
Applied Type System?

(Extended Abstract)

Hongwei Xi

Boston University

Abstract. The framework Pure Type System (PTS) offers a simple
and general approach to designing and formalizing type systems. How-
ever, in the presence of dependent types, there often exist some acute
problems that make it difficult for PTS to accommodate many common
realistic programming features such as general recursion, recursive types,
effects (e.g., exceptions, references, input/output), etc. In this paper, we
propose a new framework Applied Type System (ATS) to allow for de-
signing and formalizing type systems that can readily support common
realistic programming features. The key salient feature of ATS lies in
a complete separation between statics, in which types are formed and
reasoned about, and dynamics, in which programs are constructed and
evaluated. With this separation, it is no longer possible for a program
to occur in a type as is otherwise allowed in PTS. We present not only
a formal development of ATS but also mention some examples in sup-
port of using ATS as a framework to form type systems for practical
programming.

1 Introduction

There is already a framework Pure Type System (PTS) [Bar92] that offers a sim-
ple and general approach to designing and formalizing type systems. However,
in the presence of dependent types, there often exist some acute problems that
make it difficult for PTS to accommodate many common realistic programming
features. In particular, we have learned that some great efforts are required in
order to maintain a style of pure reasoning as is advocated in PTS when pro-
gramming features such as general recursion [CS87], recursive types [Men87],
effects [HMST95], exceptions [HN88] and input/output are present. To address
such limitations of PTS, we propose a new framework Applied Type System
(ATS) to allow for designing and formalizing type systems that can readily sup-
port common realistic programming features. The key salient feature of ATS
lies in a complete separation between statics, in which types are formed and
reasoned about, and dynamics, in which programs are constructed and evalu-
ated. This separation, with its origin in a previous study on a restricted form
of dependent types developed in Dependent ML (DML) [XP99,Xi98], makes it
feasible to support dependent types in the presence of effects such as references

? Partially supported by NSF grants no. CCR-0224244 and no. CCR-0229480

and exceptions. Also, with the introduction of two new (and thus unfamiliar)
forms of types: guarded types and asserting types, we argue that ATS is able to
capture program invariants in a more flexible and more effective manner than
PTS.

The design and formalization of ATS constitutes the primary contribution
of the paper, which aims at setting a reference point for future work that makes
use of similar ideas presented in [Zen97,XP99,XCC03]. With ATS, we can read-
ily form type systems to support many common programming features in the
presence of dependent types, overcoming certain inherent deficiencies of PTS.
We are currently in the process of designing and implementing a typed func-
tional programming language with its type system based on ATS that can sup-
port not only dependent types (like those developed DML) but also guarded
recursive datatypes [XCC03]. With such a design, we seek to support a vari-
ety of language extensions by mostly implementing new language constructs in
terms of existing ones, following an approach like the one adopted by Scheme.
In particular, we have already shown that various programming features such as
object-oriented programming [XCC03], meta-programming [XCC03,CX03] and
type classes [XCC02] can be handled in such a manner.

We organize the rest of the extended abstract as follows. In Section 2, we
present a detailed development of the framework ATS, formalizing a generic
applied type system ATS constructed in ATS and then establishing both sub-
ject reduction and progress theorems for ATS. We extend ATS in Section 3 to
accommodate some common realistic programming features such as general re-
cursion, pattern matching and effects, and present some interesting examples of
applied type systems in Section 4. Lastly, we mention some related work as well
as certain potential development for the future, and then conclude. A completed
full paper is availabe on-line [Xi03] in which the missing details in this extended
abstract can be found.

` S∅ [sig]

` S [sig]

` S, sc : [σ1, . . . , σn] ⇒ b [sig]

Σ(a) = σ

Σ `S a : σ

S(sc) = [σ1, . . . , σn] ⇒ b Σ `S si : σi for i = 1, . . . , n

Σ `S sc[s1, . . . , sn] : b

Σ, a : σ1 `S s : σ2

Σ `S λa : σ1.s : σ1 → σ2

Σ `S s1 : σ1 → σ2 Σ `S s2 : σ1

Σ `S s1(s2) : σ2

Fig. 1. The signature formating rules and the sorting rules for statics

2 Applied Type System

We present a formalization of the framework Applied Type System (ATS) in this
section. We use the name applied type system for a type system formed in the
ATS framework. In the following presentation, let ATS be a generic applied type
system, which consists of a static component (statics) and a dynamic component

(dynamics). Intuitively, the statics and dynamics are each for handling types and
programs, respectively. To simplify the presentation, we assume that the statics
is a pure simply typed language and we use the name sort to refer to a type in
this language. A term in the statics is called a static term while a term in the
dynamics is called a dynamic term, and a static term of a special sort type serves
as a type in the dynamics.

2.1 Statics

We present a formal description of a static component. We write b for a base
sort and assume the existence of two special base sorts type and bool .

sorts σ ::= b | σ1 → σ2

static terms s ::= a | sc[s1, . . . , sn] | λa : σ.s | s1(s2)
static var. ctx. Σ ::= ∅ | Σ, a : σ
signatures S ::= S∅ | S, sc : [σ1, . . . , σn] ⇒ b
static subst. ΘS ::= [] | ΘS [a 7→ s]

We use a for static term variables and s for static terms. There may also be
some declared static constants sc, which are either static constant constructors
scc or static constant functions scf . We use [σ1, . . . , σn] ⇒ b for sc-sorts, which
are assigned to static constants. Given a static constant sc, we can form a term
sc[s1, . . . , sn] of sort b if sc is assigned a sc-sort [σ1, . . . , σn] ⇒ b for some sorts
σ1, . . . , σn and si can be assigned the sorts σi for i = 1, . . . , n. We may write sc
for sc[] if there is no risk of confusion. Note that a sc-sort is not regarded as a
(regular) sort.

