
Libra: A Library Operating System for a JVM in a
Virtualized Execution Environment

Glenn Ammons
IBM T.J. Watson Research Center

ammons@us.ibm.com

Jonathan Appavoo
IBM T.J. Watson Research Center

jappavoo@us.ibm.com

Maria Butrico
IBM T.J. Watson Research Center

butrico@us.ibm.com

Dilma Da Silva
IBM T.J. Watson Research Center

dilmasilva@us.ibm.com

David Grove
IBM T.J. Watson Research Center

groved@us.ibm.com

Kiyokuni Kawachiya
IBM Tokyo Research Laboratory

kawatiya@jp.ibm.com

Orran Krieger
IBM T.J. Watson Research Center

okrieg@us.ibm.com

Byran Rosenburg
IBM T.J. Watson Research Center

rosnbrg@us.ibm.com

Eric Van Hensbergen
IBM Austin Research Laboratory
ericvanhensbergen@us.ibm.com

Robert W. Wisniewski
IBM T.J. Watson Research Center

bobww@us.ibm.com

Abstract
If the operating system could be specialized for every application,
many applications would run faster. For example, Java virtual ma-
chines (JVMs) provide their own threading model and memory
protection, so general-purpose operating system implementations
of these abstractions are redundant. However, traditional means of
transforming existing systems into specialized systems are difficult
to adopt because they require replacing the entire operating system.

This paper describes Libra, an execution environment special-
ized for IBM’s J9 JVM. Libra does not replace the entire operating
system. Instead, Libra and J9 form a single statically-linked im-
age that runs in a hypervisor partition. Libra provides the services
necessary to achieve good performance for the Java workloads of
interest but relies on an instance of Linux in another hypervisor
partition to provide a networking stack, a filesystem, and other ser-
vices. The expense of remote calls is offset by the fact that Libra’s
services can be customized for a particular workload; for example,
on the Nutch search engine, we show that two simple customiza-
tions improve application throughput by a factor of 2.7.

Categories and Subject Descriptors D.3.4 [Processors]: Run-
time Environments; D.4.7 [Operating Systems]: Organization and
Design; D.4.8 [Operating Systems]: Performance

General Terms Design, Experimentation, Performance

Keywords Virtualization, exokernels, Xen, JVM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE ’07 June 13–15, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-630-1/07/0006. . . $5.00

1. Introduction
This paper describes a new way to transform existing software
systems into high-performance, specialized systems. Our method
relies on hypervisors [12, 14], which are becoming efficient and
widely available, and on the 9P distributed filesystem protocol [30,
32].

Our approach is similar to the exokernel approach [25]. An ex-
okernel system divides the general-purpose operating system into
two parts: a small, trusted kernel (called the exokernel) that se-
curely multiplexes hardware resources such as processors and disk
blocks, and a collection of unprivileged libraries (called “library
operating systems” or “libOSes”) that provide operating system ab-
stractions such as filesystems and processes. Ideally, each applica-
tion tailors the abstractions to its needs and pays only for what it
uses. For example, the distributed search application Nutch [8, 9]
needs a Java virtual machine, access to a read-only store, and a
simple networking stack; Section 5.3 shows that simple implemen-
tations of these abstractions achieve good performance.

Unfortunately, exokernels are difficult to adopt, because migrat-
ing an existing application to an exokernel system requires porting
the operating system on which it relies. For example, to run un-
modified UNIX programs on their exokernel, Kaashoek and others
wrote ExOS, a library that implements many of the BSD 4.4 ab-
stractions [25]. Writing such a library is a significant effort. Also,
because the library is a reimplementation of the operating system,
the only way to take advantage of improvements to the operating
system is to port them to the library.

Our system, Libra,1 avoids these problems by casting a hyper-
visor (specifically, Xen [5]) in the role of the exokernel. Figure 1
depicts the overall architecture of Libra. Unlike traditional exoker-

1 We chose the name “Libra” because our goal of providing well-balanced
services aligns with the imagery associated with the constellation of the
same name.

