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Abstract

We present a proof technique in λ-calculus that can facilitate inductive reasoning
on λ-terms by separating certain β-developments from other β-reductions. We
give proofs based on this technique for several fundamental theorems in λ-calculus
such as the Church-Rosser theorem, the standardization theorem, the conservation
theorem and the normalization theorem. The appealing features of these proofs lie
in their inductive styles and perspicuities.
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1 Introduction

Proofs based on structural induction have certain desirable features. They
usually enhance comprehensibility, yield more on the meaning of the proven
theorems, and can be formalized relatively easily. Unfortunately, many theo-
rems in λ-calculus cannot be proven via direct structural induction on λ-terms.
This is mainly due to the fact that β-reduction is not compositional, that is, a
β-reduction sequence from M [x := N ] usually cannot be viewed as the com-
position of some reduction sequences from M and N since β-redexes may be
generated by substitution. This naturally raises an issue of separating newly
generated β-redexes from the residuals of existing ones. Labeling β-redexes is
one common approach to addressing such an issue. Explicit labeling is often
studied through the formation of some labeled λ-calculi while implicit labeling
can be built on top of the notion of residuals of β-redexes.

A labeled λ-calculus is introduced in [Hyl76] and [Wad76] as a tool for
examining the λ-models such as D∞ and Pω. Also, a more general labeled
λ-calculus is considered in [Lév], where the notion of strongly equivalent β-
reduction is introduced. Many fundamental theorems in λ-calculus, such as
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the Church-Rosser theorem and the standardization theorem, can be readily
proven through the use of labeled β-reductions. This is largely due to the
fact that labeled λ-reduction enjoys strong normalization, that is, there is
no infinite labeled β-reduction sequence. However, too much labeling also
shadows, sometimes, the meaning of proofs in certain cases. For instance, a
proof of Church-Rosser theorem in the context of labeled λ-calculus often does
not yield much on how to construct a commutative diagram. This is partly
caused by the involvement of the strong normalization theorem for labeled
β-reduction.

The notion of parallel β-reduction is introduced through a proof of the
Church-Rosser theorem due to Tait and Martin-Löf (Section 3.2 [Bar84]).
Parallel β-reductions are complete developments, in which only the existing
β-redexes and their residuals are reduced. Since parallel β-reduction can be
defined through structural induction on λ-terms, this makes it amenable to
constructing inductive proofs. On the other hand, tracking residuals can,
sometimes, help understand the proven theorems, but parallel β-reduction
makes this difficult to do. Also, parallel β-reduction may have problems when
reasoning on the length of β-reduction sequences is of the concern. For in-
stance, the theorem on finiteness of developments is not easy to be formulated
in terms of parallel β-reduction.

In this paper, we introduce a proof technique in λ-calculus that can facili-
tate inductive reasoning on λ-terms by separating certain developments from
other β-reductions. After establishing a lemma on development separation, we
are to give proofs for several fundamental theorems in λ-calculus such as the
Church-Rosser theorem, the standardization theorem, the conservation theo-
rem and the normalization theorem. The appealing features of these proofs
lie in their inductive styles and perspicuities. Lastly, we also mention some
closely related work.

We give preliminaries in Section 2 and then prove some basic properties on
developments in Section 3. We present a proof of the Church-Rosser theorem
in Section 4 and a proof of the standardization theorem in Section 5. We then
include proofs of the conservation theorem and the normalization theorem in
Section 6. Lastly, we mention some related work and conclude.

2 Preliminaries

We give a brief description on the notations and terminologies used in this
paper. Most details that are not included here can be found in [Bar84].

Definition 2.1 [λ-terms] The set Λ of λ-terms is defined inductively as fol-
lows.

• (Variable) There are infinitely many variables x, y, z, . . . in Λ; variables are
the only subterms of themselves.

• (Abstraction) If M ∈ Λ then λx.M ∈ Λ; N is a subterm of λx.M if N is
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λx.M or N is a subterm of M ,

• (Application) If M1, M2 ∈ Λ then M1(M2) ∈ Λ; N is a subterm of M1(M2)
if N is M1(M2) or N is a subterm of Mi for i ∈ {1, 2}.