We use ΘS for a static substitution that maps static variables to static terms
and dom(ΘS) for the domain of ΘS . We write [] for the empty mapping and
ΘS [a 7→ s], where we assume a 6∈ dom(ΘS), for the mapping that extends ΘS

with a link from a to s. Also, we write •[ΘS] for the result of applying ΘS to
some syntax •, which may represent a static term, a sequence of static terms, or
a dynamic variable context as is defined later.

A signature is for assigning sc-sorts to declared static constants sc, and the
rules for forming signatures are in given Figure 1. We assume that the initial
signature S∅ contains the following declarations,

1 : [] ⇒ type > : [] ⇒ bool ⊥ : [] ⇒ bool

→tp : [type, type] ⇒ type ⊃ : [bool , type] ⇒ type

∧ : [bool , type] ⇒ type ≤tp : [type, type] ⇒ bool

that is, the static constants on the left-hand side of : are assigned the corre-
sponding sc-sorts on the right-hand side. Also, for each sort σ, we assume that
S∅ assigns the two static constructors ∀σ and ∃σ the sc-sort [σ →tp type] ⇒ type.
We may use infix notation for some static constants. For instance, we write
s1 →tp s2 for →tp [s1, s2] and s1 ≤tp s2 for ≤tp [s1, s2]. In addition, we may
write ∀a : σ.s and ∃a : σ.s for ∀σ[λa : σ.s] and ∃σ[λa : σ.s], respectively. The

sorting rules for the statics are given in Figure 1, which are mostly standard. For
instance, ∀a : type.a →tp a is a static term that can be assigned the sort type
since ∅ `S∅ ∀type [λa : type.a →tp a] : type is derivable. A static constructor sc is
a type constructor if it is assigned a sc-sort [σ1, . . . , σn] ⇒ type for some sorts
σ1, . . . , σn. For instance, 1, →tp, ⊃, ∧, ∀σ and ∃σ are all type constructors, but
≤tp is not. Intuitively, 1 represents the usual unit type and →tp forms function
types, and ≤tp stands for a subtyping relation on types. The static constructors
⊃ and ∧ form guarded types and asserting types, respectively, which are to be
explained later.

We use Σ for a static variable context that assigns sorts to static variables;
dom(Σ) is the set of static variables declared in Σ; Σ(a) = σ if a : σ is declared
in Σ. As usual, a static variable a may be declared at most once in Σ. A static
term s is called a proposition under Σ if Σ ` s : bool is derivable. We use P
for propositions (under some static variable contexts). We use the name guarded
type for a type of the form P ⊃ s and the name asserting type for a type of the
form P ∧ s, both of which are involved in the following example.

Example 1. Let int be the sort for integers1 and list be a type constructor of
the sc-sort [type, int] ⇒ type. Then the following static term is a type:

∀a : type.∀n : int . n ≥ 0 ⊃ (list[a, n] →tp list[a, n])

Intuitively, if list[s, n] is the type for lists of length n in which each element
is of type s, then the above type is intended for a function from lists to lists
that preserves list length. Also, the following type is intended to be assigned to
a function that returns the tail of a given list if the list is not empty or simply
raises an exception otherwise.

∀a : type.∀n : int . n ≥ 0 ⊃ (list[a, n] →tp n > 0 ∧ list[a, n− 1])

The asserting type n > 0 ∧ list[a, n− 1] captures the invariant that n > 0 holds
and the returned value is a list of length n − 1 if the function returns after it
is applied to a list of length n. This is rather interesting feature and will be
further explained later in Example 2. While there are already some traces of
asserting types in the studies on Dependent ML [XP99,Xi98], the precise notion
of asserting types has not be previously formalized: In DML, one must use subset
sorts to simulate what we call asserting types here.

As in the design of PTS, the issue of type equality plays a profound rôle in
the design of ATS. However, further study reveals that type equality in ATS
can be defined in terms of a subtyping relation ≤tp. Given two types s1 and s2,
we say that s1 equals s2 if both the proposition s1 ≤tp s2 and the proposition
s2 ≤tp s1 hold. In general, we need to determine whether a given proposition
holds (under certain assumptions), and we introduce the following notion of
constraint relation for this purpose.
1 Formally speaking, we need to say that for each integer n, there is a static constructor

n of the sc-sort [] ⇒ int and n[] is the static term of the sort int that corresponds
to n.

