Simulating n-Expansions with
B-Reductions in the Second-Order
Polymorphic A-Calculus

Hongwei Xi

Department of Mathematical Sciences
Carnegie Mellon University

Pittsburgh, PA 15213, USA

email: hwxi4+@Qcs.cmu.edu

Abstract. We introduce an approach to simulating n-expansions with
B-reductions in the second-order polymorphic A-calculus. This general-
izes the work of Di Cosmo and Delia Kesner which simulates n-expansions
with S-reductions in simply typed settings, positively solving the conjec-
ture on whether the simulation technique can be extended to polymor-
phic settings. We then present a modular proof that the second-order
polymorphic A-calculus with an expansive version of n-reduction is strong
normalizing and confluent. The simulation is also promising to provide
modular proofs showing that other rewriting systems are also strongly
normalizing after expanded with certain versions of n-expansion.

1 Introduction and Related Work

n-conversion presents an approach to studying extensional equalities for A-terms.
Given an n-equality Az.M(z) =, M, where ¢ has no free occurrences in M;
one can either say Az.M (z) n-contracts (—,) to M, or M n-expands (—,,) to
Az.M (z); the former is usually adopted as a rewrite rule since every A-term can
then be 7-contracted to an -normal form. This strategy leads to a confluent un-
typed A-calculus AB7, in which every A-term M has a f-normal form if and only
if M has a fn-normal. Carrying n-contraction into the simply typed A-calculus
A7 31, one can prove that A™ 8n is confluent and strongly normalizing. However,
problems occur when A7 (1 is augmented with a unit type T representing the
terminal object of a cartesian closed category, and an extensional rule

M_>T*’

where M is of type T and #* is the only element in T. The confluence breaks
down as shown in the following well-known example [16]:

Az.f(z) =y, [and Az.f(x) = Az.x,

where f is of type T — T and z of type T. Note that both f and Az.x cannot be
contracted further. This is a serious drawback since it can easily occur when one

adds n-contraction to algebraic rewriting systems. One immediate remedy is to
allow N —p_ 1 Az.* for every term N of type T — T. However, this method
can produce an unwieldy system since infinitely many rules have to be included
in order to handle terms of other similar types.

The use of n-expansion as a rewrite rule was suggested in [18]. Mints [17]
presented a proof for the confluence and (weak) normalization of a simply typed
A-calculus with surjective pairing and 7-expansion. A flaw in Mints’s proof was
later corrected in [6]. Y. Akama [1] proved the confluence and strong normal-
ization of the above system, which is also given by C.B. Jay and N. Ghani [15].
Di Cosmo and Kesner discovered a translation (-)° which simulates n-expansion
with S-reduction in a simply typed setting [8]. An application of this translation
can also be found in [7].

The following example shows that applying n-expansion unconditionally eas-
ily leads to infinite reduction sequence.

l,A—)B %77* /\yA..Z‘A%B(yA) %77* /\yA.()\yA.xA%B(yA))(yA) %77*

However, this can be remedied by applying —,, with restrictions; namely, A-
abstraction cannot be n-expanded, nor can terms which are applied to other
terms. Systems with such restricted n-expansions have been receiving attentions
of a growing number of researchers as shown in the reference.

The translation discovered by Di Cosmo and Kesner provides a modular
approach to proving that many rewriting systems are still strong normalizing
and confluent after augmented with restricted versions of n-expansion [7]. This
is a very useful proof technique in the first-order settings. Unfortunately, their
translation cannot be applied to polymorphic settings directly. Although they
have proven that the second-order polymorphic A-calculus with surjective pairing
and a version of n-expansion is strongly normalizing and confluent, their proof is
not modular. Compared with the corresponding results in simply typed settings,
this is less satisfactory.

We will generalize the translation of Di Cosmo and Kesner to the second-
order polymorphic A-calculus. We then present a modular proof, showing the
second-order polymorphic A-calculus with a version of n-expansion is strongly
normalizing and confluent. This new translation is also promising to be a pow-
erful technique dealing with n-expansions in other polymorphic settings [5].