We use FV(M) for the set of free variables in M , which is defined as usual.
The set ΛI consists of all λ-terms M ∈ Λ such that x ∈ FV(M0) whenever
λx.M0 is a subterm of M . We write M [x := N ] for the result of substituting
N for x in M , which is properly defined in [Bar84].

Definition 2.2 [β-redex and β-reduction] A β-redex R is a λ-term of the form
(λx.M)(N), and the contractum of R is M [x := N ]. A β-redex (λx.M)(N) is
also a βI-redex if x ∈ FV(M) holds. We write M1 →β M2 for a β-reduction
step in which M2 is obtained from replacing some β-redex in M1 with its
contractum and say that a λ-term M is in β-normal form if M contains no
β-redexes.

Let→n
β stand form n steps of β-reduction and→∗

β stands for some (possibly
zero) steps of β-reduction. There may exist several different β-redexes in a
λ-term M , and we say that a β-redex R1 in M is to the left of another β-redex
R2 in M if the first symbol of R1 is to the left of the first symbol of R2.

Definition 2.3 [β-reduction sequence] Given a β-redex R in M , we write

M
R−→β N for the β-reduction step in which β-redex R gets contracted. A

(possibly) infinite β-reduction sequence is written as follows:

M1
R1−→β M2

R2−→β · · ·

Also, we write [R1] + [R2] + · · · + [Rn] for a β-reduction sequence of the
following form:

M1
R1−→β M2

R2−→β · · ·
Rn−→β Mn+1

We use σ, τ, . . . for finite β-reduction sequences.

Notations We use ∅ for the empty β-reduction sequence, and σ : M →∗
β N

or M
σ

−→∗
β N for a β-reduction sequence from M to N , and σ(M) for the

λ-term to which M is reduced by σ, and |σ| for the length of σ, that is,
the number of β-reduction steps involved in σ. Given σ1 : M1 →∗

β M2 and
σ2 : M2 :→∗

β M3, we write σ1 + σ2 for the concatenation of σ1 and σ2, that is,

σ1 + σ2 : M1

σ1

−→∗
β M2

σ2

−→∗
β M3.

We need some conventions to make our notations more convenient; given
a β-reduction sequence σ : M →∗

β M2 and a context C[], C[σ] is for the β-
reduction sequence from C[M1] to C[M2] induced by σ in the evident manner,
and we may often use σ for C[σ] if the context C[] can be readily inferred.
An immediate consequence of this convention is that σ1 + σ2 can be regarded
as C1[σ1] + C2[σ2] for some proper contexts C1[] and C2[]. Also σ[x := N ]
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stands for the β-reduction sequence obtained by substituting N for each free
occurrences of x in σ.

We now introduce the concept of residuals of β-redexes, which is rigorously

defined in [Hue94]. Let R be a set of β-redexes in a λ-term M1 and M1
R−→β

M2 holds for some β-redex R = (λx.M)(N). This reduction step affects the
β-redexes R′ in R in the following ways:

• R′ is R. Then R′ has no residual in M2.

• R′ is in N . Then all copies of R′ in M [x := N ] are residuals of R′ in M2.

• R′ is in M . Then the λ-term R′[x := N ] in M2 is the residual of R′.

• R′ contains R. Then the residual of R′ in M2 is the λ-term obtained from
replacing R in R′ with its contractum.

• R′ and R are disjoint. Then R′ is not affected and is its own residual.

The residual relation is transitive. We denote by R/[R] the set of residuals
of all β-redexes in R after R is contracted. In general, R/σ is defined to be
R/[R1]/ . . . /[Rn], where σ = [R1] + . . . + [Rn].

Definition 2.4 [Involvement] Given M →∗
β M1 and σ : M1 →β M2 →β · · ·,

a β-redex R in M is involved in σ if a residual of R is contracted in σ.

3 Developments

Definition 3.1 [Developments] Given a λ-term M and a set R of β-redexes
in M , a β-reduction sequence σ from M is a development of R if for every R
contracted in σ, R ∈ R is a residual of some β-redex in R.