Σ; ~P |=S >
(reg-true)

Σ; ~P ,⊥ |=S P
(reg-false)

Σ; ~P |=S P0

Σ, a : σ; ~P |=S P0

(reg-var-thin)
Σ `S P : bool Σ; ~P |=S P0

Σ; ~P , P |=S P0

(reg-prop-thin)

Σ, a : σ; ~P |=S P Σ `S s : σ

Σ; ~P [a 7→ s] |=S P [a 7→ s]
(reg-subst)

Σ; ~P |=S P0 Σ; ~P , P0 |=S P

Σ; ~P |=S P
(reg-cut)

Σ `S s : type

Σ; ~P |=S s ≤tp s
(reg-refl)

Σ; ~P |=S s1 ≤tp s2 Σ; ~P |=S s2 ≤tp s3

Σ; ~P |=S s1 ≤tp s3

(reg-tran)

Fig. 2. Regularity Rules

Definition 1. Let S, Σ, ~P , P0 be a static signature, a static variable context, a
set of propositions under Σ and a proposition under Σ, respectively. We say a
relation Σ; ~P |=S P0 is a regular constraint relation if the following regularity
conditions are satisfied:

1. all the regularity rules in Figure 2 are valid; that is, for each regularity rule,
the conclusion of the rule holds if the premises of the rule hold, and

2. Σ; ~P |=S s1 →tp s2 ≤tp s′1 →tp s′2 implies Σ; ~P |=S s′1 ≤tp s1 and Σ; ~P |=S
s2 ≤tp s′2, and

3. Σ; ~P |=S P ⊃ s ≤tp P ′ ⊃ s′ implies Σ; ~P , P ′ |=S P and Σ; ~P , P ′ |=S s ≤tp

s′, and
4. Σ; ~P |=S P ∧ s ≤tp P ′ ∧ s′ implies Σ; ~P , P |=S P ′ and Σ; ~P , P |=S s ≤tp s′,

and
5. Σ; ~P |=S ∀a : σ.s ≤tp ∀a : σ.s′ implies Σ, a : σ; ~P |=S s ≤tp s′, and
6. Σ; ~P |=S ∃a : σ.s ≤tp ∃a : σ.s′ implies Σ, a : σ; ~P |=S s ≤tp s′, and
7. ∅; ∅ |=S scc [s1, . . . , sn] ≤tp scc ′[s′1, . . . , s

′
n′] implies scc = scc ′.

Note that we assume Σ `S P : bool is derivable for each P ∈ ~P , P0 whenever we
write Σ; ~P |=S P0.

We are in need of a regular constraint relation when forming the dynamics of
ATS. Every single regularity rule as well as every single regularity condition
is used later for establishing the subject reduction theorem (Theorem 1) and
and the progress theorem (Theorem 2). In general, the framework ATS is pa-
rameterized over regular constraint relations. We need not be concerned with
the decidability of a regular constraint relation at this point. For each regular
constraint relation |=S , we may simply assume that an oracle is available to de-
termine whether Σ; ~P |=S P0 holds whenever appropriate Σ, ~P and P0 are given.
Later, we will present some examples of applied type systems where there are
practical algorithms for determining the regular constraint relations involved.

It should be emphasized that because of impredicativity, it is in general a
rather delicate issue as to how a regular constraint relation |=S can be properly
defined for a given signature S. In [Xi03], we have presented a model-theoretical
approach to address this important issue.

2.2 Dynamics

The dynamics of ATS is a typed language and a static term of the sort type is
a type in the dynamics. There may be some declared dynamic constants, and
we are to assign a dc-type of the following form to each dynamic constant dc of
arity n,

∀a1 : σ1 . . .∀ak : σk.P1 ⊃ (. . . (Pm ⊃ ([s1, . . . , sn] ⇒tp s)) . . .)

where s1, . . . , sn, s are assumed to be types. In the case where dc is a dynamic
constructor dcc , the type s needs to be of the form scc [~s] for some type con-
structor scc , and we say that dcc is associated with scc . Note that we use ~s for
a (possibly empty) sequence of static terms. For instance, we can associate two
dynamic constructors nil and cons with the type constructor list as follows by
assigning them the following dc-types,

nil : ∀a : type.list[a, 0]
cons : ∀a : type.∀n : int .n ≥ 0 ⊃ ([a, list[a, n]] ⇒tp list[a, n + 1])

where we use list[a, n] as the type for lists of length n in which each element is
of type a.

dyn. terms d ::= x | dc[d1, . . . , dn] | lam x.d | app(d1, d2) |
⊃+(v) | ⊃−(d) | ∧(d) | let ∧(x) = d1 in d2 |
∀+(v) | ∀−(d) | ∃(d) | let ∃(x) = d1 in d2

values v ::= x | dcc [v1, . . . , vn] | lam x.d |⊃+(v) | ∧(v) | ∀+(v) | ∃(v)
dyn. var. ctx. ∆ ::= ∅ | ∆, x : s
dyn. subst. ΘD ::= [] | ΘD[x 7→ d]

Fig. 3. The syntax for dynamics

` S [sig]

Σ `S ∅ [dctx]

Σ `S ∆ [dctx] Σ `S s : type

Σ `S ∆, x : s [dctx]

Fig. 4. The formation rules for dynamic variable contexts

We use ΘD for a dynamic substitution that maps dynamic variables to dy-
namic terms and dom(ΘD) for the domain of ΘD. We omit presenting the
syntax for forming and applying dynamic substitutions, which is similar to that
for static substitutions. Given Θ1

D and Θ2
D such that dom(Θ1

D)∩dom(Θ2
D) = ∅,

we use Θ1
D ∪Θ2

D for the union of Θ1
D and Θ2

D.
For Σ = a1 : σ1, . . . , ak : σk, we may write ∀Σ.• for ∀a1 : σ1 . . .∀ak : σk.•,

where we simply use • for arbitrary syntax. Similarly, For ~P = P1, . . . , Pm, we
may use ~P ⊃ • for P1 ⊃ (. . . (Pm ⊃ •) . . .). For instance, a dc-type is always of
the form ∀Σ.~P ⊃ ([s1, . . . , sn] ⇒tp s). The definition of signatures needs to be
extended as follows to allow that dynamic constants be declared,

signatures S ::= . . . | S, dc : ∀Σ.~P ⊃ ([s1, . . . , sn] ⇒tp s)

and the following additional rule is needed to form signatures.