Extensional polymorphism is studied in [5, 9, 10, 13]. A modular proof for the
strong normalisation and confluence of A3B27m. (in our notation) is given in [10],
which is rather long and complicated. Since AB3B27. is A3B2n.n2 excluding 2,
the result simply follows from our main result (Corollary 9). We point out that
proofs for our main result have been already presented in [9] and [13], but those
proofs are not modular. They are established upon the well-known reducibility
candidates method due to Tait [21] and Girard [14].

It is interesting to mention that the author learned the use 7-expansion while
studying the equivalence between strong and weak normalizations in various
typed A-calculi. Schwichtenberg [20] used n-expansion to translate simply typed
A-terms into simply typed Al-terms so that F-reduction sequences from the

former can be simulated by those from the latter. This can yield a bound for
the lengths of f-reduction sequence from simply typed terms. Details can also

be founded in [22].

2 Preliminaries

The second-order polymorphic typed A-calculus A2 is originally introduced in
[14] and [19], where Church typing is involved. We now give a slightly different
formulation of A2.

Types A, B ::=

alb|X|A— B|VX.A
Terms M, N ::= z4

b
| (A2A.M) | M(N) | (AX.M) | M(4)

We use a, b for base types, X for type variables, A, B for types, M, N for terms
and z4,y4 for variables of type A. We write [B/X]A for the type obtained by
substituting B for every free occurrence of X in A. We often write A\z“4.M for
(AzA.M) and AX.M for (AX.M), enhancing clarity.

As usual, let FV(M) be the set of free (term) variables in term M and
FTV(A) be the set of free type variables in type A. We also need the following
notions: FTV(M) is the set of free type variables in term M and FTFV(M) is
the set of free type variables in the types of free variables in M.

FTV(z4) = FV(A) FTV(M(N)) = FTV(M)UFTV(N)
FTV(Az4.M) = FTV(A) UFTV(M) FTV(AX.M) = FTV(M)\{X}
FTV(M(A)) = FTV(A)UFTV(M) FTFV(M)=J{FTV(A): 24 € FV(M)}

We assume the familiarity of the reader with free and bound occurrences of vari-
ables. Term equalities are modulo a-conversions, which are often taken implicitly.
The followings are typing rules for A2.

—l_xA.A(var)
FM:B p FM:A— B I—N:A/
= : (=1 : (= E)
F(Az*.M):A—> B FM(N):B
FM:A FM:VX.A
(VI)* (VE)

F(AX.M):VX.A - M(B): [B/X]A"

Note that the rule VI can be applied only if X ¢ FIFV(M). A term M is a
A2-term of type A if H M : A is derivable.

An advantage of this formulation is that we can define a function 7 which
maps terms to their types without bothering their typing derivations.

r(z4) = A r(AzA. M) = A — (M)
T(M(N))=B,if r(M)=A — B and 7(N) = 4;
T(AX.M) =VX.7(M) 7(M(B)) = [B/X]A, if T(M) =Y¥X.A

Since 7-expansions needs the guidance of types, this formulation of A2 brings a
great deal of convenience in our following development. If we use typing rules

with contexts in the formulation of A2, we have to carry contexts around in order
to compute the types of open terms, complicating our following presentation
significantly.

Propositionl. For every term M, M is a A2-term of type A if and only if
(M) =A.

Proof. A structural induction on M yields the result. a

Given a A2-term M of type A; for every A-term of type B, [N/xB]M is the
term obtained by substituting N for every free occurrence of z? in M; for
every type B, [B/X]M is the term obtained by substituting B for every free
occurrence of X in M; it can be readily verified that 7([N/zB]M) = A and
([B/X|M) = [B/X]A. We now present the reduction rules for the second order
extensional A-calculus A\3Ban.n?.

— (B-contraction) (Az4.M)(N) LA [N/zA]M

(82-contraction) (AX.M)(A) & [A/X]M

(n-expansion) M Ty AzA M (z4), if 4 ¢ FV(M) and 7(M) = A — B for
some B and M is nozt a A-abstraction

~ (n*-expansion) M Iy AXM(X), if X ¢ FIV(M) and 7(M) = VX.B for

some B and M is not a A-abstraction

B-reduction (—g) is given below, and $?-reduction (—42) can be given accord-
ingly.

