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In K42, responsibility for scheduling is divided between user-level and kernel-level code. Moving part of

the scheduler to user level reduces kernel interaction and improves performance. Flexibility is increased

because applications can tailor the user-level part of the scheduler to their own needs. K42 was designed

from the beginning to support two-level scheduling in a multiprocessor environment.

1. Introduction and Motivation
In k42 we partition the scheduler between the kernel and application-level libraries. The K42

kernel schedules entities we call dispatchers, and dispatchers schedule threads.A process consists

of an address space and one or more dispatchers. Within an address space, all threads that

should be indistinguishable as far as kernel scheduling is concerned are grouped under one

dispatcher.

A process might use multiple dispatchers for two reasons: to attain real parallelism on a mul-

tiprocessor, or to establish differing scheduling characteristics (priorities or qualities-of-service)

for different sets of threads.

A process does not need multiple dispatchers simply to cover page-fault, I/O, or system-service

latencies, or to provide threads for programming convenience. These requirements can be met

using multiple user-level threads running on a single dispatcher. The dispatcher abstraction

allows individual threads to block for page faults or system services without the dispatcher

losing control of the processor.

Dispatchers tie up kernel resources (pinned memory); threads do not. A process that creates

thousands of threads for programming convenience has no more impact on the kernel than a

single-threaded process.

In designing the scheduling system, we had the following objectives:

• Performance, especially for critical operations such as in-core page faults and interprocess

communication (IPC), should be as good as that of operating systems in which the kernel

schedules everything.

• While the system must constrain the physical resources granted to an application (i.e., mem-

ory and CPU cycles), it should impose no limit on virtual resources, such as threads, that
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use those physical resources. Application threads, for example, should consume no kernel or

server resources.

• To support the abstractions that existing research and commercial systems have provided, the

fundamental system primitives must provide for: quality-of-service guarantees, background

work, and real-time work. Standard threading interfaces such as Posix Threads[PThreads]

must be supported efficiently.

• The scheduling system should enforce fairness across entities larger than processes. A user

should not be able to gain an unfair advantage merely by creating many processes or threads.

• To support large-scale NUMA multiprocessors, the scheduling infrastructure must allow

scheduling operations to proceed independently on different processors.

• To support large-scale parallel applications, the fundamental system primitives must give the

application scheduler the ability to manage howwork is distributed across the multiprocessor

and allow for such specialized policies as gang scheduling.

• Finally, applicationswith special needs should be able to customize scheduling to support dif-

ferent priority or quality-of-service models, or even to implement concurrency models other

than threads (e.g., work crews[Roberts89a]).

We believe our two-level scheduling scheme satisfies these objectives. K42 has been designed

from the beginning to both support and exploit this scheduling model.

Section 2 describes the kernel scheduler. Section 3 describes the interface the kernel provides to

dispatchers and the interactions between kernel and dispatcher. Section 4 describes the default

user-level thread library provided with K42. Section 5 discusses some of the motivation behind

our design, and Section 6 relates K42’s scheduling work to othermulti-level scheduling research.

2. Kernel Scheduler
2.1. Resource Domains

Each dispatcher belongs to a resource domain, and it’s the resource domain, not the dispatcher,

that owns the rights to a share of the machine’s CPU resources. We expect that separate resource

domains will be associated with each user, so that users will receive fair shares of the machine

no matter how few or how many processes they create.

On a multiprocessor, a resource domain owns rights to each CPU independently. A resource

domain might, for example, own rights to half of each of four CPUs and to no part of any others.

Each dispatcher is bound to a particular CPU and uses the CPU resources of its resource domain

on its CPU. The kernel may move a dispatcher from one CPU to another for load-balancing

purposes, but such migrations are expected to occur only on a fairly coarse time scale.

2.2. Scheduling Algorithms

The kernel scheduler runs independently on each processor. At each decision point it chooses a

runnable resource domain and then chooses a runnable dispatcher from that domain.

The runnable dispatchers in a given domain are linked in a ring, and every time the scheduler

chooses to run the domain, it moves to the next dispatcher in the ring. The scheduler makes no
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Figure 1. Processes, Resource Domains, and Dispatchers

attempt to give equal time to the different dispatchers. If some sort of fairness among dispatchers

is needed, they should belong to different resource domains.

The kernel’s scheduling policies apply to resource domains. A resource domain is said to be

runnable if at least one of the dispatchers that belong to it is runnable, and “running” a resource

domain means running one of its dispatchers. Each resource domain belongs to one of five

absolute priority classes:

1. system and hard-real-time

2. gang-scheduled

3. soft-real-time

4. general-purpose

5. background

On each processor, a runnable resource domain belonging to a given level will run to the exclu-

sion of all domains belonging to higher-numbered levels.

