (n: int n)

: [r:int] (FIB (n, r) | int r) = let

fun loop

{n,i:nat | i <= n} {r0,r1:int} (

pf0: FIB (i, r0), pf1: FIB (i+1, r1)

| r0: int (r0), r1: int (r1), ni: int(n-i)

) : [r:int] (FIB (n, r) | int (r)) =

if ni > 0 then

loop {n,i+1} (pf1, FIB2 (pf0, pf1) | r1, r0+r1, ni-1)

else (pf0 | r0)

in

loop (FIB0(), FIB1() | 0, 1, n)

end // end of [fibats2]

Figure 2: A verified implementation of fib in ATS

dataprop FIB (int, int) =

| FIB0 (0, 0) | FIB1 (1, 1)

| {n:nat} {r0,r1:int}

FIB2 (n+2, r0+r1) of (FIB (n, r0), FIB (n+1, r1))

// end of [FIB]

where the concrete syntax {...} is for universal quantification in ATS. This declaration intro-
duces a type (or more precisely, a type constructor) FIB for proofs. Such a type is referred
to as a prop (or prop-type) in ATS. Intuitively, if a proof can be assigned the type FIB(n, r)
for some integers n and r, then fib(n) equals r. In other words, FIB(n, r) encodes the relation
fib(n) = r inductively through FIB0 , FIB1 , and FIB2 , three constructors associated with FIB.
These constructors can be given the following types corresponding to the three equations in the
definition of fib:

FIB0 : ()→ FIB(0, 0)
FIB1 : ()→ FIB(1, 1)
FIB2 : ∀n : nat.∀r0 : int.∀r1 : int.

(FIB(n, r0),FIB(n+ 1, r1))→ FIB(n+ 2, r0 + r1)

For instance, FIB2 (FIB0 (),FIB1 ()) is a term of the type FIB(2, 1), attesting to fib(2) = 1. In
Figure 2, the implemented function fibats2 is assigned the following type:

fibats2 : ∀n : nat. int(n)→ ∃r : int.(FIB(n, r) | int(r))

where | is just a separator (like a comma) for separating a proof from a value. For each integer
value I, int(I) is a singleton type for the only integer whose value is I. When fibats2 is applied
to an integer of value n, it returns a pair consisting of a proof and an integer of value r such
that the proof, which is of the type FIB(n, r), asserts fib(n) = r. Therefore, fibats2 is a verified
implementation of fib. We emphasize that proofs are completely erased after typechecking. In
particular, there is no proof construction at run-time.



4 Programmer-Centric Verification

By programmer-centric verification, we mean a verification approach that puts the programmer
at the center of the verification process. The programmer is expected to explain in a literate
fashion why his or her implementation meets a given specification. The programmer may rely
on external knowledge when doing verification, but such knowledge should be expressed in a
format that is accessible to other programmers. We will employ some examples in this section
to elaborate on programmer-centric verification.

//

// list(a, n) is the type for a list of length n

// in which each element is of the type a.

//

fun{a:type} insort {n:nat}

(xs: list (a, n), lte: (a, a) -> bool): list (a, n) = let

fun ins {n:nat}

(x: a, xs: list (a, n), lte: (a, a) -> bool): list (a, n+1) =

case xs of

| list_cons (x1, xs1) =>

if lte (x, x1) then

list_cons (x, xs) else list_cons (x1, ins (x, xs1, lte))

// end of [if]

| list_nil () => list_cons (x, list_nil ())

// end of [ins]

in

case xs of

| list_cons (x, xs1) => ins (x, insort (xs1, lte), lte)

| list_nil () => list_nil ()

end // end of [insort]

Figure 3: A standard implementation of insertion sort

4.1 Example: Insertion Sort on Generic Lists

In Figure 3, we give a standard implementation of insertion sort written in ATS that takes
a generic list and a comparison function and returns a generic list that is sorted according
to the comparison function. Note that the use of generic lists clearly indicates our strive for
practicality. In the literature, a similar presentation would often use integer lists (instead
of generic lists), revealing the difficulty in handling polymorphism and thus weakening the
argument for practical use of verification. We have no such difficulty. The implementation we
present guarantees based on the types that the output list is of the same length as the input
list. We also give a verified implementation of insertion sort in Figure 4 that guarantees based
on the types that the output list is a sorted permutation of the input list. The fact that this
verified implementation can be done in such a concise manner should yield strong support for
the underlying verification approach. Note that we do not include the proof of termination,
which can be verified in ATS [14], in Figure 4 for the sake of brevity,