My B My =5 M, My —5 M,
My =5 M, AeA My —p Az M, My(N) =5 My(N)
My —5 M, My —5 M, My —p5 M,

N (M) =5 N(M,) AX.M; =5 AX M, My (A) =5 My(A)

n-reduction (—,,) and n*-reduction (—,2) can also be defined accordingly with
the following restrictions, respectively.

My =y, Msy(except M, Y Ms) My —,2 Ms(except M Iy Ms)
le (47\7) %77* AMQ(AV) Ml(A) %nf MQ(A)

Now we define reduction — and — as follows.
BB2n.n? Bp2

662—17:775 =—=pU—=p2U—y U=y and W = —p U—p2.
For any decorated reduction notation of — in this paper, the corresponding
decorated reduction notations of — and —»7% stand for some (possibly zero) and
a positive number of steps of such a reduction, respectively. We shall use subject
reduction property of A2 implicitly in our following presentation. We assume the
familiarity of the reader with this property.

3 Translation and Simulation

X=X

For each type variable X, we assign to it a fresh term variable v of type

X — X, which will only be used for the following translation purpose.

[b] = IX|=X
|A — B| = |A| — |B| VXAl =VX.(X = X) = |4]
Ay = Azt b Ax = XX

Axsp = a4 Byl AL Ap (2142 Bl(A 4 (y141)))

Ayx a = A:L‘lVX‘Al.AX./\UX%X.AA(;l‘lVX'Al(X)(UX_’X))
Notice Aqosp(297)—r5(Ay®.2%7°(y*)), which is the —,,-normal form of z%=°.
In general, for M of type A, As(M) BB%-reduces a —y.n2-normal form which
closely relates to the —, ,2-normal form of M as shown below. These A’s are

called expansors, which set up the machinery to simulate n-expansions with
(B-reductions.

Proposition2. Given types A and B, the following hold.

1. [|Bl/X]|A| = |[B/ X]Al
2. r(A4) = |A] — |A].
3. [Ap/vPIPIBI|B|/X] A4 = Algxa-

Proof. An structural induction on A yields the results. O
We use AY (M) for M and AT (M) for As(A%(M)) when n > 0.

Definition 3. We now define versions of |M| and |M|* inductively.

24| = A7 («141) |24+ = Aa(jz?])

(A2t M) = AL o QLMY (e M) = [(Aa?)]
[M(N)| = ATy vy IMI(INTF)) M (N)[* = Az vy (|M(N)])
(AX.M)| = ALy (AX XXX [MIP) [(AX.M)[F = |(AX. M)
|M(B)| = A7y 5y (IM|(|B[)(AB)) |M(B)[* = Ar(um)) (1M (B)])

Note that n can be any nonnegative integers here. Hence, for every A2-term, | M|
and |M |t have infinitely many different versions.

We shall try to simulate a ﬁﬁ—> -reduction sequence from M with some W—

2nang 2
reduction sequence from |M |t. The need of versions can be explained as follows.
Given M —5 N, we need to have [M|t—33|N|* in order to make the simulation
work. Suppose we translate (Az4.24)(M) to (Az?.A4(z4))(Aa(M)), which 8-
reduces to A% (M). Note that A% (M) can not be B-reduced to Ay (M), though
they may be B-equivalent. This forces us to adopt that A% (M) is also a version
of [M|* since the simulation would break down otherwise.

Examples Given M = z%7%(y?), where a, b are base types; AZ(z97%(A,(y?)))
is a version of |M| and a version of |[M|*; A, (227°)(AZ(y%)) is a version of
|M], but not a version of |[M|*. Let N = AX.(Az* .2X) and A = a — b; note
N(A) is in n.nZ-normal form; we have N(A4) =52 N1 = (Az#.24) but Ny is not
in n.-normal form; we translate N(A) to

(AX XXX (X X=X (X)) (A4)(A4);

this translation 32-reduces to (Az#.A4(z4)), which is a version of |N1|*; then
n-expansion from Nj can be simulated. The use of v* =X is like an expansor
candidate which will be instantiated with some expansor when X is instantiated.