Clearly, if [R] + σ is a development of R, then σ is a development of
R/[R]. An alternative way of defining developments is through labeling as is
done below.

Definition 3.2 [λ0-terms] The set Λ0 of λ0-terms is defined as follows.

• (Variable) There are infinitely many variables x, y, z, . . . in Λ0.

• (Abstraction) If M ∈ Λ0 then λx.M ∈ Λ0

• (Application) If M1, M2 ∈ Λ0 then M1(M2) ∈ Λ0.

• (β0-redex) if M1, M2 ∈ Λ0 then (λ0x.M1)(M2) ∈ Λ0.

Intuitively, given a β-redex R = (λx.M)(N), we can mark R to obtain a
β0-redex R0 = (λ0x.M)(N). Given a λ-term and a set R of β-redexes in M ,
MR is the λ0-term obtained from marking all β-redexes in R. We may use M
for MR if there is no risk of confusion.

Definition 3.3 [β0-reduction] Given a β0-redex R0 = (λ0x.M)(N), the con-
tractum of R0 is M [x := N ]. We write M →β0 N for a β-reduction step that
replaces some β0-redex in M with its contractum to obtain N .
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Note that β0-terms are closed under β0-reductions. We present another
definition of developments as follows.

Definition 3.4 [Developments] Given a λ-term M and a set R of β-redexes
in M , a development of R from M is obtained from erasing all the labels, that
is, turning all occurrences of λ0 into λ, in a β0-reduction sequence starting
from MR.

Definition 3.5 [Canonical and Standard Developments] Let σ = [R1]+ . . .+
[Rn] be a development of R. If Rj are not residuals of any β-redex containing
Ri for all 1 ≤ i < j ≤ n, then σ is a canonical development. Furthermore, if
Rj are not residuals of any β-redex to the left of Ri for all 1 ≤ i < j ≤ n,
then σ is a standard development.

Clearly, a standard development is canonical but not necessarily vice versa.
Let σ = [R1] + . . . + [Rn] be a canonical development. If σ is not standard,
then there exists 1 ≤ i < n such that Ri+1 is the residual of some β-redex to
the left of Ri; since σ is canonical, R cannot contain Ri; this implies that R is
disjoint from Ri; then the conflict can be resolved if the reduction order of Ri

and Ri+1 is reversed; in this way, a canonical development can be permuted
into a standard one.

Notations Given a λ-term M , M [x . . . , x]x is a representation of M in which
all the free occurrences of x in M are enumerated from left to right in [x, . . . , x].
We write M [N1, . . . , Nn]x for the λ-term obtained by substituting Ni for the
ith free occurrence of x in M for i = 1, . . . , n.

Given a β-reduction sequence σ from M , we can simply construct a cor-
responding β-reduction sequence σ′ from M [N1, . . . , Nn]x by treating Ni as if
there were the variable x. It is easy to observe that σ′(M [N1, . . . , Nn]) is of
the form σ(M)[N ′

1, . . . , N
′
n′ ], where every N ′

j is some Ni for 1 ≤ i ≤ n. This
observation will be used in the proof of the next lemma.

Lemma 3.6 (Development Separation) Let M = (λx.M1)(M2), R1 be a
set of β-redexes in M1, R2 be a set of β-redexes in M2 and R = {M}∪R1∪R2.
For every development σ of R in which M is involved, σ(M) is of the following
form:

σ1(M1)[σ2,1(M2), . . . , σ2,n(M2)]x,

where σ1 is a development of R1 from M1 and σ2,i are developments of R2

from M2 for i = 1 ≤ i ≤ n.

Proof. Since M is involved in σ, σ must be of the following form:

(λx.M1)(M2)
τ1

−→∗
β (λx.M ′

1)(M
′
2) →β M ′

1[x := M ′
2]

τ2
−→∗

β σ(M)

Clearly, we may assume τ1 = τ1,1 + τ1,2, where M1

τ1,1

−→∗
β M ′

1 is a development
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of R1 and M2

τ1,2

−→∗
β M ′

2 is a development of R2. Now let us verify by induction
on the length of τ2 that σ(M) = τ2(M

′
1[x := M ′

2]) is of the given form.