` S [sig] Σ `S P : bool for each P in ~P
Σ `S si : type for each 1 ≤ i ≤ n Σ `S s : type

` S, dc : ∀Σ.~P ⊃ ([s1, . . . , sn] ⇒tp s) [sig]

The syntax for the dynamics is given in Figure 3, where we use x for dynamic
term variables and d for dynamic terms. Given a dynamic constant dc of arity
n, we write dc[d1, . . . , dn] for the application of dc to the arguments d1, . . . , dn.
In the case where n = 0, we may write dc for dc[].

The markers ⊃+ (·),⊃− (·),∧(·),∀+(·),∀−(·),∃(·) are introduced to estab-
lish Lemma 3, which is needed for conducting inductive reasoning on typing
derivations. Without these markers, it would be significantly more involved to
establish proofs by induction on typing derivations as Lemma 3 can no longer
be established as it is stated now.

A judgment of the form Σ `S ∆ [dctx] indicates that ∆ is a well-formed
dynamic variable context under Σ and S. The rules for deriving such judgments
are given in Figure 4. We use Σ; ~P ;∆ for a typing context. The following rule is
for deriving a judgment of the form `S Σ; ~P ;∆,

Σ `S P : bool for each P in ~P Σ ` ∆ [dctx]

`S Σ; ~P ;∆

which indicates that Σ; ~P ;∆ is well-formed.
A typing judgment is of the form Σ; ~P ;∆ `S d : s, where we assume that

Σ; ~P ;∆ is a well-formed typing context and Σ `S s : type is derivable. The typing
rules for deriving such judgments are presented in Figure 5, where we assume
that the constraint relation |=S is regular. We write Σ `S ΘS : Σ0 to mean
that Σ `S ΘS(a) : Σ(a) is derivable for each a ∈ dom(ΘS) = dom(Σ). Note
that we have omitted some obvious side conditions associated with some of the
typing rules. For instance, the variable a is not allowed to have free occurrences
in ~P , ∆, or s when the rule (ty-∀-intro) is applied. Also, we have imposed a
form of value restriction on the typing rules (ty-gua-intro) and (ty-∀-intro),
preparing for introducing effects into ATS later.2 For a technical reason, we are
to replace the rule (ty-var) with the following rule,

`S Σ; ~P ;∆ ∆(x) = s Σ; ~P |=S s ≤tp s′

Σ; ~P ;∆ `S x : s′
(ty-var’)

which combines (ty-var) with (ty-sub). This replacement is needed for estab-
lishing Lemma 2.

Before proceeding to the presentation of the rules for evaluating dynamic
terms, we now sketch a scenario in which a guarded type and an asserting type
2 Actually, it is already necessary to impose this form of value restriction on the typing

rule (ty-gua-intro) in order to establish Theorem 2.

Σ; ~P ; ∆ `S d : s Σ; ~P |=S s ≤tp s′

Σ; ~P ; ∆ `S d : s′
(ty-sub)

`S Σ; ~P ; ∆ S(dc) = ∀Σ0. ~P0 ⊃ [s1, . . . , sn] ⇒tp s

Σ `S ΘS : Σ0 Σ; ~P |=S P [ΘS] for each P ∈ ~P0

Σ; ~P ; ∆ `S di : si[ΘS] for i = 1, . . . , n Σ; ~P |=S s[ΘS] ≤tp s′

Σ; ~P ; ∆ `S dc[d1, . . . , dn] : s′
(ty-dc)

`S Σ; ~P ; ∆ ∆(x) = s Σ; ~P |=S s ≤tp s′

Σ; ~P ; ∆ `S x : s′
(ty-var)

Σ; ~P ; ∆, x : s1 `S d : s2

Σ; ~P ; ∆ `S lam x.d : s1 →tp s2

(ty-fun-intro)

Σ; ~P ; ∆ `S d1 : s1 →tp s2 Σ; ~P ; ∆ `S d2 : s1

Σ; ~P ; ∆ `S app(d1, d2) : s2

(ty-fun-elim)

Σ; ~P , P ; ∆ `S d : s

Σ; ~P ; ∆ `S ⊃+(d) : P ⊃ s
(ty-gua-intro)

Σ; ~P ; ∆ `S d : P ⊃ s Σ; ~P |=S P

Σ; ~P ; ∆ `S ⊃−(d) : s
(ty-gua-elim)

Σ; ~P |=S P Σ; ~P ; ∆ `S d : s

Σ; ~P ; ∆ `S ∧(d) : P ∧ s
(ty-ass-intro)

Σ; ~P ; ∆ `S d1 : P ∧ s1 Σ; ~P , P ; ∆, x : s1 `S d2 : s2

Σ; ~P ; ∆ `S let ∧(x) = d1 in d2 : s2

(ty-ass-elim)

Σ, a : σ; ~P ; ∆ `S v : s

Σ; ~P ; ∆ `S ∀+(v) : ∀a : σ.s
(ty-∀-intro)

Σ; ~P ; ∆ `S d : ∀a : σ.s Σ `S s0 : σ

Σ; ~P ; ∆ `S ∀−(d) : s[a 7→ s0]
(ty-∀-elim)

Σ `S s0 : σ Σ; ~P ; ∆ `S d : s[a 7→ s0]

Σ; ~P ; ∆ `S ∃(d) : ∃a : σ.s
(ty-∃-intro)

Σ; ~P ; ∆ `S d1 : ∃a : σ.s1 Σ, a : σ; ~P ; ∆, x : s1 `S d2 : s2

Σ; ~P ; ∆ `S let ∃(x) = d1 in d2 : s2

(ty-∃-elim)

Fig. 5. The typing rules for the dynamics

play an interesting role in enforcing security, facilitating further understanding
of such types.