44

Partition
Controller

Partition Partition Partition
Application Application Application

JVM
A

pp
A

pp
A

ppA
pp

A
pp

A
pp

A
ppDB

LibraLibra LibraOS
Purpose
General

Hypervisor

Gateway

Figure 1. Proposed system architecture.

nels, hypervisors run other operating systems with few or no mod-
ifications [27, 5, 42]. By running an operating system (the con-
troller) in a hypervisor partition, applications can be migrated in-
crementally to an exokernel system. In the first step of the migra-
tion, the application runs in its own partition instead of as an oper-
ating system process but accesses system services on the controller
remotely through the 9P distributed filesystem protocol [32]. Later,
as needed, these relatively expensive remote calls are replaced by
efficient library implementations of the same abstractions.

Proponents of exokernels object to hypervisors because “[hy-
pervisors] confine specialized operating systems and associated
processes to isolated virtual machines...sacrificing a single view of
the machine” [25]. However, in our approach, a controller parti-
tion provides a single view of the machine: applications running
in other partitions correspond to processes at the controller. This is
true even for applications that run on other machines in a cluster.
Section 2 explains how Libra achieves this unified machine view.

This paper makes three main contributions:

• The hypervisor approach for transforming existing systems into
high-performance, specialized systems.

• A case study in which Nutch, a large distributed application that
includes a commercial JVM (IBM’s J9 [4]), is transformed into
such a system.

• Examples of Nutch-specific optimizations that result in good
performance.

The rest of the paper is organized as follows. Section 2 explains
the overall architecture we are proposing. Section 3 describes the
implementation of Libra and our port of J9 to Libra. Details of
our port of Nutch to J9/Libra, including specializations that im-
prove its throughput, are described in Section 4. Section 5 evaluates
J9/Libra’s performance on various benchmarks, including Nutch,
the standard SPECjvm98 [39] and SPECjbb2000 [38] benchmarks,
and two microbenchmarks. Section 6 discusses related work. Fi-
nally, Section 7 outlines future work and Section 8 concludes the
paper.

2. Design
This section explains our proposed architecture, which is depicted
in Figure 1. At the bottom of the software stack, a hypervisor
hosts a controller partition and one or more application partitions.
The hypervisor interacts directly with the hardware to provision
hardware resources among partitions, providing high-level mem-
ory, processor, and device management.

Above the hypervisor, a general-purpose operating system such
as Linux runs as a “controller” partition. The controller is the point
of administrative control for the system and provides a familiar en-

vironment for both users and applications. Each application par-
tition is launched from the controller by a script that invokes the
hypervisor to create a new partition and load the application into it.
This script also launches a gateway server that permits the applica-
tion to access the controller’s resources, services, and environment.

The gateway server is an extended version of Inferno [31],
which is a compact operating system that can run on other operating
systems. Inferno creates a private, file-like namespace that contains
services such as the user’s console, the controller’s filesystem, and
the network (see Figure 2). The application accesses this names-
pace remotely via the 9P resource sharing protocol [30], which runs
over a shared-memory transport established between the controller
and application partitions. A more detailed description of our ex-
tensions to Inferno and a preliminary performance analysis of the
transport is available in another paper [20].

Note that nothing in the architecture requires applications to
access all resources through the gateway, because the hypervisor
allows resources and peripherals to be dedicated to an application
partition and accessed directly. Alternatively, applications can use
9P to access resources across the network, either directly or through
the gateway. Facilities for redundant resource servers, fail over, and
automated recovery have also been explored [16].

As in an exokernel system, each application is linked with a
library operating system (libOS). However, unlike in exokernel
systems, the libOS focuses only on performance-critical services;
other services are obtained from the controller through the gateway.
For example, Libra, the libOS described in this paper, contains a
thread library implementation but accesses files remotely.