Suppose that a programmer did the implementation in Figure 3. Obviously, the programmer
did not do the implementation in a random fashion; he or she did it based on some kind of
(informal) logic reasoning. We will see that ATS provides programming features such as abstract



fun{a:type} insort

{xs:ilist} (xs: glist (a, xs), lte: lte(a))

: [ys:ilist] (SORT (xs, ys) | glist (a, ys)) = let

fun ins {x:int} {ys1:ilist} (

pford: ORD (ys1) |

x: E (a, x), ys1: glist (a, ys1), lte: lte(a)

) : [ys2:ilist] (SORT (cons (x, ys1), ys2) | glist (a, ys2)) =

case ys1 of

| glist_cons (y1, ys10) =>

if lte (x, y1) then let

prval pford = ORD_ins {x} (pford)

prval pfperm = PERM_refl ()

prval pfsrt = ORDPERM2SORT (pford, pfperm)

in

(pfsrt | cons (x, ys1))

end else let

prval pford1 = ORD_tail (pford)

val (pfsrt1 | ys20) = ins (pford1 | x, ys10, lte)

prval pfsrt2 = SORT_ins {x} (pford, pfsrt1)

in

(pfsrt2 | cons (y1, ys20))

end // end of [if]

| glist_nil () => (SORT_sing () | cons (x, nil ()))

// end of [ins]

in

case xs of

| glist_cons (x, xs1) => let

val (pfsrt1 | ys1) = insort (xs1, lte)

prval pford1 = SORT2ORD (pfsrt1)

prval pfperm1 = SORT2PERM (pfsrt1)

prval pfperm1_cons = PERM_cons (pfperm1)

val (pfsrt2 | ys2) = ins (pford1 | x, ys1, lte)

prval pford2 = SORT2ORD (pfsrt2)

prval pfperm2 = SORT2PERM (pfsrt2)

prval pfperm3 = PERM_tran (pfperm1_cons, pfperm2)

prval pfsrt3 = ORDPERM2SORT (pford2, pfperm3)

in

(pfsrt3 | ys2)

end // end of [intlist_cons]

| glist_nil () => (SORT_nil () | nil ())

end // end of [insort]

Figure 4: A verified implementation of insertion sort



props and external lemmas for turning such informal reasoning into formal verification. In
particular, we can turn the implementation of insertion sort in Figure 3 into the verified one in
Figure 4 by following a verification process.

abstype E (a:type, x:int) // abstract type constructor

datasort ilist = ilist_nil of () | ilist_cons of (int, ilist)

datatype glist (a:type, ilist) =

| {x:int} {xs:ilist}

glist_cons (a, cons (x, xs)) of (E (a, x), glist (a, xs))

| glist_nil (a, nil) of ()

Figure 5: A generic list type indexed by the names of list elements

First, we need to map the elements in the dynamics to be sorted to appropriate terms in
the statics, which can be reasoned about within the theorem-proving subsystem of ATS. This
can be achieved by introducing an abstract type constructor E (in Figure 5). Given a type
T and an integer I, E(T, I) is a singleton type for a value of the type T with an (imaginary)
integer name I. Second, to reason about the ordering of integer sequence, we have to give
its definition formally in the form of a new sort in the statics. In ATS, the user-defined sorts
(datasorts) can be introduced in a manner similar to the introduction of user-defined types
(datatypes) in a ML-like language. We introduce a datasort ilist for representing sequences of
(static) integers. We may simply write nil and cons for ilist nil and ilist cons, respectively, if
there is no potential confusion. Note that there is no mechanism for defining recursive functions
in the statics, and this is a profound restriction that give rise to a unique style of verification in
ATS. We lastly define a datatype glist: Given a list of values of types E(T, I1), . . . ,E(T, In),
the type glist(T, cons(I1, . . . , cons(In, nil))) can be assigned to this particular list. We may
also simply write nil and cons for glist nil and glist cons, respectively, if there is no potential
confusion. Please note that glist is in the dynamics while ilist is in the statics. With the
aforementioned setting, we can verify the properties of an instance of glist by reasoning about
its correspondence in the statics, which is of sort ilist .