Example 2. Assume that Secret is a proposition constant and password and
action are two declared functions, which are assigned the following dc-types.

action : Secret ⊃ [1] ⇒tp 1 password : [1] ⇒tp Secret ∧ 1

The function password can be implemented in a manner so that some secret
information must be verified before a call to password returns. On one hand,
the proposition Secret needs to be established before the function call action[〈〉]
can be made, where 〈〉 denotes the value of the unit type 1. On the other hand,
the proposition Secret is established after the function call password[〈〉] returns.
Therefore, a proper means to calling action is through the following program

pattern:
let ∧ (x) = password[〈〉] in . . . action[〈〉] . . .

In particular, a call to action outside the scope of x is ill-typed since the propo-
sition Secret cannot be established.

In order to assign a call-by-value dynamic semantics to dynamic terms, we
make use of evaluation contexts, which are defined below:

eval. ctx. E ::= [] | dc[v1, . . . , vi−1, E, di+1, . . . , dn] |
app(E, d) | app(v,E) |⊃− (E) | ∀−(E) |
∧(E) | let ∧(x) = E in d | ∃(E) | let ∃(x) = E in d

Definition 2. We define redexes and their reductions as follows.

– app(lam x.d, v) is a redex, and its reduction is d[x 7→ v].
– ⊃− (⊃+ (v)) is a redex, and its reduction is v.
– let ∧(x) = ∧(v) in d is a redex, and its reduction is d[x 7→ v].
– ∀−(∀+(v)) is a redex, and its reduction is v.
– let ∃(x) = ∃(v) in d is a redex, and its reduction is d[x 7→ v].
– dcf [v1, . . . , vn] is a redex if dcf [v1, . . . , vn] is defined to equal some value v,

and its reduction is v.

Given two dynamic terms d1 and d2 such that d1 = E[d] and d2 = E[d′] for
some redex d and its reduction d′, we write d1 ↪→ d2 and say that d1 reduces to
d2 in one step. We use ↪→∗ for the reflexive and transitive closure of ↪→.

We assume that the type assgined to each dynamic constant function dcf is
appropriate, that is, ∅; ∅; ∅ `S v : s is derivable if ∅; ∅; ∅ `S dcf [v1, . . . , vn] : s is
derivable and dcf [v1, . . . , vn] ↪→ v holds.

Given a judgment J , we write D :: J to indicate that D is a derivation of J ,
that is, D is a derivation whose conclusion is J .

Lemma 1 (Substitution). We have the following.

1. Assume D :: Σ, a : σ; ~P ;∆ `S d : s and D0 :: Σ `S s0 : σ. Then Σ; ~P [a 7→
s0];∆[a 7→ s0] `S d : s[a 7→ s0] is derivable.

2. Assume D :: Σ; ~P , P ;∆ `S d : s and Σ; ~P |=S P . Then Σ; ~P ;∆ `S d : s is
derivable.

3. Assume D :: Σ; ~P ;∆, x : s1 `S d2 : s2 and Σ; ~P ;∆ `S d1 : s1. Then
Σ; ~P ;∆ `S d2[x 7→ d1] : s2 is derivable.

Proof. We can readily prove (1), (2) and (3) by structural induction on D. When
proving (1) and (2), we need to make use of the regularity rules (reg-subst)
and (reg-cut), respectively.

Given a derivation D, we use h(D) for the height of D, which can be defined in
a standard manner.

Lemma 2. Assume D :: Σ; ~P ;∆, x : s1 `S d : s2 and Σ; ~P |=S s′1 ≤tp s1. Then
there is a derivation D′ :: Σ; ~P ;∆, x : s′1 `S d : s2 such that h(D′) = h(D).

Proof. The proof follows from structural induction on D immediately. The reg-
ularity rule (reg-trans) is used to handle the case where the last applied rule
in D is (ty-var’).

The following inversion is slightly different from a standard one because of
the existence of the rule (tyrule-eq).

Lemma 3 (Inversion). Assume D :: Σ; ~P ;∆ `S d : s.

1. If d = lam x.d1 and s = s1 →tp s2, then there is a derivation D′ ::
Σ; ~P ;∆ `S d : s such that h(D′) ≤ h(D) and the last rule applied in D′
is not (ty-sub).

2. If d =⊃+ (d1) and s = P ⊃ s1, then there is a derivation D′ :: Σ; ~P ;∆ `S
d : s such that h(D′) ≤ h(D) and the last rule applied in D′ is not (ty-sub).

3. If d = ∧(d1) and s = P ∧ s1, then there is a derivation D′ :: Σ; ~P ;∆ `S d : s
such that h(D′) ≤ h(D) and the last rule applied in D′ is not (ty-sub).