• τ2 = ∅. Then σ(M) = τ1,1(M1)[τ1,2(M2), . . . , τ1,2(M2)]x is of the given form.

• τ2 = τ ′2 + [R]. By induction hypothesis, τ ′2(M
′
1[x := M ′

2]) is of the following
form:

σ′
1(M1)[σ

′
2,1(M2), . . . , σ

′
2,n′(M2)]x

where σ′
1 is a development of R1 from M1 and σ′

2,1, . . . , σ
′
2,n′ are develop-

ments of R2 from M2. Now we have two subcases as follows.
· R is a residual of some β-redex in R2. Then R is in some σ′

2,i(M2), and
therefore τ2(M

′
1[x := M ′

2]) is of the form:

σ′
1(M1)[σ

′
2,1(M2), . . . , (σ

′
2,i + [R])(M2), . . . , σ

′
2,n′(M2)]x

· R is a residual of some β-redex R1 in R1. Then there exists a residual R′
1

of R1 in σ′
1(M1) such that R = R′

1[N
′
1, . . . , N

′
k]x, where every N ′

i is some
σ′

2,j(M2). Hence, with the previous observation, τ2(M
′
1[x := M ′

2]) is of the
form:

(σ′
1 + [R′

1])(M1)[N
′
1, . . . , N

′
k′ ]x

where each N ′
i is some σ′

2,j(M2).
Therefore, σ(M) = τ(M ′

1[x := M ′
2]) is of the given form.

This is a constructive proof. Hence, we can use sep(σ) for the following β-
reduction sequence:

[M ] + σ1[x := M2] + σ2,1 + . . . + σ2,n

It can be readily verified that for each R ∈ R, R is involved in σ if it is
involved in sep(σ). 2

The idea of development separation can also be found in [Hin78]. To
illustrate this point, we present a proof of the finiteness of developments (FD)
in Hindley’s style, though some minor changes are made here. We define the
size of a λ-term as follows.

|x| = 1 |λx.M | = |M | |M1(M2)| = |M1|+ |M2|

Lemma 3.7 For each development σ from M , we have |σ(M)| ≤ 2|M |.

Proof. With Lemma 3.6, the proof immediately follows from structural in-
duction on M . 2

Theorem 3.8 (Finiteness of Developments) Given a λ-term M , we have
|σ| < 2|M | for every development σ from M .

Proof. We proceed by structural induction on M .

• M = x. Then this case is trivial.
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• M = λx.M0. Then this case follows from induction hypothesis on M0

immediately.

• M = M1(M2) and M is not a β-redex. Then we may assume that σ =
σ1 + σ2, where σ1 and σ2 are developments from M1 and M2, respectively.
By induction hypotheses on M1 and M2, we have

|σ| = |σ1|+ |σ2| < 2|M1| + 2|M2| ≤ 2|M1|+|M2| = 2|M |

• M = (λx.M1)(M2). If M as a β-redex is not involved in σ, the case is
the same as the previous one. Let us assume that M is involved in σ. By
Lemma 3.6, σ(M) is of the following form:

σ1(M1)[σ2,1(M2), . . . , σ2,n(M2)]x

where σ1 is a development from M1 and σ2,i are developments from M2 for
1 ≤ i ≤ n. By induction hypothesis on M2, |σ2,i(M2)| ≤ 2|M2| for 1 ≤ i ≤ n.
By Lemma 3.7, there are at most 2M1 occurrences of x in σ1. It can then
be readily verified that

|σ| ≤ |σ1|+ 2|M1||σ2| ≤ 2M1 − 1 + 2|M1|(2|M2| − 1) < 2|M |

All the cases are completed now. 2

A proof of FD due to Hyland [Hyl73] can yield the same bound. Also,
a proof due to de Vrijer [dV85] gives an exact bound for the lengths of de-
velopments from a given λ-term. As is stated in [Bar84], there exists a real
number α > 0 such that one can find a sequence of λ-terms M1, M2, . . . with
µ0(Mi) ≥ 2α|Mi| for i ≥ 1 and limn |Mn| = ∞, where µ0(M) measures the
length of a longest development from M .