This approach not only reduces the cost of developing a libOS
but also reduces the cost of administering new partitions. Because
applications share filesystems, network configuration, and system
configuration with the controller, administering an additional ap-
plication partition is cheaper than administering an additional op-
erating system partition. Also, because 9P gateways run as the user
who launched the application, they inherit the same permissions
and limitations, taking advantage of existing security mechanisms
and resource policies.

Finally, because we use a hypervisor instead of an exokernel to
multiplex system resources, applications can use privileged execu-
tion modes and instructions. This enables optimizations and eases
migration, because a libOS can be simply a pared-down, general-
purpose operating system. The combination of supervisor-mode ca-
pability and 9P for access to remote services is flexible: application
partitions can be like traditional operating systems, self-contained
with statically-allocated hardware resources; like microkernel ap-
plications, with system services spread across various protection
domains; or like a hybrid of the two architectures that makes sense
for the particular workload being executed.

3. J9/Libra Implementation
This section describes the implementation of Libra and the port of
the J9 [4] virtual machine to this new platform. It was a somewhat
atypical porting process, since we were simultaneously porting
J9 to the Libra abstractions while designing and implementing
new Libra abstractions to support J9’s execution. We begin by
introducing the relevant aspects of J9 and briefly describing our
porting and debugging methodology. Next, we discuss the major
Libra subsystems needed by J9. Finally we highlight the major
limitations of our current implementation.

3.1 J9 Overview

J9 is one of IBM’s production JVMs and is deployed on more
than a dozen major platforms ranging from cell phones to zSeries
mainframes. Because it runs on such a diverse set of platforms, a
great deal of effort has been invested by the J9 team in defining

45

Operating System

Inferno (9p Server)

Storage

Network
File SystemConsoleUser

Environment

Authority

Private
Name Space

Application

Java Virtual Machine

Name Space
9p Client

MuxThreads

File Ops Sockets Sys Svc

POSIX API

Libra

Shared Memory

in channel

out channel

Figure 2. Resource organization and sharing.

a portability layer, called the port library, and ensuring that the
JVM, JIT, and core class library native code only access platform-
dependent APIs through this abstraction layer.

The port library proper consists of approximately 175 functions
that provide APIs to the filesystem, network, memory management,
and miscellaneous system services such as timing and hardware
cache management. In addition, J9 depends on a thread library that
defines approximately 100 thread and synchronization related func-
tions that serve to encapsulate platform-specific APIs. In addition to
these two formal porting abstractions, the J9 code base also makes
direct use of some fundamental libc functions such as memcpy,
isdigit, and qsort that are generally available with consistent
semantics across a wide range of platforms.

The fact that J9 had already been ported to such a diverse set of
environments significantly simplified our task of porting it to Libra.
Although we eventually ended up running configurations of J9 that
included well over half a million lines of C, C++, and assembly
code, we had to modify less than 20 files outside of the portability
layer.

3.2 Porting Methodology

The port of J9 to Libra was an iterative process: we began with
the simplest and smallest possible configuration of J9 we could
define for Linux/PowerPC64 and got it to run “HelloWorld” on
the simplest possible incarnation of Libra. In this initial stage we
were using a custom configuration of J9 that used the CLDC J2ME
class libraries [40], had no JIT compiler, and disabled all optional
VM features such as RAS and trace tooling. We then iteratively
enabled the disabled J9 functionality and worked on running larger
workloads with more extensive class libraries. As the workloads
got more complex, we extended Libra and its interactions with the
controller partition to support the necessary functionality. We are
currently running with full JIT compilation and using the largest
set of IBM authored class libraries available for our version of J9.2

We began the porting process by defining dummy implementa-
tions of all the functions in the port and thread libraries. The imple-
mentation of these functions simply printed the name of the func-
tion and invoked the debugger. We provided a similar stub imple-
mentation of all libc functions that were statically referenced by

2 These are a subset of the Java 1.4 J2SE libraries.

J9. Discovering these functions was straightforward, as our build
process builds all of J9 into a single .o that is statically linked
against Libra without the standard C library to produce an exe-
cutable. Trivial functions were implemented immediately, but in
most cases we implemented them on-demand as the tripping of an
assertion indicated that the function was dynamically needed.