To verify insertion sort, we first introduce an abstract prop as follows such that SORT(xs, ys)
means that ys is a sorted permutation of xs:

absprop SORT (xs:ilist, ys:ilist)

Let lte(a) be a shorthand for the following type:

∀a : type.∀x1 : int .∀x2 : int .(E(a, x1 ),E(a, x2 ))→ bool(x1 ≤ x2 )

If we can assign the following type to insort:

∀a : type.∀xs : ilist .
(glist(a, xs), lte(a))→ ∃ys : ilist .(SORT(xs, ys) | glist(a, ys))

then insort is verified as the type simply states that the output list is a sorted permutation of
the input list.

For the purpose of verification, we also introduce the following two abstract props:

absprop ORD (xs:ilist)

absprop PERM (xs:ilist, ys:ilist)



SORT2ORD : ∀xs : ilist .∀ys : ilist . SORT(xs, ys)→ ORD(ys)
- If ys is a sorted version of xs, then ys is ordered.

SORT2PERM : ∀xs : ilist .∀ys : ilist . SORT(xs, ys)→ PERM(xs, ys)
- If ys is a sorted version of xs, then ys is a permutation of xs.

ORDPERM2SORT : ∀xs : ilist .∀ys : ilist .
(ORD(ys),PERM(xs, ys))→ SORT(xs, ys)

- If ys is ordered and is also a permutation of xs, then ys is a sorted version of xs.

SORT nil : ()→ SORT(nil, nil)
- The empty list is a sorted version of itself.

SORT sing : ∀x : int . ()→ SORT(cons(x ,nil), cons(x ,nil))
- A singleton list is a sorted version of itself.

ORD tail : ∀y : int .∀ys : ilist . ORD(cons(y , ys))→ ORD(ys)
- If a non-empty list is ordered, then its tail is also ordered.

ORD ins : ∀x : int .∀y : int .∀ys : ilist . x ≤ y ⊃
ORD(cons(y, ys))→ ORD(cons(x, cons(y, ys)))

- If x ≤ y holds and cons(y, ys) is ordered, then cons(x, cons(y, ys)) is also ordered.

PERM refl : ∀xs : ilist . ()→ PERM(xs, xs)
- Each list is a permutation of itself.

PERM tran : ∀xs : ilist .∀ys : ilist .∀zs : ilist .
(PERM(xs, ys),PERM(ys, zs))→ PERM(xs, zs)

- The permutation relation is transitive.

PERM cons : ∀x : int .∀xs1 : ilist .∀xs2 : ilist .
PERM(xs1, xs2)→ PERM(cons(x, xs1), cons(x, xs2))

- If xs2 is a permutation of xs1, then cons(x, xs2) is a permutation of cons(x, xs1).

SORT ins : ∀x : int .∀y : int .∀ys1 : ilist .∀ys2 : ilist . x > y ⊃
(ORD(cons(y, ys1)),SORT(cons(x, ys1), ys2))→
SORT(cons(x, cons(y, ys1)), cons(y, ys2))

- If x > y holds, cons(y, ys1) is ordered and ys2 is a sorted version of cons(x, ys1),
then cons(y, ys2) is a sorted version of cons(x, cons(y, ys1)).

Figure 6: Some external lemmas needed for verifying insertion sort

Given xs and ys, ORD(xs) means that xs is ordered according to the ordering ≤ on integers
and PERM(xs, ys) means that ys is a permutation of xs.

When verifying insort, we essentially try to justify each step in the code presented in Fig-
ure 3. This justification process may introduce various statements about the properties of those
concepts SORT, ORD, and PERM. (We call such statements lemmas to indicate that their
validity is now only justified by the programmers’ reasoning informally.) For instance, the code
presented in Figure 4 makes use of the lemmas listed in Figure 6.