Proportional-share scheduling is used within each priority class. Each resource domain is as-

signed a weight (independently on each CPU to which it has rights), and at each priority level,

whatever portion of a CPU is not consumed by higher-priority domains is apportioned among
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domains at the given level according to their weights. Exponential decay is used to ensure that

no domain can accumulate an excessive claim on a CPU by remaining unrunnable for a long

period.

In K42, many “system” services (e.g. file systems, pseudo-terminals, etc.) are implemented as

user-level processes. We expect such processes to reside in the general-purpose priority class

but with weight sufficient to ensure that they never get squeezed out by ordinary applications.

The only services that must run in the system priority class are those that are directly involved

in kernel scheduling.

A higher-level resource manager is in charge of assigning dispatchers to resource domains and

of setting the priority levels and weights of those domains. By limiting admission to the gang-

scheduled and real-time priority classes, the resource manager can guarantee CPU resources

to privileged processes, while allowing whatever is left over to be shared fairly by a general-

purpose workload. A separate white paper is devoted to real-time support in K42. We include

gang-scheduled applications in the real-time discussion because we expect to schedule such

applications using localized algorithms based on hardware- or software-synchronized clocks.

But for that to work, the application must have a very high priority during the intervals it’s

supposed to run.

All CPU time-accounting (which drives scheduling decisions) is done at the clock resolution of

the machine. We use the term quantum only to refer to the maximum amount of time the kernel

will allow a process to run before making a new scheduling evaluation. Along with the priority

class and weight, the quantum size is a parameter of a resource domain that can be set by the

resource manager.

See Section 4.6.2 for an example of how resource domains are used to implement a particular

policy, in this case a policy that tries to provide low latency for I/O-bound threads and high

throughput for CPU-bound threads.

2.3. Hard- and Soft-Preemption
When the kernel scheduler determines that the currently running dispatcher should be sus-

pended in favor of some other dispatcher, it initiates either a soft preemption or a hard preemp-

tion.

A soft preemption is attempted if the two dispatchers are in the same priority class and if the cur-

rently running dispatcher has been well-behaved. In a soft preemption, the running dispatcher

is interrupted (via a mechanism described later) but is allowed to continue long enough to get

itself into a clean state and to voluntarily yield the processor. After a successful soft preempt

the preempted process “owns” all of its own machine state. No machine state for the process is

saved in the kernel.

If the priority class of the currently running dispatcher is lower (higher-numbered) than that

of the should-be-running dispatcher, or if the current dispatcher hasn’t responded in a timely

manner to a previous soft preempt attempt, the current dispatcher is hard-preempted. In a hard

preempt, the dispatcher is stopped in its tracks and its machine state is saved in the kernel. Be-

cause it’s not in a clean state, a hard-preempted dispatcher cannot accept incoming synchronous

interprocess messages.
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A running dispatcher is soft-preemptedwhen its quantum expires, even if its domain remains at

the head of the kernel dispatch queue. This policy gives other dispatchers in the same domain a

chance to run (albeit with no attempt at fairness), and it lets dispatchers use preemption requests

to drive internal time-slicing.

2.4. Synchronous Interprocess Communication

The primary interprocess communication mechanism in K42 is the protected procedure call, or

PPC, which at a high level is the invocation of a method on an object that resides in another

address space. The mechanism is designed to allow efficient communication between entities in

different address spaces but on the same physical processor. The PPC design, rationale, and im-

plementation are the subjects of another white paper. Here we address the interaction between

the PPC mechanism and the kernel scheduler.

The kernel service that supports the protected-procedure-callmechanism is a pair of system calls

(one for call and one for return) that transfer control from one dispatcher to another, switching

address spaces along the way. Most register contents are preserved from sender to receiver, so

registers can be used to pass arguments and return values.

A call or return is an explicit handoff of the processor from one dispatcher to another, and we

had to decide how to integrate such handoffs into the resource-domain-based kernel scheduling

infrastructure. We considered and rejected two “pure” approaches.

Under one approach, we would formally switch from the sending dispatcher’s resource domain

to the receiver’s domain on every call and return. CPU timewould always be charged accurately

to the resource domain of the running dispatcher. A call or return to a dispatcher whose resource

domainwasn’t entitled to run (given its priority class, weight, and past CPU usage) would result

in an immediate soft or hard preemption. This approach is easy to describe and it meshes cleanly

with the kernel scheduler, but involving the scheduler in every call and return would severely

degrade the performance of the PPC mechanism, and extreme PPC efficiency is fundamental to

the overall design of the K42 system.