We often use | M| (|M|*) for a version of |M| (|M|*) in our following writing.
This convention brings a great deal of convenience and turns out to be adequately
clear, esp. with the help of contexts. For instance, |M]| %»2 | N| means that every

version of |M| B33%-reduces to some version of |N]|.
If the reader is interested in the proof details for the following results, please

see [23].

Proposition4. Given A2-term M of type A and N of type B, we have the
following.
1. |M| and | M|t are A2-terms of type | A|.
2. [[N|/«'BY|M| is a version of |[[N/xP]M]|, and
[|N|/z!Bl||M |t is a version of |[N/xzP]M|*.
3. [Ag/vIBI=IBI[|B|/X]|M| is a version of |[B/X]M|, and
[Ap/vIBI=IBI[|B|/ X]| M|t is a version of |[B/X]M|?.

Proof. By a structural induction on M. a

Proposition5. We have the following.

1. For every A2-term Az .M of type A = B, |)\;13A.M|—»5)\;17|A|.|M|+.
2. For every A2-term AX.M of type VX.A, |AX.M| lﬁzAX.)\vX_’X.|M|+.

Proof. We may assume
Az M| =A% p(Az? | M|T) and |[AX.M|= ALy ,(AX XXX | M|
for some n. The proof proceeds by induction on n.

— n=20. (1) and (2) hold by definition.
— n=k+ 1 for some k£ > 0. Then by induction hypothesis, we have

A st M) = Ausp(Af_ (1At M)
—3 A p(Azl4l|M|1), by induction hypothesis
rp AL A (LM) (A4(141)))
—p Ay Ap ([Aa(y4l) /el p]T)
= Ayl |[y4/xA]M|*, by Proposition 4 (2)
= Mzl |M|*, a-conversion

Also, we have

AL (JAXM)) = Avx a(Ax 4 (|AX.M]))
ﬁ—ﬁ)z Ayx a(AX 20X X |M|*), by induction hypothesis

=g AX XX AL (AX XX | MH)(X) (X 2X))
ﬁ_ﬁ»2 AX X=X M|t

Hence, we are done.

The next lemma will be used to establish our main simulation result.

Lemma6. (Main Lemma) We have the followings.
1. Given R= (A\e*.M)(N) and M* = [N/«]M, |R|—}|M*|.
2. Given R = (AX.M)(B) and M* = [B/X]M, |R|[¥»2+|M*|.
3. Given M I3 e M (z4), M|t =5 \e! 41 M (2)|F.

. Given M ™S AX.M(X), |M[* = JAXM (X)) *

Proof. For (1), we have

AzA. M|(|N[*)), by definition

[R| = Al
(A4l | M|F)(|N|T)), by Proposition 5 (1)
[
|

)
—7g An(R)
= A”(R) (N[/AT)

(R) M*|*), by Proposition 4 (2)

= |M |*, since T7(R) = 7(M*)

o~~~ —

For (2), we have

|R| = R (|IAX.M|(|B|)(AB)), by definition
[;j)z A” (R) ((AX./\UX_*X.|M|+)(|B|)(AB)), by Proposition 5 (2)
[;;f A2y ([A /P2 1B B/ X] | M |F)
= (|M*|+), by Proposition 4 (3)

= |M*|+ since 7(R) = 7(M*)

For (3), we have

M|t = Az (|M]), since M is not a A-abstraction
s AL Ap(IM (A4 (1)),

by Proposition 5 (1), where A — B = 7(M)

Myl 4| M (y)|*, by definition

Azl | M (z)|*, by a-conversion

|Ae! AL M (2)|F, by definition

For (4), we have

|M|* = A, (|M]), since M is not a A-abstraction

@z AX)\vX_*X Ap(|M|(X)(vE7XY),

by Proposition 5 (1), where VX.A = (M)
= AX XX |M(X)[*, by definition
|AX.M(X)|*, by definition

O
Note that —— is defined as —g U —g2 U =, U —,2 and W as —g

BB2nng
U —g2. We now state and prove our main simulation result.

Theorem 7. (Simulation) M — M’ implies |M|T—+|M'|*.
BB nen3 6p?

Proof. We proceed by a structural induction on M to show the followings simul-
taneously.