Next we show that every development σ can be transformed into a standard
development std(σ) such that if a β-redex is involved in std(σ) then it is
involved in σ.

Lemma 3.9 (Standardization of Developments) For every development
σ : M →∗

β N of R, there exists a standard development std(σ) : M →∗
β N

such that for every R ∈ R, R is involved in σ if it is involved in std(σ).

Proof. Since a canonical development can be readily permuted into a stan-
dard development, it suffices to show that there exists a canonical development
cad(σ) : M →∗

β N of R such that for each β-redex R ∈ R, R is involved in σ
if it is involved in cad(σ). Let us proceed by structural induction on M .

• M is a variable. Then σ = ∅ is canonical.

• M = λx.M0. Then this case simply follows from the induction hypothesis
on M0.

• M = M1(M2), where M is not a β-redex. Then we can assume that σ
is of the form σ1 + σ2, where σi are developments from Mi for i = 1, 2.
By induction hypothesis, cad(σi) are defined for i = 1, 2. Let cad(σ) be
cad(σ1)+cad(σ2), which is a canonical development from M by definition.
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Assume that R ∈ R is involved in cad(σ). Then R is involved in cad(σp)
for p = 1 or p = 2. By induction hypothesis on σp, R is involved in σp and
thus it is involved in σ.

• M = (λx.M1)(M2). If M is not involved in σ, then this case is the same as
the previous one. We now assume that M is involved in σ. By Lemma 3.6,
sep(σ) is of the following form:

[M ] + σ1[x := N ] + σ2,1 + . . . + σ2,n

where σ1 is a development from M1 and σ2,i are developments from M2 for
1 ≤ i ≤ n. By induction hypothesis, we can defined cad(σ) as follows:

cad(σ) = [M ] + cad(σ1)[x := N ] + cad(σ2,1) + . . . + cad(σ2,n)

Clearly, cad(σ) is canonical since both cad(σ1) and cad(σ2,i) are canonical
for 1 ≤ i ≤ n. Assume that R ∈ R is involved in cad(σ). Then it can be
readily verified that R is involved in sep(σ). Hence, R is also involved in σ.

For each development σ, we can permute cad(σ) into a standard development
std(σ). 2

Given a development σ of R, if R/σ = ∅, then σ is a complete development
of R. One step of parallel β-reduction (Section 3.2 [Bar84]) can be regarded
as a complete development (of some R).

4 Church-Rosser Theorem

The Church-Rosser theorem (CR) was first proven in [CR36], and many other
proofs have been published since then. One approach to proving CR is to first
prove a so-called strip lemma and then carry out induction on the length of
β-reduction sequences. The theorem FD is often employed in a proof of the
strip lemma, which may make reasoning less perspicuous since many β-redexes
are unnecessarily reduced when FD is applied. In the following proof of CR,
we spare the use of FD, trying to bring out a clearer picture.

Lemma 4.1 (CR of Developments) Given a pair of developments 〈σ1, σ2〉
from M , we can construct another pair of developments cr(〈σ1, σ2〉) = 〈τ1, τ2〉
such that (σ1 + τ1)(M) = (σ2 + τ2)(M).

Proof. Let us define cr(〈σ1, σ2〉) by structural induction on M .

• M is a variable. Then σ1 = σ2 = ∅. Let cr(〈σ1, σ2〉) = 〈∅, ∅〉.
• M = λx.M0. This case follows from induction hypothesis straightforwardly.

• M = M1(M2), where M is not a β-redex. Then we can assume that σi =
σi,1 +σi,2 for i = 1, 2, where σi,1 and σi,2 are developments from M1 and M2,
respectively. Let 〈τi,1, τi,2〉 = cr(〈σi,1, σi,2〉) for i = 1, 2. Clearly, cr(〈σ1, σ2〉)
can be defined as follows:

cr(〈σ1, σ2〉) = 〈τ1,1 + τ1,2, τ2,1 + τ2,2〉
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• M = (λx.M1)(M2). We may assume that M is involved in σp for some
p ∈ {1, 2} as otherwise the case is the same as the previous one. If M is not
involved in σq for q 6= p ∈ {1, 2}, then we can replace σq with σq + [σq(M)].
By Lemma 3.6, σi(M) are of the following forms:

σi,1(M1)[σ
1
i,2(M2), . . . , σ

ni
i,2(M2)]x

for i = 1, 2, where σi,1 are developments from M1 and σ1
i,2, . . . , σ

ni
i,2 are de-

velopments from M2. By induction hypothesis, we can assume 〈τ1,1, τ2,1〉 =
cr(〈σ1,1, σ2,1〉). Thus, we can construct τ ∗i,1 corresponding to τi,1, reducing
σi(M) to the following forms

(σi,1 + τi,1)(M1)[M
1
i,2, . . . ,M

n
i,2]x

for i = 1, 2 and some n, where each M j
i,2 (j = 1, . . . , n) is σk

i,2(M2) for some
k = k(i, j). By induction hypothesis, we can assume:

〈τ j
1,2, τ

j
2,2〉 = cr(〈σk(1,j)

1,2 , σ
k(2,j)
2,2 〉)

for i = 1, 2 and j = 1, . . . , n. Let cr(〈σ1, σ2〉) be defined as follows:

〈τ ∗1,1 + τ 1
1,2 + . . . + τn

1,2, τ
∗
2,1 + τ 1

2,2 + . . . + τn
2,2〉

It can be readily verified that this definition suffices.

We conclude the proof as all cases are completed. 2

Theorem 4.2 (CR) Given two β-reduction sequences σ1 : M →∗
β M1 and

σ2 : M →∗
β M2, there exist τ1 and τ2 such that (σ1 + τ1)(M) = (σ2 + τ2)(M).

Proof. The theorem follows immediately from Lemma 4.1 since →∗
β is a tran-

sitive closure of developments. 2

This proof of CR is closely related to one in [Bar84] due to Tait and Martin-
Löf, where the notion of parallel β-reduction is introduced. In both cases, the
need for FD is spared and some structural induction on λ-terms is employed.
With Lemma 3.6, our proof exhibits an illustrating picture on why CR holds
in λ-calculus, which seems to be somewhat hidden in the proof due to Tait
and Martin-Löf.

5 Standardization Theorem

The standardization theorem was first proven in [CF58], stating that every
β-reduction sequence can be standardized in the sense given by the following
definition:

Definition 5.1 [Standardization of β-reduction sequences] Given a β-reduction
sequence σ of the following form:

M1
R1−→β M2

R2−→β · · ·
Rn−→β Mn+1
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we say that σ is standard if for all 1 ≤ i < j ≤ n, Rj is not a residual of some
β-redex to the left of Ri. We say that σs : M →∗

β N standardizes σ if σs is a
standard β-reduction sequence and for every R in M that is involved in σs, R
is also involved in σ.

We now prove that for every β-reduction sequence σ, there exists σs that
standardizes σ.

Lemma 5.2 Given σ = σ1 + σ2, where σ1 is a standard development of R
and σ2 is a standard β-reduction sequence, we can construct a β-reduction
sequence std2(σ1, σ2) which standardizes σ.

Proof. By Lemma 3.9, the function std is defined on all developments. Let
us define std2(σ1, σ2) and prove that std2(σ1, σ2) standardizes σ1 + σ2 by in-
duction on 〈|σ2|, |σ1|〉, lexicographically ordered. Clearly, for σ1, σ2, std(σ1, ∅)
and std(∅, σ2) can be defined as σ1 and σ2, respectively. We now assume
σ1 = [R1] + σ′

1 and σ2 = [R2] + σ′
2, and we have two cases.

• R2 is a residual of some β-redex in R that is to the left of R1. Hence,
σ1 + [R2] is a development. We define std2(σ1, σ2) as follows:

std2(σ1, σ2) = std2(std(σ1 + [R2]), σ
′
2)

Assume that R ∈ R is involved in std2(σ1, σ2). Then by induction hypoth-
esis, R is involved in std(σ1 + [R2]) + σ′

2. This implies that R is involved in
σ1 + [R2] + σ′

2 = σ1 + σ2 = σ.