For soundness, we need to define SORT, ORD, and PERM explicitly, based on which we
can prove these lemmas formally. And we can indeed do this in the theorem-proving subsystem
of ATS. However, this style of verifying everything from basic definitions can be too great a



burden in practice. Suppose that we try to construct a mathematical proof and we need to
make use of the proposition in the proof that the standard permutation relation is transitive.
It is unlikely that we provide an explicit proof for this proposition as it sounds so evident to
us. To put it from a different angle, if constructing mathematical proofs required that every
single detail be presented explicitly, then studying mathematics would unlikely to be feasible.
Therefore, we strongly advocate a style of theorem-proving in ATS that models the way we do
mathematics.

The implementation of insertion sort on generic lists in Figure 3, which can be obtained
from erasing proofs in Figure 4, is guaranteed to be correct if all of the lemmas in Figure 6 are
true. It is probably fair to say that these lemmas are all evidently true except the last one:
SORT ins. If we are unsure whether the lemma SORT ins is true or not, we can construct a
proof in ATS or elsewhere to validate it. For instance, we can even give an informal proof as
follows: Note that PERM(cons(x, ys1), ys2) holds as ys2 is a sorted version of cons(x, ys1).
Hence, cons(y, ys2) is a permutation of cons(x, cons(y, ys1)). Since cons(y, ys1) is ordered, y
is a lower bound for the elements in ys1. Hence, y is a lower bound for elements in ys2 as
x > y holds, and thus, cons(y, ys2) is ordered. Therefore, cons(y, ys2) is a sorted version of
cons(x, cons(y, ys1)).

What is of crucial importance is that SORT ins is a lemma that is manually introduced
and can be readily understood by any programmer with adequate training. This is a direct
consequence of programmer-centric verification in which the programmer explains in a literate
fashion why his or her implementation meets a given specification.

To sum up, we have proven that the integer sequence corresponding to the output generic
list is a sorted permutation of the integer sequence corresponding to the input generic list.
Besides, the type of the comparison function lte states that the mapping from element in the
dynamics to integer in the statics preserves ordering relation. Therefore, it is verified that the
implementation is correct given that lte is implemented correctly. The benefit that we only need
to reason about integer sequence regardless of the real type of the list to be sorted comes from
ATS’ feature of separation of dynamics and statics. Going still further, we can map an array
of elements in the dynamics to integer sequence in the statics via linear prop and addr . And
there is really not much difference between lists and arrays as far as verification is concerned.
The reason that we use lists instead of arrays is for simplifying the presentation and also that
array based insertion sort has no advantage of efficiency.

4.2 Many Other Examples

In Appendix A, we give out an example of quicksort following the same paradigm of
programmer-centric verification. Besides, there are also a variety of examples available on-line2

which can further illustrate a style of programmer-centric verification in ATS that combines pro-
gramming with theorem-proving cohesively. In particular, there are examples involving arrays,
heaps, balanced trees, etc.

5 Related Work and Conclusion

Given the vastness of the field of program verification, we can only mention some closely related
work in this section.

Ynot [2] is an axiomatic extension of the Coq proof assistant for specifying and verifying
properties of imperative programs. The programmer can encode a new domain by providing

2Please see http://www.ats-lang.org/EXAMPLE/PCPV



key lemmas in an ML-like embedded language. Relying on Coq to do theorem-proving, Ynot
mixes the automated proof generation with manual proof construction, attempting to relieve
the programmer from the heavy burden that would otherwise be necessary. The dependent
types employed in Ynot is different from that of ATS. In particular, there is no separation of
statics from dynamics in Ynot.

Krakatoa [9] is a front-end of the Why [1] platform for deductive program verification. It
deals with Java programs annotated in a variant of the the Java Modeling Language (JML)
called KML. An extension to KML is proposed in [6] to support the specification of generic Java
code. It relies on parameterized theory for specification, and performes verification after the the
theory is instantiated with specific types. If we think of types in ATS just as special annotations,
then Krakatoa and ATS share a similar flavor of program verification. However, there is also
fundamental difference between Krakatoa and ATS. In ATS, proofs are constructed during
the same time when an implementation is written. In Krakatoa, an existing implementation
needs to be properly annotated so that proof obligations generated during verification can be
discharged (by Why).