1. M — M’ implies |M|—»+|M’| unless M 55 M’ or M 4M’

BB2n.n2
2. M — M’ implies |M|+—»+|M I*.
BB2n.n2
Note za=t 13 = (Ay®.z97(y?)), but z7*° a version of |£27%|, is in B-normal form.

This explains why the restriction on (1) is necessary. We now do a case analysis
on the structure of M.

- M£>M’, Mﬁ—>M’, M2 M or M2 M'. This followsfrom Lemma 6.

— M = My(N) and M’ = M{(N) and Mlﬁ—> M|. Then M; 13 M] cannot
nani

hold. By induction hypothesis on (1), |M1|ﬁ—ﬁ>z+|M1|. Hence,
|M| = A%y (IML|(IN]F)) = o AL (IMI|(INTF) = [M].
Therefore (1) holds. (2) follows immediately.
— M = N(M;) and M’ = N(M{) and Mlﬁﬁ—> M. By induction hypothesis
*nen?

on (2), |M1|+[¥Z+|M{|+. Hence,
|M| = A% (INI(1M1]F) = e TAY Gy (IN[(1M2]F) = M.

Therefore (1) holds. (2) follows immediately.

— M = M,(B) and M' = M/{(B). Then M, Iy M{ cannot hold. By induction
hypothesis on (1), |M1|—»+|M{| This implies that (1) and (2) hold.

- M =Xzt M, — /\x M = M oo M = AXM; — AX.M{ = M'.
BB2n.n BB2n.n
(1) and (2) follow from induction hypothesis.

O

4 ﬁﬁ—) is strongly normalizing and confluent
R/EUH

Given some reduction —, we write A2 = SA(—) meaning that — is strongly
normalizing in A2, i.e., there exist no infinite —-reduction sequences starting
from A2-terms.

Theorem 8. \2 | SN(ﬁﬁ—)) if and only if A2 = S/\/(W)
2nan? :

Proof. If there exists an infinite — 2—reduction sequence
BB2neng

M2—>M3

M, — — e
BBAn.ni BBZnani BBZnni

then by Theorem 7 we have the following corresponding sequence

|M1|+—»+|M2|+—»+|M3|+—»+ e

Bp? Bp? Bp?
Therefore, A2 = SN (—) implies A2 = SA(—). The other direction is
pB? BB2nan
trivial. O

Notice that this is a proof which can be formulated in the first-order Peano
arithmetic.

Corollary 9. FEvery A2-term s strongly — Z-normalizing and confluent.
BB2nng

Proof. Since it is well-known that A2 | SN (—), A2 £ SN(—) follows

78 BB2nn?
immediately. It can be verified that — is weakly confluent [8]. Therefore,
BB2nan;
— is confluent by Newman’s Lemma.

BB*n.n?

Roberto Di Cosmo and Delia Kesner have also proven Corollary 9 in [9] with a
method involving reducibility candidates due to Tait [21] and Girard [14]. Hence,
their proof is not modular. Also a modular proof for the strong normalization
and confluence of a subsystem of A\33?n.n? is presented in [10], but the proof
— in the author’s opinion — is very much involved and can hardly be scaled to
other more complicated systems such as A33%n.n2.

5 Conclusions and Future Work

We have demonstrated how to simulate n-expansion with SG-reduction in the

second-order polymorphic A-calculus A2. This yields a proof of the equivalence

between A2 = SN(%)) and A2 SN(ﬁﬁz—) ,), which can be formulated in
nen3

the first-order Peano arithmetic. A clean modular proof of A2 |= SN(ﬁﬁ—))
H

follows immediately. We intend to investigate the effects of augmenting first-
order algebraic rewriting systems with ﬁﬁTnQ. Improvements on [5] seems to be
immediate. Also we shall study the use of our technique in more complicated A-
calculi such as the high-order polymorphic A-calculus Aw and the construction of
calculus AC'. Some current work on combining algebraic term rewriting systems
with A38%n.n2 can be found through the pointer below.
http://www.cs.cmu.edu/ huxi/papers/TRS.ps

6 Acknowledgement

I thank Frank Pfenning, Peter Andrews and Richard Statman for their support
and for providing me a nice work environment. I also thank Roberto Di Cosmo
for his comments on a draft of the paper.