Under the second approach we considered, services invoked via PPC would always execute

in the resource domains of their callers rather than in their own domains. A call would switch

dispatchers (and address spaces) but would not change the current resource domain (to which

CPU time is being charged). A return would switch back. Servers would consume the CPU re-

sources of their clients and would be subject to their clients’ resource constraints. We would

provide a mechanism by which a dispatcher in a server process could switch from working in

the resource domain of one of its clients to working in the domain of another if it internally

switches the client it’s servicing. This model allows for an efficient PPC implementation, and it

has the advantage that CPU time spent in server processes is charged to the appropriate clients.

It adds complexity to the kernel scheduler, because server dispatchers would sometimes have

to be scheduled as if they belonged to their clients’ resource domains, and because the kernel

would need some way to authenticate the requests servers make to re-enter client domains. The

real drawback to the model, however, is that it leads to priority inversion problems in server

processes. A server thread working on behalf of a highly constrained client might manage to

acquire a lock just before running out of CPU time, and might thereby degrade the service pro-

vided to other clients. The traditional solution to such problems would involve changing all our

locks to ones that support priority inheritance. Such locks are inherently more costly in both
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time and space than our lightweight locks, and we want to use them only where they’re really

needed.

We’ve settled on a compromise approach that, while it’s not as clean semantically as the ap-

proaches outlined above, allows for an efficient implementation and does not induce priority

inversion problems in servers. On a call, we switch dispatchers and address spaces without

involving the scheduler and without switching resource domains. We say that the called dis-

patcher is executing in a resource domain borrowed from the caller. If the server completes the

request without incident (the common case), the return transfers control back to the caller and

the kernel scheduler never knows that the call happened. All the service time is effectively

charged to the caller’s resource domain. If, however, an interrupt, page fault, or other event

invokes the kernel scheduler while the request is being serviced, the scheduler notices that the

currently-running dispatcher is executing in a borrowed domain. At that point, it charges any

accumulated CPU time to the borrowed domain and makes the server dispatcher runnable in

its own domain. The remaining request processing will be charged to the server’s domain and

will run with the server’s priority and weight, precluding any priority inversion problems in

the server. When the scheduler takes a dispatcher out of a borrowed domain, it also arranges

things so that the eventual PPC return from that dispatcher is diverted from the normal fast path

and instead goes through the scheduler. Otherwise the original client would wind up executing

in the server’s resource domain, which would constitute an unacceptable transfer of resources.

The PPC return diversion is accomplished without adding cycles to the normal fast return path.

The two approaches we considered and rejected are pure in a theoretical sense, in that it’s al-

ways known who pays for service requests. In the first approach, the server pays for all request

servicing andwould have to have an alternativemechanism for charging costs back to clients. In

the second approach, the clients pay for all requested services. In the compromise model we’ve

adopted, the accounting is not as precise. Most request-servicing times are charged to the clients

making the requests, but more-or-less random events will cause some fraction of the service

times to be charged to the server. We believe the imprecision is acceptable, given the efficient

PPC and locking implementations the model allows.

2.5. Exception Level
Kernel scheduling, along with low-level interrupt and exception handling, constitutes a layer

of the kernel we call exception level. Exception-level code is characterized by the fact that it runs

with hardware interrupts disabled and accesses only pinned data structures that are not read-

write shared across processors. Higher-level code that needs to interface with exception level

synchronizes with it by disabling hardware interrupts.

2.6. Kernel Process

Non-exception-level kernel functionality runs in the context of a kernel process that in most re-

spects is like any other process. It has dispatchers (a primary and an idle-loop dispatcher) on

each physical processor, and the dispatchers use the same library code as user-level processes

to support multiple threads in the kernel process. Kernel-process threads (or more simply, ker-

nel threads) can access non-pinned kernel data structures and structures that are read-write

shared across processors. Locks are used for synchronization, just as they are in user-level pro-

cesses. Almost all kernel services are implemented as services exported by the kernel process
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via the normal protected procedure call mechanism. That is, a user process accesses most ker-

nel services by making calls on the kernel process in the same way that it makes calls on other

server processes. The only real system calls are those that implement the protected procedure

call mechanism itself plus a few that directly affect low-level scheduling (request-timeout and

yield-processor, for example).