The work on extended static checking (ESC) [4] also puts emphasis on employing formal
annotations to capture program invariants. These invariants may be verified through (light-
weighted) theorem proving. ESC/Java [5] generates verification-conditions based on annotated
Java code and uses an automatic theorem-prover to reason about the semantics of the programs.
It can catch many basic errors such as null dereferences, array bounds errors, type cast errors,
etc. With more emphasis on usefulness, soundness is sacrificed in certain cases to reduce
annotation cost or to improve checking speed.

VeriFast [8] is another system for verifying program properties through source code anno-
tation. It supports direct insertion of simple proof steps into the source code while allowing
rich and complex properties to be specified through inductive datatypes and fixed-point func-
tions. VeriFast provides a program verifier for C and Java that supports interactive insertion
of annotations into source code to alleviate the task of automatic reasoning about separation
logic.

The paradigm of programming with theorem-proving as is supported in the ATS program-
ming language system is fundamentally different from program extraction (from proofs) as is
supported in theorem-proving systems such as Coq. Note that ATS is a full-fledged program-
ming language that supports the construction of highly efficient programs (whose efficiency
rivals that of their counterparts in C), and the presented approach to verification can also be
applied to effectful programs written in imperative style (see some of the on-line examples).

In this paper, we have argued in support of a style of program verification that puts emphasis
on requesting the programmer to formally explain in a literate fashion why the code he or
she implements actually meets its specification. Though external lemmas introduced during
a verification process can be discharged by formally proving them in ATS, doing so is often
expensive in terms of effort and time. One possibility is to characterize such lemmas into
different categories and then employ (external) specialized theorem-provers to prove them.
Another possibility for discharging lemmas, which we strongly advocate, is to go through a
peer-review process, which mimics the practice of (informally) verifying mathematical proofs.
Obviously, the precondition for such an approach is that the lemmas to be verified can be
expressed in a format that is easily accessible to a (trained) human being. This is where the
programmer-centric verification as is presented in this paper can fit very well.
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[10] Per Martin-Löf. Constructive Mathematics and Computer Programming. In Proc. of a discussion
meeting of the Royal Society of London on Mathematical logic and programming languages, pages
167–184, Upper Saddle River, NJ, USA, 1985. Prentice-Hall, Inc.

[11] Manny Rayner, Beth A. Hockey, Nikos Chatzichrisafis, and Kim Farrell. OMG Unified Modeling
Language Specification. In Version 1.3, c© 1999 Object Management Group, Inc, 2005.

[12] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series in Computer
Science. Prentice Hall, second edition, 1992.

[13] The Coq Development Team. The Coq Proof Assistant Reference Manual, 2004. Available at
http://coq.inria.fr/refman/.

[14] Hongwei Xi. Dependent Types for Program Termination Verification. In Proceedings of 16th IEEE
Symposium on Logic in Computer Science, pages 231–242, Boston, June 2001.

[15] Hongwei Xi. Applied Type System (extended abstract. In In post-workshop Proceedings of TYPES
2003, pages 394–408, 2004.

[16] Hongwei Xi. The ATS Programming Language System. Available at http://www.ats-lang.org/,
2008.

[17] Dengping Zhu and Hongwei Xi. Safe Programming with Pointers through Stateful Views. In In
Proceedings of the 7th International Symposium on Practical Aspects of Declarative Languages,
pages 83–97, 2005.

http://why.lri.fr/
http://coq.inria.fr/refman/
http://www.ats-lang.org/


A Example: Quicksort on Generic Lists

We give a standard implementation of quicksort on generic lists in Figure 7. The reason that
we use lists instead of arrays is solely for simplifying the presentation. As far as verification
is concerned, there is really not much difference between lists and arrays. Note that we have
already made various verification examples available on-line that involve arrays.