4. If d = ∀+(d1) and s = ∀a : σ.s1, then there is a derivation D′ :: Σ; ~P ;∆ `S
d : s such that h(D′) ≤ h(D) and the last rule applied in D′ is not (ty-sub).

5. If d = ∃(d1) and s = ∃a : σ.s1, then there is a derivation D′ :: Σ; ~P ;∆ `S d :
s such that h(D′) ≤ h(D) and the last rule applied in D′ is not (ty-sub).

Proof. By induction by h(D). In particular, Lemma 2 is needed to establish (1).

The type soundess of ATS rests upon the following two theorems, who proofs
are largely standard and thus omitted here.

Theorem 1 (Subject Reduction). Assume both D :: Σ; ~P ;∆ `S d : s and
d ↪→ d′. Then Σ; ~P ;∆ `S d : s is derivable.

Theorem 2 (Progress). Assume D :: ∅; ∅; ∅ `S d : s. Then d is a value, or
d ↪→ d′ holds for some dynamic term d′, or d = E[dcf (v1, . . . , vn)] for some
dynamic term dcf (v1, . . . , vn) that is not a redex.

2.3 Erasure

We present a function from dynamic terms to untyped λ-expressions that pre-
serves semantics. We use e for the erasures of dynamic terms, which are formally
defined as follows:

erasures e ::= x | dc[e1, . . . , en] | lam x.e | app(e1, e2) | let x = e1 in e2

erasure values w ::= x | dcc [w1, . . . , wn] | lam x.e

We can then define a function | · | as follows that translates dynamic terms into
erasures.

|x| = x |dc[d1, . . . , dn]| = dc[|d1|, . . . , |dn|]
|lam x.d| = lam x.|d| |app(d1, d2)| = app(|d1|, |d2|)
⊃+(d)	=	d		⊃−(d)	=	d		
∧ (d)	=	d		let ∧(x) = d1 in d2	= let x =	d1	in	d2
∀+(d)	=	d		∀−(d)	=	d		
∃(d)	=	d		let ∃(x) = d1 in d2	= let x =	d1	in	d2

Similar to assigning dynamic semantics to the dynamic terms, we can readily
assign dynamic semantics to the erasures, which are just untyped λ-expressions.
We write e1 ↪→ e2 to mean that e1 reduces to e2 in one step, and use ↪→∗ for the
reflexive and transitive closure of ↪→.

Theorem 3. Assume D :: ∅; ∅; ∅ `S d : s.

1. If d ↪→∗ v, then |d| ↪→∗ |v|.
2. If |d| ↪→∗ w, then there is a value v such that d ↪→∗ v and |v| = w.

Proof. (1) is straightforward and (2) follows from structural induction on D.

With Theorem 3, we can evaluate a dynamic term d by simply evaluating the
erasure of d.

3 Extensions

We extend ATS to accommodate some common realistic programming features
in this section.

General Recursion We introduce a fixed-point operator fix to support general
recursion in ATS. We now call variables x lam-variables and introduce fix-
variables f . We use xf for a variable that is either a lam-variable or a fix-
variable.

dyn. terms d ::= . . . | f | fix f.d
dyn. var. ctx. ∆ ::= . . . | ∆, f : s
dyn. subst. ΘD ::= . . . | ΘD[f 7→ d]

The rule (ty-var) needs to be modified and the rule (tyrule-fix) needs to be
added to handle the fixed-point operator:

`S Σ; ~P ; ∆ ∆(xf) = s

Σ; ~P ; ∆ `S xf : s′
(ty-var)

Σ; ~P ; ∆, f : s `S d : s

Σ; ~P ; ∆ `S fix f.d : s
(ty-fix)

A dynamic term of the form fix f.d is a redex and its reduction is d[f 7→ fix f.d].
It is straightforward to establish both the subject reduction theorem (Theorem 1)
and the progress theorem (Theorem 2) for this extension.

Datatypes and Pattern Matching We present an approach to extending
ATS with support for datatypes and pattern matching and then provide with
some simple examples. The following is some additional syntax we need.

patterns p ::= x | dcc [p1, . . . , pn]
dyn. terms d ::= . . . | case d0 of p1 ⇒ d1 | · · · | pn ⇒ dn

eval. ctx. E ::= . . . | case E of p1 ⇒ d1 | · · · | pn ⇒ dn

As usual, we require that any variable x can occur at most once in a pattern.
Given a value v and a pattern p, we use a judgment of the form v ⇓ p ⇒ ΘD to
indicate v = p[ΘD]. The rules for deriving such judgments are given as follows,

v ⇓ x ⇒ [x 7→ v]
(vp-var)

vi ⇓ pi ⇒ Θi
D for 1 ≤ i ≤ n

dcc [v1, . . . , vn] ⇓ dcc [p1, . . . , pn] ⇒ Θ1
D ∪ . . . ∪Θn

D

(vp-dcc)

and we say that v matches p if v ⇓ p ⇒ ΘD is derivable for some dynamic
substitution ΘD. Note that in the rule (vp-dcc), the union Θ1

D ∪ . . . ∪ Θn
D,

which becomes the empty dynamic substitution [] when n = 0, is well-defined
since any variable can occur at most once in a pattern.