• R2 is not a residual of any β-redex in R that is to the left of R1. Then we
define std2(σ1, σ2) as follows:

std2(σ1, σ2) = [R1] + std2(σ
′
1, σ2)

Assume that R is a β-redex to the left of R1. Then R is not involved in σ1 as
σ1 is standard. Then it can be readily verified that R has no residual that is
to the right of R2. Note that R2 is not a residual of any β-redex in R. This
implies that R is not involved in σ2. It is now straightforward to see that
std(σ1, σ2) is standard. 2

Theorem 5.3 (Standardization of β-reduction sequences) For every β-
reduction sequence σ, we can construct a β-reduction sequence std1(σ) that
standardizes σ.

Proof. Let us define std1 as follows:

std1(∅) = ∅ std1([R] + σ) = std2([R], std1(σ))

By Lemma 5.2, std1(σ) standardizes σ. 2

The key idea of this proof is to repeatedly shift the leftmost involved β-
redex in a β-reduction sequence to the front. Though this is also the idea in a
proof presented in [Klo80], we use a different strategy to prove the termination
of the process. With Lemma 3.9, our proof not only obviates the need for FD
but also presents a sharp inductive argument on why the shifting process
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terminates. Another advantage of our proof is that it can be readily modified
to generate a bound for the length of the standardized β-reduction sequence
based on the length of the original β-reduction sequence [Xi99].

6 Conservation and Normalization Theorems

In this section, we present inductive proofs for the conservation theorem and
the normalization theorem in λ-calculus.

Definition 6.1 Given a λ-term M , M is strongly β-normalizing if there exists
no infinite β-reduction sequence from M .

If M is strongly normalizing, let µ(M) be the least natural number such
that |σ| ≤ µ(M) holds for each β-reduction sequence from M . Otherwise, let
µ(M) = ∞.

Lemma 6.2 Assume M
R−→β M ′, where R = (λx.N1)(N2) is the leftmost

β-redex in M . Then µ(M) ≤ µ(M ′) + µ(N2) holds.

Proof. Please see the proof of Lemma 13.2.5(i) in [Bar84]. 2

Lemma 6.3 Assume σ : M →∗
β M ′ is a standard development of R, which

contains only βI-redexes. Then µ(M ′) < ∞ implies µ(M) < ∞.

Proof. Let us proceed by induction on 〈µ(M ′), |σ|〉, lexicographically ordered.
If M is in β-normal form, then we are done as M ′ = M . We now assume that

M
Rl−→β Ml, where Rl = (λx.N1)(N2) is the leftmost β-redex in M .

• Rl is involved in σ. Since σ is standard, we have σ : M
Rl−→β Ml

σ′

−→∗
β M ′

for some σ′. By induction hypothesis, µ(Ml) < ∞ holds since |σ′| < |σ|.
Note that R is a βI-redex in this case. Hence µ(N2) < ∞ as N2 is a subterm
of Ml. By Lemma 6.2, we have µ(M) < ∞.

• Rl is not involved in σ. Hence, Rl has a residual R′
l = (λx.N ′

1)(N
′
2) in M ′,

which also happens to be the leftmost β-redex in M ′. Clearly σ is of the
form σ1 + σ2 + σ3, where σ1 : N1 →∗

β N ′
1 and σ2 : N2 →∗

β N ′
2 are standard

developments and σ3 is also a standard development. Since |σ2| ≤ |σ| holds
and µ(N ′

2) < µ(M ′), we have µ(N2) < ∞ by induction hypothesis. Assume

M ′ R′
l−→β M ′

l . Then σ + [R′
l] is a development of R ∪ {Rl}. Therefore,

std(σ +[R′
l]) = Rl +σ′ for some standard development of R/[Rl]. It can be

immediately verified that R/[Rl] is a set of βI-redexes. Since σ′ : Ml →∗
β M ′

l

and µ(M ′
l ) < µ(M), we have µ(Ml) < ∞ by induction hypothesis. This

yields µ(M) < ∞ by Lemma 6.2.

2

Theorem 6.4 (Conservation) Assume M
R−→β M ′ for some βI-redex R.