2.7. Reserved Threads

When a user-level dispatcher makes an exception-level request (either an explicit system call or

a page fault or trap), and the request cannot be handled entirely at exception level, the request

is handled on a kernel thread working on behalf of the user-level dispatcher. Examples of such

requests are messages that cannot be delivered locally but must instead be delivered to other

processors, and all user-mode page faults. A dispatcher is allowed to have at most one such

request outstanding at any time, and we guarantee that the kernel process has enough threads

so that every user-level dispatcher can have one working on its behalf. We use the term reserved

thread to refer to a thread working on behalf of a particular dispatcher. Reserved threads, how-

ever, are not permanently bound to dispatchers but are allocated from the normal thread pool as

needed and then released. Threads are reserved in the sense that attempts to allocate threads for

other uses will fail if the allocation would leave fewer threads in the pool than might be needed,

and attempts to create new dispatchers will fail if the kernel can’t spare the requisite number

of threads. Reserved threads are dynamically assigned, not to reduce the number of threads the

kernel must have, but to allow threads to be serially reused with different dispatchers, resulting

in better cache behavior for kernel thread stacks.

A reserved thread is responsible for its dispatcher. It keeps track, if necessary, of the dispatcher’s

machine state and sees that the dispatcher is resumed at an appropriate time. While handling

its request, a reserved thread may block for locks or may suffer page faults on pageable kernel

data structures. When it has completed its request, it resumes its dispatcher immediately unless

conditions have changed such that its dispatcher isn’t the one that should be running. In that

case it waits until its dispatcher is again chosen to run by the kernel scheduler and then resumes

it. A hard preemption is a special-case use of the reserved thread in which the thread has no

particular task to perform but goes straight to waiting for its dispatcher to again be chosen to

run.

For kernel scheduling purposes, a dispatcher’s use of its reserved thread is handled much as

if the dispatcher made a protected procedure call to the kernel process. That is, we switch to

running a kernel-process dispatcher but we remain in the client dispatcher’s resource domain

as long as the reserved thread isn’t interrupted or blocked. In this way most interactions with

the kernel process bypass the kernel scheduler.

2.8. Page-Fault Handling

When a thread running under a user-level dispatcher suffers a page fault, a kernel thread is

allocated to be the dispatcher’s reserved thread and the fault information is passed to it. It tra-

verses kernel data structures, which may themselves be pageable, to classify the fault into one

of three categories: a bad-address fault, an in-core fault, or an out-of-core fault. A bad-address

fault is reflected back to the dispatcher as a trap (via a mechanism described later). An in-core

fault is resolved (by establishing a valid mapping for the faulting address) and the dispatcher is

7



Scheduling in K42

resumedwhere it left off. For an out-of-core fault, the reserved thread initiates the I/O operation

needed to resolve the fault and then hands control back to its dispatcher with an indication that

it has suffered a page fault. The dispatcher sets aside the thread it was running and runs another

thread if it has one. Later, when the I/O operation completes, the dispatcher gets a notification

that the page fault has been resolved, and at that point it can resume the thread that had been

running. The mechanisms for reflecting a fault back to the dispatcher and for notifying it of a

fault completion are described in more detail later.

Kernel-mode page faults are handled in another way because they occur in the process (the

kernel process) that is itself responsible for resolving faults. A kernel-mode fault can occur only

when a kernel thread is running, because exception-level code and critical dispatcher code in the

kernel never access pageable kernel memory. Such a fault is handled on the thread that suffered

it. The fault-time machine state is pushed on the thread’s stack, and the thread is resumed in

fault-handling code. This code resolves the fault if it is an in-core page fault, and it initiates the

I/O operation and waits for it to complete otherwise. In either case it eventually restores the

machine state from its stack and returns to the point at which the fault occurred. We guarantee

that the data structures that are traversed in handling a kernel-mode page fault are pinned, so

that we never take a second kernel-mode fault.

3. Kernel/Dispatcher Interface
The interface the kernel provides to a dispatcher is in many ways analogous to the interface a

hardware processor provides to an operating system.

3.1. Dispatcher Structure
The interface is centered around a memory region, called the dispatcher structure, that is read-

write shared between the dispatcher and the kernel. The structure contains constructs corre-

sponding to a disable-interrupts bit, a pending-interrupts bit vector, a machine-state save area,

and various other control and status registers and message buffers. Constructs corresponding

to an interrupt-dispatch vector and a timer control register are also provided, but these are ma-

nipulated through a system-call interface rather than through the shared-memory structure, so

that the kernel doesn’t have to poll for changes.

When a dispatcher is running, the kernel provides a pointer to the corresponding dispatcher

structure in a well-known location in the process’s virtual address space. This virtual location

is part of a read-only page of information that the kernel shares with all processes. Some of the

information in the page is specific to the processor on which it is accessed, so the virtual page is

mapped to different physical pages on different processors. The kernel changes the dispatcher

pointer for the current processor when it chooses a new dispatcher to run.