A dynamic term of the form case v of p1 ⇒ d1 | · · · | pn ⇒ dn is a redex if
v ⇓ pi ⇒ ΘD holds for some 1 ≤ i ≤ n, and its reduction is di[ΘD]. Note that
reducing such a redex may involve nondeterminism if v matches several patterns
pi.

Σ `S s : type

Σ ` x ⇓ s ⇒ ∅; ∅; ∅, x : s
(pat-var)

S(dcc) = ∀Σ0. ~P0 ⊃ ([s1, . . . , sn] ⇒tp scc [~s0])

Σ, Σ0 ` pi ⇓ si ⇒ Σi; ~Pi; ∆i for 1 ≤ i ≤ n

Σ′ = Σ1, . . . , Σn
~P ′ = ~P1, . . . , ~Pn ∆′ = ∆1, . . . , ∆n

Σ ` dcc [p1, . . . , pn] ⇓ scc [~s] ⇒ Σ0, Σ′; ~P0, scc [~s0] ≤tp scc [~s], ~P ′; ∆′
(pat-dc)

Σ ` p ⇓ s1 ⇒ Σ′; ~P ′; ∆′ Σ, Σ′; ~P , ~P ′; ∆, ∆′ `S d : s2

Σ; ~P ; ∆ ` p ⇒ d ⇓ s1 ⇒ s2

(ty-cla)

Σ; ~P ; ∆ `S d0 : s1 Σ; ~P ; ∆ ` pi ⇓ di : s1 ⇒ s2 for 1 ≤ i ≤ n

Σ; ~P ; ∆ `S (case d0 of p1 ⇒ d1 | · · · | pn ⇒ dn) : s2

(ty-cas)

Fig. 6. The typing rules for pattern matching

The typing rules for pattern matching is given in Figure 6. The meaning of
a judgment of the form Σ ` p ⇓ s ⇒ Σ′; ~P ′;∆′ is formally captured in the
following lemma.

Lemma 4. Assume D :: ∅; ∅; ∅ `S v : s, E1 :: ∅ ` p ⇓ s ` Σ; ~P ;∆ and E2 :: v ⇓
p ⇒ ΘD. Then there exists ΘS : Σ such that ∅; ∅ |=S P [ΘS] for each P in ~P and
∅; ∅; ∅ `S ΘD : ∆.

Proof. The lemma follows from structural induction on E1.

As an example, the judgment below is derivable,

a′ : type, n′ : int ` cons[x1, x2] ⇓ list[a′, n′] ⇒ Σ; ~P ;∆

where cons is assigned the following dc-type,

∀a : type.∀n : int .n ≥ 0 ⊃ ([a, list[a, n]] ⇒tp list[a, n + 1])

and Σ = (a : type, n : int), ~P = (n ≥ 0, list[a, n + 1] ≤tp list[a′, n′]) and
∆ = (x1 : a, x2 : list[a, n]).

We can readily prove the subject reduction theorem (Theorem 1) for this
extension: Lemma 4 is needed to handle the case where the reduced index is of
the following form:

case d0 of p1 ⇒ d1 | . . . | pn ⇒ dn

Also, we can establish the progress theorem (Theorem 2) for this extension after
slightly modifying it to include the possibility that a well-type program d may
be of the following form,

E[case v0 of p1 ⇒ d1 | . . . | pn ⇒ dn]
where v0 does not match any pi for 1 ≤ i ≤ n if d is neither a value nor can be
further reduced.

Effects Unlike PTS, ATS can be extended in a straightforward manner to
accommodate effects such as references and exceptions. For instance, to introduce
references into ATS, we can simply declare a type constructor ref of the sc-sort
[type] ⇒ type and then the following dynamic functions of the corresponding
assigned dc-types.

mkref : ∀a : type.[a] ⇒tp ref (a)
deref : ∀a : type.[ref (a)] ⇒tp a
assign : ∀a : type.[ref (a), a] ⇒tp 1

The intended meaning of these functions should be obvious. We also need to add
into Definition 1 the following regularity condition to address the issue of ref
being an invariant type constructor.

– Σ; ~P |=S ref (s) ≤tp ref (s′) implies Σ; ~P |=S s ≤tp s′ and Σ; ~P |=S s′ ≤tp s.

It is a standard procedure to assign dynamic semantics to this extension and
then establish both the subject reduction theorem and the progress theorem.
Please see [Har94] for some details on such a procedure.

It is straightforward as well to introduce exceptions into ATS, and we omit
further details.

4 Examples of Applied Type Systems

Unsurprizingly, it can be readily shown that the systems λ2 and λω in λ-
cube [Bar92] are applied type systems. Also, the language λGµ [XCC03], which
extends λ2 with guarded recursive datatypes, and Dependent ML [XP99] are
applied type systems. Please see [Xi03] for more detailed explanation.

5 Related Work and Conclusion

The framework ATS is rooted in the work on Dependent ML [XP99,Xi98], where
the type system of ML is enriched with a restricted form of dependent datatypes,
and the recent work on guarded recursive datatypes [XCC03]. Given the similar-
ity between these two forms of types3, we are naturally led to seeking a unified
presentation for them.
3 Actually, guarded recursive datatypes may be thought of as ”dependent types” in

which the type indexes are also types.

For those who are familiar with qualified types [Jon94], which underlies the
type class mechanism in Haskell, we point out that a qualified type can not be
regarded as a guarded type. The simple reason is that the proof of a guard in an
applied type system bears no computational meaning, that is, it cannot affect
the run-time behavior of a program, while a dictionary, which is really the proof
of some predicate on types in the setting of qualified types, can and is mostly
likely to affect the run-time behaviour of a program.