fun{a:type}

qsrt {n:nat}

(xs: list (a, n), lte: lte a) : list (a, n) =

case+ xs of // case+ indicates to the compiler that the pattern match must be exhaustive.

| list_cons (x, xs) => part (x, xs, lte, list_nil (), list_nil ())

| list_nil () => list_nil ()

and part {p:nat} {q,r:nat} (

x0: a, xs: list (a, p), lte: lte(a), ys: list (a, q), zs: list (a, r)

) : list (a, p+q+r+1) =

case+ xs of

| list_cons (x, xs) =>

if lte (x, x0) then

part (x0, xs, lte, list_cons (x, ys), zs)

else

part (x0, xs, lte, ys, list_cons (x, zs))

// end of [if]

| list_nil () => let

val ys = qsrt (ys, lte) and zs = qsrt (zs, lte)

in

append (ys, list_cons (x0, zs))

end // end of [list_nil]

Figure 7: A standard implementation of quicksort on generic list
The implementation in Figure 7 guarantees based on the types that the output list is of the

same length as the input list. We also give a verified implementation of quicksort in Figure 8
that guarantees based on the types that the output list is a sorted permutation of the input
list. The verified implementation is essentially obtained from the process to explain why the
function qsrt in Figure 7 always returns a list that is the sorted version of the input list.

We now explain that the verified implementation of quicksort can be trusted. The function
append in the implementation is given the following type:

∀a : type.∀xs1 : ilist .∀xs2 : ilist .
(glist(a, xs1),glist(a, xs2))→
∃res : ilist .(APPEND(xs1, xs2, res) | glist(a, res))

where APPEND is an abstract prop. Given lists xs1, xs2, and res, the intended meaning of
APPEND(xs1, xs2, res) is obvious: it states that the concatenation of xs1 and xs2 is res.
Both LB and UB are introduced as abstract props: LB(x, xs)/UB(x, xs) means that x is a
lower/upper bound for the elements in xs. Another introduced abstract prop is UNION4:
Given x, xs, ys, zs, and res, UNION4(x, xs, ys, zs, res) means that the following equation
holds

|res| = {x} ∪ |xs| ∪ |ys| ∪ |zs|

where | · | turns an integer list into a multiset. The external lemmas used in Figure 8 are listed
in Figure 9 with corresponding explanation.



fun{a:type}

qsrt {xs:ilist} (

xs: glist (a, xs), lte: lte a

) : [ys:ilist] (SORT (xs, ys) | glist (a, ys)) =

case+ xs of

| glist_cons (x, xs) => let

val (pford, pfuni | res) =

part (UB_nil (), LB_nil () | x, xs, lte, nil (), nil ())

prval pfperm = UNION4_perm (pfuni)

in

(ORDPERM2SORT (pford, pfperm) | res)

end

| glist_nil () => (SORT_nil () | nil ())

and part

{x0:int} {xs:ilist} {ys,zs:ilist} (

pf1: UB (x0, ys), pf2: LB (x0, zs)

| x0: E (a, x0), xs: glist (a, xs), lte: lte(a)

, ys: glist (a, ys), zs: glist (a, zs)

) : [res:ilist] (

ORD (res), UNION4 (x0, xs, ys, zs, res) | glist (a, res)

) =

case+ xs of

| glist_cons (x, xs) =>

if lte (x, x0) then let

prval pf1 = UB_cons (pf1)

val (pford, pfuni | res) =

part (pf1, pf2 | x0, xs, lte, cons (x, ys), zs)

prval pfuni = UNION4_mov1 (pfuni)

in

(pford, pfuni | res)

end else let

prval pf2 = LB_cons (pf2)

val (pford, pfuni | res) =

part (pf1, pf2 | x0, xs, lte, ys, cons (x, zs))

prval pfuni = UNION4_mov2 (pfuni)

in

(pford, pfuni | res)

end // end of [if]

| glist_nil () => let

val (pfsrt1 | ys) = qsrt (ys, lte)

val (pfsrt2 | zs) = qsrt (zs, lte)

val (pfapp | res) = append (ys, cons (x0, zs))

prval pford1 = SORT2ORD (pfsrt1)

prval pford2 = SORT2ORD (pfsrt2)

prval pfperm1 = SORT2PERM (pfsrt1)

prval pfperm2 = SORT2PERM (pfsrt2)

prval pf1 = UB_perm (pfperm1, pf1)

prval pf2 = LB_perm (pfperm2, pf2)

prval pford = APPEND_ord (pf1, pf2, pford1, pford2, pfapp)

prval pfuni = APPEND_union4 (pfperm1, pfperm2, pfapp)

in

(pford, pfuni | res)

end // end of [glist_nil]