Library code can extend the dispatcher structure with user-level scheduling information that is

not part of the kernel/dispatcher interface. Extending the dispatcher structure in this way lets

us address all dispatcher-specific information, both shared and private, via the single dispatcher

pointer the kernel provides.
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3.2. Entry Points
When it’s created, a dispatcher initializes (via system call) a vector of entry points, which are

basically code addresses at which it wants to be entered under various conditions. There are

entry points for starting to run in a clean state, for being interrupted to handle an asynchronous

event, for being informed that a synchronous trap has occurred or that an out-of-core page fault

has been suffered, for accepting an incoming protected procedure call or reply, and for being

informed that an outgoing call or reply has failed. Each entry point has its own set of semantics

concerning the state of various machine registers and constructs in the dispatcher structure.

As an example, consider the trap entry point. This entry point is invoked when a running dis-

patcher executes a trap instruction, divides by zero, or otherwise does something that raises a

synchronous hardware exception. Bad-address page faults are also reported as traps. When the

trap code is entered, the fault-time content of a subset of the machine registers will have been

saved in a reserved area of the dispatcher structure. The particular set of registers saved in this

way is architecture-dependent, but it generally includes the registers that are volatile according

to the architecture’s C-language calling conventions, plus basic things like the program counter

and stack pointer. All registers that were not saved in the dispatcher structure are preserved

from the time of the fault. The current content of the registers that were saved is mostly unde-

fined. The obvious exception is the program counter, whose current content is the address of the

trap entry point code itself. Other exceptions are a few volatile general-purpose registers that

are used to convey architecture-dependent information about the particular trap that occurred.

The content of the stack pointer register is not defined when the entry point is invoked. The

lowest-level interrupt and fault handlers in the kernel are programmed to save necessary ma-

chine state directly in the current dispatcher structure, so that the state can be passed up to the

dispatcher, if necessary, without copying.

Other entry points have semantics of the same flavor. They range from the run entry point, for

which the content of nearly all the registers is undefined, to the protected procedure call and

return entry points, for which the content of nearly all the registers is defined to be preserved

from the sender.

Note that the page-fault entry point does not ask the dispatcher to handle a page fault (ala Ex-

oKernel[Engler95]), but merely informs the dispatcher that a fault has occurred so that it can run

something else. A tag identifying the fault is passed to the dispatcher, and a later asynchronous

notification tells it when the faulting code associated with the tag can be resumed. Actually

resolving the fault is the kernel’s responsibility.

3.3. Disabled Flag

Dispatcher code has critical sections during which new entry point invocations cannot be toler-

ated. A disabled flag in the shared dispatcher structure is used to protect such critical sections.

The kernel sets the disabled flag before invoking an entry point, and until the dispatcher clears

the flag the kernel will not invoke the same or any other entry point. What it does instead

depends on the particular entry point it would like to invoke. For example, if it’s a protected

procedure call or return that the kernel is attempting to deliver, the message is instead reflected

back to the sender so that it can be re-sent later.

A dispatcher can set the disabled flag any time it enters critical code. In particular, it can use the

flag to avoid race conditions involving any of the low-level scheduling system calls (for exam-
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ple, to avoid yielding the processor just as a thread becomes runnable because of a page-fault

completion notification). The kernel expects the disabled flag to be set when a dispatcher makes

a scheduling or IPC system call, and it clears the flag once the system call has been validated.

This protocol leaves the dispatcher in a clean state when it makes an outgoing protected proce-

dure call, so it can be rescheduled (perhaps to run another thread) if the call happens to block in

the called process.

A page fault while disabled is an interesting case. The dispatcher cannot be informed of such

a fault even if it’s an out-of-core fault, so instead the reserved kernel thread for the dispatcher

blocks in the kernel until the I/O completes and then resumes the dispatcher without it ever

knowing the fault occurred. Disabled page faults are expensive in that they block the entire

dispatcher while they are resolved, so dispatcher code should and does limit its references to

virtual storage while disabled to those structures directly involved in scheduling. It’s hoped

that those structures will stay “hot” so that disabled page faults are infrequent.

The trap entry point is the one exception to the rule that no entry point will be invoked while

the dispatcher is disabled. If the dispatcher divides by zero or references a bad address, the trap

has to be reported even if the dispatcher is disabled. For that reason the trap entry point uses

a state save area in the dispatcher structure separate from the save area used by all the other

entry points. Also, the old value of the disabled flag is passed to the trap entry point so that it

can restore it if the trap is one that can be handled (a breakpoint trap, for example). Traps in the

trap entry point code itself cannot be handled.