References

1. Y. Akama (1993), On Mints’ reduction for ccc-calculus. In Typed lambda-calculi
and applications, vol. 664 of LNCS, pp 1-12.

2. H.P. Barendregt (1984), The Lambda Calculus: Its Syntax and Semantics, North-
Holland publishing company, Amsterdam.

3. H.P. Barendregt (1992), Lambda calculi with types, Handbook of Logic in Computer
Science edited by S. Abramsky, Dov M. Gabbay and T.5.F. Maibaum, Clarendon
Press, Oxford, pp. 117-414.

4. Val Breazu-Tannen and Jean Gallier (1991), Polymorphic rewriting conserves
strong normalization, Theoretic Computer Sicence, vol. 83, pp 3-28.

5. Val Breazu-Tannen and Jean Gallier (1994), Polymorphic rewriting preserves al-
gebraic confluence, Information and Computation, vol. 114(1), pp. 1-29.

6. Djordje Cubric (1992), On free ccc, Manuscripts.

7. R. Di Cosmo and D. Kesner (1994), Combining the first order algebraic rewrit-
ing systems, recursion and extensional lambda calculi. In Serge Abiteboul and Eli
Shamir, editors, International Conference on Automata, Languages and Program-
ming, vol. 820 of LNCS, pp. 462-472.

8. R. Di Cosmo and D. Kesner (1994), Simulating expansions without expansions.
Mathematical Structures in Computer Science, vol. 4, pp. 1-48.

9. R. Di Cosmo and D. Kesner (1995), Rewriting with polymorphic extensional
lambda-calculus. In Proceedings of Computer Science Logic 95, vol. 1092 of Lec-
ture Notes in Computer Science, pages 215-232.

10. R. Di Cosmo and A. Piperno (1995), Expanding Extensional Polymorphism, In
Proceedings of Typed Lambda-Calculi and Applications, vol. 902 of LNCS, pp. 139-
153.

11. Daniel J. Dougherty (1993), Some lambda calculi with categorical sums and prod-
ucts. In Proceedings of the 5th International Conference on Rewriting Techniques
and Applications.

12. N. Ghani (1995), 8n-equality for coproducts. In Typed lambda-calculi and applica-
tions, vol. 902 of LNCS, pp. 171-185.

13. N. Ghani (1996), Eta Expansions in System F, Manuscripts.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

J.-Y. Girard (1972), Interprétation fonctionnelle et élimination des coupures de
Parithmétique d’ordre supérieur, Thése de doctorat d’etat, Université Paris VII.
C.B. Jay and N. Ghani (1996), The virtues of eta-expansion, Journal of Functional
Programming, vol. 5(2), pp. 135-154.

J. Lambek and P.J. Scott (1986), An introduction to higher order categorical logic,
Cambridge University Press.

G.E. Mints (1979), Theory of categories and theory of proofs (I). In Urgent Ques-
tion of Logic and the Methodology of Science [In Russian], Kiev.

D. Prawitz (1971), Ideas and results of proof theory, Proceedings of the 2nd Scan-
dinavia logic symposium, editor J.E. Fenstad, North-Holland Publishing Company,
Amsterdam.

J. Reynolds (1974), Towards a theory of type structure, Colloquium sur la Progr-
mmation, vol. 19 of LNCS, pp. 408-423.

H. Schwichtenberg (1991), An upper bound for reduction sequences in the typed
lambda-calculus, Archive for Mathematical Logic, 30:405-408.

W. Tait (1967), Intensional Interpretations of functionals of finite type I, J. sym-
bolic logic 32, pp. 198-212.

H. Xi (1996), Upper bounds for standardizations and an application, Research
Report 96-189, Department of Mathematical Sciences, Carnegie Mellon University,
Pittsburgh.

H. Xi (1996), Simulating eta-expansions with beta-reductions in the second-
order polymorphic lambda-Calculus, Research Report, Department of Mathemat-
ical Sciences, Carnegie Mellon University, Pittsburgh. Available through pointer:
http://www.cs.cmu.edu/ "hwxi/papers/EtaSim.ps

This article was processed using the INTRX macro package with LLNCS style