Although we are now able to execute Java workloads, including
SPECjbb2000, SPECjvm98, and Nutch, we still have not fully
implemented all of the stubbed out port library functions. Of the
functions that remain unimplemented, 50% support socket and
network operations. Most of the rest support JVM functionality
that we have not yet re-enabled, such as signal handling and shared
memory regions.

3.3 Debugging J9 on Libra

Throughout this process we attempted to maintain J9/Libra and
J9/Linux configurations that were as similar as possible. These
dual configurations enabled a debugging approach in which we
could run a program that failed or crashed on J9/Libra on J9/Linux
and see where the failing and successful executions diverged. In
the early stages of the process, we relied heavily on logging J9’s
interactions with the port and thread libraries to discover where
executions diverged. As the system became more robust, and the
bugs became subtler, we relied more on gdb-remote debugging to
investigate J9 crashes. Libra implements gdb stub functions whose
inputs and outputs are redirected by the gateway server to a TCP
port. By using this mechanism, J9 and Libra can be debugged using
gdb’s remote debugging functions [37].

3.4 Libra Subsystems

The services that J9 requires from the underlying system fall into
four main categories: memory management, filesystem access,
thread support, and socket support. A few miscellaneous support
routines that fall outside these categories (e.g. for access to envi-
ronment variables and to the system clock) are also needed.

Libra is given a memory partition when it starts, and currently
that partition neither grows nor shrinks. Part of the partition is oc-
cupied by the program text and data of the J9/Libra image. The rest
is free and must be managed to satisfy the dynamic memory re-
quirements of J9 and of Libra itself. We’re currently using a simple
two-level management hierarchy. Page-granularity free memory is

46

tracked with a bit vector; smaller chunks are rounded to power-
of-two sizes and are managed via free-lists. J9 requests memory
in large chunks for its heap. In a general-purpose operating system
environment, these requests reserve ranges of virtual address space,
with the actual memory allocation happening later as the space is
first used. In Libra, memory resources are allocated at the time they
are requested.

J9 relies heavily on standard file interfaces (open, close, read,
write, seek, and stat), both for loading Java class files and for
supporting the I/O services that the JVM provides to its client code.
These interfaces are mapped directly to the 9P protocol, providing
natural access to the filesystem exported by the 9P gateway server
running on the controller partition. This filesystem may be the local
filesystem of the controller, a network filesystem such as NFS or
GPFS [15], or a combination of both kinds of filesystems.

The Linux port of J9 uses a subset of the Pthreads library [29]
for threading services. Libra provides an implementation of that
subset. Required services include thread creation and destruction,
condition variables, and mutual-exclusion locks. The threading im-
plementation was borrowed from the K42 operating system [26].
It is designed for scalability (with processor affinity and fully-
distributed synchronization queues), although Libra does not cur-
rently support more than one processor per partition. So far we
have found simple, round-robin scheduling (with no preemptive
time-slicing) to be sufficient for the workloads we are using, but
we expect to add time-slicing and more-sophisticated scheduling
policies as options as the need arises.

To provide communication services to its client code, J9 makes
calls on standard Linux socket interfaces (bind, listen, accept,
and connect, as well as send and recv). In Libra, these calls are
forwarded to the gateway server on the controlling partition, which
in turn directs them (via standard 9P mechanisms) to a network
server. The network server may be part of the gateway server it-
self, or may be running on another machine entirely. To the outside
world, the Java program appears to be running on whatever system
is running the network server. By running one network server for
a cluster of separate machines, we can create the appearance (for
management purposes) of a large number of Java programs all run-
ning under one internet address. There is a tradeoff here between
network performance and management simplification. The appro-
priate degree of clustering will be different for different applica-
tions. For truly network-intensive applications, going through the
controller partition may be too costly. We intend to explore parti-
tionable devices and direct Libra socket support for such applica-
tions.