3.4. Software Interrupts

All types of asynchronous events for a dispatcher are mapped to bits of a software pending-

interrupts vector in the dispatcher structure. There are bits that signal timeouts, soft preempts,

page-fault completions, asynchronousmessage arrivals, and dispatcher-to-dispatcher interrupts.

All setting and clearing of software interrupt bits is done with non-blocking atomic operations

to avoid losing interrupts.

Many of the software interrupt bits are associated with secondary data structures that carry

more information about the associated asynchronous events. The primary interrupt bits are col-

lected in one word so that they can all be checked at once. A primary bit being on is an indi-

cation that its associated secondary structure needs attention. For example, the primary page-

fault-completion interrupt bit is associated with a second bit vector that is indexed by the tags

that identify outstanding page faults. Several such faults may complete while a dispatcher isn’t

running, and the secondary bit vector records them all. Another example is the asynchronous

message mechanism. The dispatcher structure contains a pair of circular buffers for incoming

asynchronous messages, together with their head and tail pointers. One buffer is for messages

generated locally and the other is for messages arriving from other processors. The buffers are

split because the synchronization requirements are different for the two cases. A single primary

software interrupt bit is used to indicate the fact that new messages have been deposited.

A dispatcher checks its software interrupt vector whenever it’s entered at its run entry point. It

processes any bits that are on while it’s still disabled, but often handling an interrupt involves

little more than creating or unblocking a thread to do the real work after enabling. If the dis-

patcher is already running when an event arrives, it is re-entered at its interrupt entry point. The

machine state as of the time of the interrupt is passed up much as it is for the trap entry point.
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The interrupt entry point code processes the new software interrupt(s), and then has the option

of resuming the thread that was running or of suspending that thread and running another. If it

chooses to resume the current thread, it does so without ever having explicitly saved the non-

volatile registers. It simply reloads the volatile registers from the save area in the dispatcher

structure before re-enabling. Otherwise, it copies the state stored in the dispatcher structure

onto the current thread’s stack, saves the non-volatile registers, also on the current stack, and

then chooses another thread to run.

If a dispatcher is disabled when a software interrupt arrives, the kernel sets the interrupt bit

but does not interrupt the dispatcher. Dispatchers are expected to check their software interrupt

vectors each time they clear their disabled flags in order to catch interrupts that arrived while

they were disabled.

When a dispatcher does something to cause a kernel-process reserved thread to begin working

on its behalf, the dispatcher itself is marked as disabled. Otherwise it might be re-entered, allow-

ing it to do something that would require a second reserved thread. When the reserved thread

finishes its task and returns control to the dispatcher, it clears the disabled flag if it was not set

originally. In that case the kernel must check for pending interrupts that may have appeared

while the dispatcher was disabled, and if there are any it must resume the dispatcher with a

software interrupt rather than where it left off.

The setting of a software interrupt bit when the interrupt vector was previously clear is the

only point at which an unrunnable dispatcher can become runnable. The kernel notices such

transitions and uses them to cause new scheduling evaluations. No re-evaluation is necessary if

other software interrupt bits were already set or if the target dispatcher was already runnable.

A dispatcher remains runnable as long as its disabled flag is set, it has pending software inter-

rupts, or a third dispatcher structure field, the HasWork field, is non-zero. The dispatcher uses

the HasWork field to keep itself runnable after soft-preemptions and after making an outgoing

protected procedure call. The kernel treats the HasWork field as a zero/non-zero boolean, but

the field is in fact a full 64-bit word so that dispatcher code can store useful information there.

K42’s default dispatcher implementation uses the field to anchor its list of runnable threads.

Note that soft-preempt requests are delivered as software interrupts rather than via a special

entry point. This design allows a dispatcher to respond to such a request (and avoid a hard

preemption), even if the request arises at a time when the dispatcher happens to be disabled

(assuming the disabled interval is short).

3.5. Dispatcher-to-Dispatcher Interrupts

The kernel provides a service by which code running in one dispatcher can raise a software in-

terrupt in another dispatcher in the same process. The service is efficient because the kernel can

set the requested bit (using an atomic fetch-and-OR operation) in the target dispatcher structure,

even if that structure is on another processor. If the interrupt flags word was already non-zero,

no further action is necessary. Otherwise the kernel must make the target dispatcher runnable, if

it isn’t already. If the dispatcher is on another processor, the kernel must send an exception-level

request to that processor, but it needn’t wait for the request to be processed.
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3.6. Timeouts
A dispatcher can have one outstanding timeout request registered with the kernel. Changes to

the requested timeout time are made via system call so that the kernel doesn’t have to repeat-

edly check some field of the dispatcher structure. When the requested time arrives, a software

timer interrupt is generated. This interrupt may make the dispatcher runnable when it wasn’t

previously, but whether or not it actually runs depends on the priorities of other runnable dis-

patchers.