Another line of closely related work is the formation of a type system in
support of certified binaries [SSTP02], in which the idea of a complete separation
between types and programs is also employed. Basically, the notions of type
language and computational language in the type system correspond to the
notions of statics and dynamics in ATS, respectively, though the type language
is based on the calculus of constructions extended with inductive definitions
(CiC) [PPM89,PM93]. However, the notion of a constraint relation in ATS does
not have a counterpart in [SSTP02]. Instead, the equality between two types is
determined by comparing the normal forms of these types. It is not difficult to
see that an applied type system can also be constructed to certify binaries in
the sense of [SSTP02] as long as we have an approach to effectively representing
and verifying proofs of the constraint relation associated with the applied type
system.

In summary, we have presented a framework ATS for facilitating the design
and formalization of type systems to support practical programming. With a
complete separation between statics and dynamics, ATS works particularly well
on supporting dependent types in the presence of effects. Also, the availability
of guarded types and asserting types in ATS makes it both more flexible and
more effective to capture program invariants. We also see ATS as a unification
as well as a generalization of the previous work on a restricted form of dependent
types [XP99,Xi98] and guarded recursive datatypes [XCC03].

A static component in ATS is currently based on a simply typed λ-calculus.
Therefore, it is natural to study how a static component can be built upon a
typed λ-calculus supporting polymorphism and/or dependent types. Also, we
are particularly interested in designing and implementing a functional program-
ming language with a type system based on ATS, which can then offer a means
to language extension by mostly implementing new language constructs in terms
of some existing ones.

Acknowledgments The author thanks Assaf Kfoury for his comments on a
preliminary draft of the paper and also acknowledges some discussions with
Chiyan Chen on the subject of the paper.

References

[Bar92] Hendrik Pieter Barendregt. Lambda calculi with types. In S. Abramsky,
Dov M. Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Com-
puter Science, volume II, pages 117–441. Clarendon Press, Oxford, 1992.

[CS87] Robert L. Constable and Scott Fraser Smith. Partial objects in constructive
type theory. In Proceedings of Symposium on Logic in Computer Science,
pages 183–193. Ithaca, New York, June 1987.

[CX03] Chiyan Chen and Hongwei Xi. Meta-Programming through Typeful Code
Representation. In Proceedings of the Eighth ACM SIGPLAN International
Conference on Functional Programming, pages 169–180. Uppsala, Sweden,
August 2003.

[Har94] Robert Harper. A simplified account of polymorphic references. Information
Processing Letters, 51:201–206, 1994.

[HMST95] Furio Honsell, Ian A. Mason, Scott Smith, and Carolyn Talcott. A variable
typed logic of effects. Information and Computation, 119(1):55–90, 15 May
1995.

[HN88] Susumu Hayashi and Hiroshi Nakano. PX: A Computational Logic. The
MIT Press, 1988.

[Jon94] Mark P. Jones. Qualified Types: Theory and Practice. Cambridge University
Press, The Edinburgh Building, Cambridge CB2 2RU, UK, November 1994.

[Men87] N.P. Mendler. Recursive types and type constraints in second-order lambda
calculus. In Proceedings of Symposium on Logic in Computer Science, pages
30–36. The Computer Society of the IEEE, Ithaca, New York, June 1987.

[PM93] Christine Paulin-Mohring. Inductive Definitions in the System Coq: Rules
and Properties. In M. Bezem and J.F. de Groote, editors, Proceedings of
the International Conference on Typed Lambda Calculi and Applications,
volume 664 of Lecture Notes in Computer Science, pages 328–345. Utrecht,
The Netherlands, 1993.

[PPM89] Frank Pfenning and Christine Paulin-Mohring. Inductively defined types in
the Calculus of Constructions. In Proceedings of fifth International Confer-
ence on Mathematical Foundations of Programming Semantics, volume 442
of Lecture Notes in Computer Science, pages 209–228, 1989.

[SSTP02] Zhong Shao, Bratin Saha, Valery Trifonov, and Nikolaos Papaspyrou. A
Type System for Certified Binaries. In Proceedings of 29th Annual ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL
’02), pages 217–232. Portland, OR, January 2002.

[XCC02] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded Recursive Datatype
Constructors, 2002. Available at
http://www.cs.bu.edu/~hwxi/GRecTypecon/.

[XCC03] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype
constructors. In Proceedings of the 30th ACM SIGPLAN Symposium on
Principles of Programming Languages, pages 224–235. New Orleans, Jan-
uary 2003.

[Xi98] Hongwei Xi. Dependent Types in Practical Programming. PhD thesis,
Carnegie Mellon University, 1998. viii+181 pp. pp. viii+189. Available
as http://www.cs.cmu.edu/~hwxi/DML/thesis.ps.

[Xi03] Hongwei Xi. Applied Type System, July 2003. Available at:
http://www.cs.bu.edu/~hwxi/ATS/ATS.ps.

[XP99] Hongwei Xi and Frank Pfenning. Dependent Types in Practical Program-
ming. In Proceedings of 26th ACM SIGPLAN Symposium on Principles of
Programming Languages, pages 214–227. San Antonio, Texas, January 1999.

[Zen97] Christoph Zenger. Indexed types. Theoretical Computer Science, 187:147–
165, 1997.