3.5 Limitations

The primary limitation of our current approach is that we made
an explicit design decision to provide a new, separate name space
for the functions exported by Libra (i.e., libra open instead of
open). The motivation for this decision was that it would allow us
to be more flexible in the APIs we used to expose Libra function-
ality to J9. For the core J9 VM and native libraries this decision
worked reasonably well, because the code was already vectoring
through a port library layer and thus we could make the name space
and API changes in a central location. However, all user written
native methods (native methods not in java.*) would have to be
ported/recompiled to use the Libra variant of any libc functions
they relied on. After more experience with this approach, we now
believe that Libra’s API should include a subset of the libc API
to enable easier porting. Doing this does not preclude adding addi-
tional non-standard functions that could be used by code that wants
to exploit capabilities specific to the Libra environment.

One of the implications of the above decision is that the set
of native methods we can execute is limited to those that have

Storage area network
(files)

Network

Nutch query
front−end process

SMP running Xen

9P over shared memory

...

DomU (worker)

J9 (JVM)

Libra library

Nutch back end (Java)
...

Xen virtual
machine interface

Dom0 (controller)

Inferno 9P
gateway

Linux

Xen virtual
machine interface

Figure 3. An overview of our Nutch application deployment.

been ported to Libra. Therefore our current system does not sup-
port the full J2SE Java libraries. Also, the JVM normally uses
dlopen3 to load user-supplied native methods, and we have not
implemented dlopen yet. Currently, only native methods that are
statically linked into the J9 executable can be called.

A second limitation of our system is that it currently supports
just one processor per Libra partition. This shortcoming is mainly
attributable to the fact that support for multiprocessor secondary
partitions was not yet available in Xen for PowerPC when this pa-
per was written. Libra has been designed from the start with mul-
tiprocessor support and scalability in mind. Shared data structures
are synchronized with scalable locks, and thread-scheduling data
structures are maintained on a per-processor basis and are pro-
tected by disabling interrupts. The ability to cheaply disable and
enable interrupts is one of the benefits of running in the privileged
environment a hypervisor provides. The major issues still to be
addressed for full multiprocessor support are booting/initialization
and, of course, testing.

4. Nutch on J9/Libra
Nutch [8, 9] is an open-source web search application suite that
uses the Lucene [17] search libraries. From among the various
components of Nutch, we selected the query application as a test
subject for Libra support and optimization.

4.1 Basic Configuration

The Nutch query application scans a database of web pages for
a specified search pattern. (Other Nutch applications, the crawler
and the indexer, build the database beforehand.) The application
has two components, a front-end process that accepts queries from
users via a web interface and formats the answers, and a set of
back-end servers that do the actual searching. The full data set is
partitioned among the back-end servers, so the front-end process
broadcasts each query to all the servers. Each back end searches its
part of the data set and returns to the front end a set of identifiers
for its best-matching pages, along with a score for each match.
The front-end process sorts the results by score, chooses the top

3 dlopen is the programming interface to the dynamic linking loader.

47

n (where n is a parameter of the request), and then asks the back-
end servers that have the best matches to return a “snippet” from
each matching page. The snippets are displayed along with links to
the original web pages. The front-end process can handle multiple
simultaneous queries and keeps many concurrent requests to the
back-end servers in flight.

We refer collectively to a front-end process and its back-end
servers as a query “cluster”. For greater throughput, multiple clus-
ters can be operated simultaneously. The clusters all search the
same data set (which may be replicated or may reside in a filesys-
tem designed for concurrent access), so a given query can be di-
rected to any one of the front ends.

