Problem 1. Sign up for the course mailing list, as described on the webpage.

Problem 2. Write down the truth tables for NOT (\neg), AND (\land), OR (\lor), XOR (\oplus), NAND, and IMPLIES (\Rightarrow) operators.

Problem 3. Write the following statements using the formal notation ($\exists, \forall, \neg, ...$):

(a) For every student in our class there is a seat

Extra credit: Every student in our class has a seat which no other students are seating in.

(b) Not every seat in our class has a student (write it in two ways: first, using the \neg operator, and then without it)

(c) For every action a there is an equal but opposite reaction b.

Problem 4. Translate into English: $\forall x \in \mathbb{N} \exists y, z \in \mathbb{R}. (y^2 = z^2 = x) \land (y \neq z)$. Is the statement true? Why or why not? (Here justification should be very brief.)

Problem 5. Express OR (\lor) operator in terms of NAND operators.

Problem 6. Express XOR (\oplus) operator in terms of NAND operators.

Problem 7. Express NOR (NOT OR: $\neg(a \lor b)$) operator in terms of NAND operators.

Below, assume that any Boolean function can be implemented as a Boolean circuit with \neg, \lor, \land operators ($\forall f \exists C \forall x. C(x) = f(x)$, where f is a Boolean function; C is a Boolean circuit built out of \neg, \lor, \land gates; and x is an input).

Problem 8. Is NOR operator universal? (Can you express \neg, \lor, \land operators in terms of NOR? If yes, show how; if not, which operator cannot be expressed in terms of NOR? Why? Is there a shorter way to do get to the answer than doing each of the three operators separately?)

Problem 9. Same as above, but now about XOR (\oplus): Is XOR operator universal? (Can you express \neg, \lor, \land operators in terms of XOR? If yes, show how; if not, which operator cannot be expressed in terms of XOR? Why?)