Then µ(M ′) < ∞ implies µ(M) < ∞.

11
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Proof. This follows from Lemma 6.3 since M
R−→β M ′ is obviously a standard

development of a βI-redex. 2

The normalization theorem in λ-calculus follows from the standardization
theorem immediately. However, in some settings such as the call-by-value λ-
calculus λv [Plo75], it seems rather involved to establish a version of standard-
ization theorem. This makes it desirable to prove the normalization theorem
in the following style.

Given a λ-term M , let Λ(M) be the longest leftmost β-reduction sequence
from M , which may be of infinite length.

Lemma 6.5 Assume that σ : M →∗
β M ′ is a standard development. If

|Λ(M ′)| < ∞, then |Λ(M ′)| ≤ |Λ(M)| < ∞ holds.

Proof. The proof proceeds by induction on 〈|Λ(M ′)|, |σ|〉, lexicographically
ordered. If M is in β-normal form, then M ′ = M and we are done. We now

assume M
Rl−→β Ml, where Rl is the leftmost β-redex in M . Then Λ(M) =

[Rl] + Λ(Ml). We have two cases as follows.

• Rl is involved in σ. Since σ is standard, σ is of the form M
Rl−→β Ml

σ′

−→∗
β M ′

for some standard development σ′. Since |σ′| < |σ| holds, we have |Λ(M ′)| ≤
|Λ(Ml)| < ∞ by induction hypothesis. Hence |Λ(M ′)| ≤ |Λ(M)| < ∞ holds.

• Rl is not involved in σ. Then Rl has a residual R′
l in M ′, which also happens

to be the leftmost β-redex in M ′. Then σ+[R′
l] is a development of R∪{Rl}.

Hence std(σ + [R′
l]) = Rl + σ′ for some σ′ : Ml →∗

β M ′
l , which is a standard

development of R/[Rl]. Assume M ′ R′
l−→β M ′

l . Then |Λ(M ′
l )| < |Λ(M ′)|

holds. By induction hypothesis, we have |Λ(M ′
l )| ≤ |Λ(Ml)| < ∞. This

yields that |Λ(M ′)| = 1 + |Λ(M ′
l )| ≤ 1 + |Λ(Ml)| = |Λ(M)| < ∞.

2

Theorem 6.6 (Normalization) If M can be reduced to a normal form, then
|Λ(M)| < ∞ holds.

Proof. With Lemma 6.5, the theorem follows from straightforward induction
on the length of σ. 2

7 Conclusion and Related Work

We have demonstrated some interesting uses of the development separation
lemma (Lemma 3.6), proving by structural induction on λ-terms that devel-
opments are Church-Rosser and can be standardized. The Church-Rosser
theorem in λ-calculus follows immediately. Also, we have employed the tech-
nique of development separation in establishing structurally inductive proofs
for the standardization theorem, the conservation theorem and the normaliza-
tion theorem.
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When compared to the three proofs of the Church-Rosser theorem in [Bar84],
our proof combines the brevity of the first proof (Section 3.2 [Bar84]) and the
perspicuity of the second proof (Section 11.1 [Bar84]). Several proofs of the
standardization theorem can be found in [Bar84,Tak95], and our proof of the
standardization theorem bears some resemblance to the ones due to Klop,
where the main strategy is to shift the leftmost β-redex to the front of a
β-reduction sequence, though a different strategy is adopted in our case to
establish the termination of this process.

Parallel β-reductions are complete developments. Therefore, it is not sur-
prising that the work in [Tak95] can also be done in our setting. On the
other hand, Takahashi’s method can clearly be used to establish various lem-
mas in this paper (after they are properly formulated in terms of parallel β-
reductions). This can probably described as separating parallel β-reductions
from other β-reductions.

The technique of separating developments from other β-reductions can
also be applied to the call-by-value λ-calculus λv, simplifying many proofs
in [Plo75]. A λ-calculus λv

hd is proposed in [Xi97], aiming at providing theoret-
ical background for performing evaluations under λ-abstraction in functional
programming languages. The notion of development separation plays a key
rôle in establishing several fundamental theorems in λv

hd.
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