4. User-Level Scheduler
The K42 two-level scheduling model allows library code to provide user-level thread implemen-

tations tailored to specific applications. This section describes the default thread implementation

provided with the system.

4.1. Thread Objects

Each thread is represented by a small object that contains the facts needed to manage the thread.

Any thread other than the one currently running will have its stack pointer saved in its thread

object. All other machine state for the thread (including the thread’s program counter) is stored

on the thread’s stack. Resuming a thread requires loading its stack pointer value into the stack

pointer register, retrieving the program counter value from a fixed offset from the stack pointer,

and branching to that location. Any further state restoration is the responsibility of the branched-

to code, and can range from none (for a newly-created thread that hasn’t run before) to a full

machine-state restore (for a thread that was suspended involuntarily because of a page fault or

preemption). Threads that suspend themselves voluntarily (by blocking or yielding) save and

restore just that part of the machine state that is “non-volatile” according to the the C-language

calling conventions of the architecture.

4.2. CurrentThread
An always-accessible location known as CurrentThread is used to hold a pointer to the thread

object of the currently-running thread. On architectures whose ABIs reserve a register that can

be used for this purpose (PowerPC, for example), CurrentThread is simply a symbolic name for

this register. On other architectures, CurrentThread is bound to a well-known location in the

process’s virtual address space. Like the dispatcher pointer, this location is mapped to different

physical pages on different processors so that each processor can have its own content. This

“pseudo-register” is supported by the kernel on architectures that need it.

The ability to obtain the current thread pointer directly, without going through the dispatcher

pointer, is necessary because a thread can migrate from one dispatcher to another. Once the

dispatcher pointer is loaded into a register, the register value may no longer point to the current

dispatcher. A thread can make itself non-migratable by setting a flag in its thread object (which

it can reach through CurrentThread). Only when it is non-migratable is it safe for a thread to

access the dispatcher structure. Migration is discussed in more detail later.
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4.3. Thread IDs
Every thread is assigned a threadID. This 64-bit handle identifies both the dispatcher on which

the thread is running and the particular thread within that dispatcher. A new threadID is as-

signed when a thread migrates from one dispatcher to another, so a remembered threadID re-

mains valid only while the thread it designates remains non-migratable.

We use threadIDs rather than thread-object pointers to refer to threads for two reasons.

First, it’s easy to check the validity of a threadID, so it’s safe to use threadIDs to refer to threads in

other processes. For example, in an outgoing protected procedure call, we include the threadID

of the thread making the call. We expect the callee to return the threadID to us in its reply so

that we can match the reply with the thread waiting for it. We validate the threadID provided

by the callee before using it, a precaution that wouldn’t be so easy if we were passing around

thread pointers instead of threadIDs.

Second, it’s possible to tell from a threadID alone whether or not the designated thread resides

on the current dispatcher, and therefore whether or not it’s possible to perform a scheduling

operation locally. A prime example is the unblock operation, which takes a threadID as its pa-

rameter. A quick check of the threadID tells us whether we can complete the operation locally or

instead must ship it to the target thread’s dispatcher. In the latter case, we know where to send

the operation just by looking at the threadID, avoiding the expensive cross-processor cache miss

that accessing the thread object itself would most likely involve.

4.4. Thread Creation

New threads are created either by explicit request or implicitly as a result of incoming protected

procedure calls. The parameters to a thread creation request are a pointer to a function the thread

is to execute and a one-word argument to be passed to that function. The thread library handles

the request by allocating a thread object from a per-dispatcher free-list (assuming the list isn’t

empty), initializing a few words of the associated thread stack to cause the thread to execute

the requested function when it runs, and appending the thread to the dispatcher’s ready queue.

Creating a thread to handle an incoming PPC is even less work, because the thread is made to

run immediately and most of its register state comes directly from the caller.

When threads terminate, their thread objects are pushed back on the per-dispatcher free-list

of threads available for reuse. The free-list is managed as a stack so that recently-terminated

threads are reused before their thread objects and stacks are flushed from the cache.

Creating a new thread (assuming the free-list isn’t empty) is cheaper than unblocking an existing

one, because there’s less machine state involved. For this reason we tend to avoid using long-

running threads that block waiting for timers or asynchronous notifications, and instead create

new threads to handle such events.