// end of [part]

Figure 8: A verified implementation of quicksort



LB nil : ∀x : int . ()→ LB(x ,nil)
- Each integer is a lower bound for the empty list.

UB nil : ∀x : int . ()→ UB(x ,nil)
- Each integer is an upper bound for the empty list.

LB cons : ∀x0 : int .∀x : int .∀xs : ilist . x0 ≤ x ⊃
LB(x0, xs)→ LB(x0, cons(x, xs))

- If x0 ≤ x holds and x0 is a lower bound for xs, then x0 is also a lower bound for
cons(x, xs).

UB cons : ∀x0 : int .∀x : int .∀xs : ilist . x0 ≥ x ⊃
UB(x0, xs)→ UB(x0, cons(x, xs))

- If x0 ≥ x holds and x0 is an upper bound for xs, then x0 is also an upper bound for
cons(x, xs).

LB perm : ∀x : int .∀xs1 : ilist .∀xs2 : ilist .
(PERM(xs1, xs2),LB(x, xs1))→ LB(x, xs2)

- If x is a lower bound for xs1 and xs1 is a permutation of xs2, then x is also a lower
bound for xs2.

UB perm : ∀x : int .∀xs1 : ilist .∀xs2 : ilist .
(PERM(xs1, xs2),UB(x, xs1))→ UB(x, xs2)

- If x is an upper bound for xs1 and xs1 is a permutation of xs2, then x is also a
upper bound for xs2.

UNION4 perm : ∀x : int .∀xs : ilist .∀res : ilist .
UNION4(x, xs, nil, nil, res)→ PERM(cons(x, xs), res)

- If |res| = {x} ∪ |xs|, then res is a permutation of cons(x, xs).

UNION4 mov1 : ∀x0 : int .∀x : int .∀xs : ilist .∀ys : ilist .∀zs : ilist .∀res : ilist .
UNION4(x0, xs, cons(x, ys), zs, res)→
UNION4(x0, cons(x, xs), ys, zs, res)

- If |res| = {x0}∪|xs|∪|cons(x, ys)|∪|zs|, then |res| = {x0}∪|cons(x, xs)|∪|ys|∪|zs|.

UNION4 mov2 : ∀x0 : int .∀x : int .∀xs : ilist .∀ys : ilist .∀zs : ilist .∀res : ilist .
UNION4(x0, xs, ys, cons(x, zs), res)→
UNION4(x0, cons(x, xs), ys, zs, res)

- If |res| = {x0}∪|xs|∪|ys|∪|cons(x, zs)|, then |res| = {x0}∪|cons(x, xs)|∪|ys|∪|zs|.

APPEND ord : ∀x : int .∀ys : ilist .∀zs : ilist .∀res : ilist .
(UB(x, ys),LB(x, zs),ORD(ys),ORD(zs),
APPEND(ys, cons(x, zs), res))→ ORD(res)

- If x is an upper bound for ys and a lower bound for zs, both ys and zs are ordered
and res is the concatenation of ys and cons(x, zs), then res is ordered.

APPEND union4 : ∀x : int .∀ys : ilist .∀ys1 : ilist .∀zs : ilist .∀zs1 : ilist .∀res : ilist .
(PERM(ys, ys1),PERM(zs, zs1),
APPEND(ys1, cons(x, zs1), res))→
UNION4(x, nil, ys, zs, res)

- If ys1 is a permutation of ys, zs1 is a permutation of zs and res is the concatenation
of ys1 and cons(x, zs1), then |res| = {x} ∪ |ys| ∪ |zs|.

Figure 9: Some external lemmas needed for verifying quicksort
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