When the free-list is empty and a new thread is needed, we allocate space for a thread object

and stack together. The thread object is located at the base of the stack so that the object doesn’t

wind up in a virtual page that is otherwise unused. In an application, stacks can be ridiculously

large, given the 64-bit virtual address space. Kernel-process thread stacks are pinned, so they

should be as small as possible. The new thread object is initialized and a threadID is assigned.

At this point the new thread can be used as if it had been allocated from the free-list.
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4.5. Block/Unblock Semantics
Two principal operations provided by the K42 thread implementation are block and unblock.

A thread calls block to make itself unrunnable. It must first store its own threadID in some

data structure so that other code can later unblock it. The thread must be non-migratable be-

fore blocking, in order for its threadID to be well-defined. As described above, unblock takes a

threadID as parameter and makes the designated thread runnable again, either directly or by

forwarding the request to the thread’s dispatcher. Matching block and unblock calls are allowed

to occur in either order, so the blocker’s store-threadID-then-block sequence does not have to be

atomic.

4.6. Thread Migration

Threads aremigrated from one dispatcher to another for two reasons – for balancing a workload

across processors and for changing the quality of service provided to particular threads.

4.6.1. Load Balancing

When a workload consists of a number of independent tasks whose execution times are not

known a priori, it can happen that several long-running threads wind up on one dispatcher

while dispatchers on other processors sit idle. Our default threading library solves this prob-

lem by moving threads from busy to idle dispatchers. The time scale for migration decisions is

fairly large, because even though it’s mechanically easy to move a thread on a shared-memory

multiprocessor, the cost in terms of cross-processor cache misses can be large.

4.6.2. Quality-of-Service Changes

The threads running on a given dispatcher are not visible to the kernel and are therefore all of

equal importance as far as kernel scheduling is concerned. The only way to change the kernel-

level scheduling characteristics of a thread is to move the thread to a dispatcher whose resource

domain has the desired characteristics. Migrating threads between dispatchers on the same pro-

cessor is much less expensive than moving them across processors, so applications can use this

technique for even relatively fine-grained priority changes.

The K42 default threading library uses migration to give precedence to I/O-bound threads over

CPU-bound threads, both within a process and across the processes belonging to a particu-

lar user. By default, every user is assigned two general-purpose resource domains, and every

process the user creates will have one dispatcher in each domain (on each processor the process

uses). The two domains have the same priority class andweight, but they are used in such a way

as to maintain a higher precedence for the I/O-bound domain under the kernel’s proportional-

share scheduling algorithm. Specifically, threads that run for a long time without blocking are

migrated to the dispatcher in the CPU-bound domain, while threads that block frequently are

moved to the I/O-bound dispatcher. By under-utilizing its share of the processor, the I/O-bound

domain can provide low-latency response for its threads when the I/O operations on which

those threads are blocked complete. (Note: The I/O-bound/CPU-bound migration machinery

is in place, but the assignment of domains to users is as yet incomplete.)

15



Scheduling in K42

4.7. Intra-process Communication
If an application is spread across several dispatchers, either for parallelism or because parts of

the application run with different service requirements, the different parts may need to com-

municate among themselves. Sharedmemory is the natural transport mechanism for such com-

munication, and the dispatcher-to-dispatcher interrupt mechanism provides the asynchronous

notification capability needed for a complete intra-process communication facility. Several soft-

ware interrupt bits are reserved for this purpose.

The K42 library provides an efficient facility for sending messages to other dispatchers. Mes-

sages are aligned on cache-line boundaries to minimize cross-processor cache traffic, and inter-

rupts are sent only when a message queue makes the transition from empty to non-empty. Sep-

arate queues are used for requests that can be handled at dispatcher level (with the dispatcher

disabled flag set) and requests that must be handled on threads. Both one-way and round-trip

communication models are provided.

4.8. Timers
The K42 library maintains an ordered set of outstanding timeout requests. Only the “nearest”

timeout is registered with the kernel. All other requests are managed in the application’s own

address space. A fixed set of kernel resources can thereby support an arbitrary number of ap-

plication timers. Moreover, many timeouts may be requested and later cancelled without ever

involving the kernel, a clear performance advantage. Cancelling a timeout is as common an op-

eration as requesting one, because most timeouts are established in order to catch exceptional

events that don’t happen.

4.9. PThreads

The K42 system provides a Posix Threads[PThreads] implementation layered on top of the de-

fault K42 threading library. The pthreads implementation extends (via subclassing) the basic

thread object with pthreads-specific information. Since the pthreads extension and the basic

thread object are co-located, the CurrentThread pointer can be used to reach either, resulting in

a very efficient implementation of pthread_self().

5. Discussion
This section is still a work in progress.

6. Related Work
This section is still a work in progress.
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