For our experiments, we concentrated on running the Nutch
query back-end servers on J9/Libra. Figure 3 is an overview of the
components involved in the J9/Libra incarnation of the Nutch dis-
tributed search application. The top of the figure shows the front-
end process and the storage-area network that holds the data set.
The bottom shows a machine that hosts one or more back-end
servers and their controller. As Section 2 explained, the controller
partition (dom0) runs Linux and hosts a gateway server for each
back-end partition. Each back-end server runs in a Xen “domU”
partition; these partitions run application Java code, which in this
case is the Nutch query back-end server code, on the J9/Libra en-
vironment. The back-end servers communicate with the gateways
over shared-memory channels set up when the back-end partitions
are created.

4.2 Customizing Libra for Nutch

An advantage of Libra is that we can customize it to better sup-
port a specific workload. We implemented two optimizations in
Libra, file-caching and socket-streaming, specifically to improve
the performance of the Nutch back-end server, although the same
optimizations have since been shown to help other applications as
well. We also implemented a mechanism, file-cache dump/load, to
shorten the time it takes to bring a new query cluster online. We
describe the optimizations next; see Section 5.3 for an evaluation
of their performance.

4.2.1 File-caching

When a Nutch web-page data set is partitioned so that it can be
served by multiple back-end servers, an index file is created for
each segment of the data set. The size of the index is roughly 10%
of the size of the segment. The index data is heavily used as the
server processes queries and scores the matches. The main data set
is accessed only for the purpose of returning snippets of the best-
matching pages. The back end has acceptable performance only if
the entire index file as well as the more commonly requested snip-
pets reside in memory rather than on disk. The Nutch back-end
server does not maintain this data in its own space but instead re-
lies on the underlying operating system to keep heavily-used file
data resident. This behavior presents Libra with both a challenge
and an opportunity. The challenge arises because with Libra the
real filesystem runs on the dom0 Linux partition. File data may
be cached there, but getting at it via the 9P protocol and the user-
mode gateway server adds significantly to file-access latency. Libra
has the opportunity to cache file data locally, transparently to both
the JVM and the Java application. In this case, the cache imple-
mentation is almost trivial, because the data being cached for this
application is known to be read-only. (The fact that a cache im-
plementation can be chosen based on the characteristics of a par-
ticular application is one of the strengths of the library operating
system approach.) Access to file data cached in Libra can be sig-
nificantly faster than access to resident file data in Linux (or any
general-purpose operating system) because system-call overhead
is avoided.

4.2.2 Socket-streaming

The Nutch back-end server is a throughput engine. Data (search
queries and snippet requests) arrives on a socket, and transformed
data (matches and snippets) is returned on the socket. Because the
front-end process keeps many requests in flight simultaneously,
the arrival of new requests is only tenuously dependent on the an-
swers generated for previous requests. The computational resources
required by this application for pattern matching are significant
enough that communication bandwidth should not be a bottleneck.

Profiling, however, shows that even with file-caching in place,
the processor is idle for a significant fraction of the time. Here
again, the problem is the latency of the 9P interactions with the
gateway server, this time for the recv and send socket calls. The
application makes a recv call only when it has run out of work to
do. On Linux, the recv call is likely to return immediately with
new request data that has already arrived and been buffered in the
kernel, while Libra requires a 9P round trip to retrieve data from the
gateway server’s host system. Similarly, when a back-end worker
thread finishes a request and makes a send call to return an answer,
the send call on Linux buffers the data in the kernel and returns
immediately, while on Libra it again suffers the latency of a round
trip to the gateway server.

To alleviate these problems, we implemented a socket streaming
layer in Libra to decouple the application’s socket requests from
the 9P requests to the gateway server. The streaming layer keeps
a receive request posted to the gateway server at all times, so
that incoming data is staged into the Libra partition before the
application asks for it, and it buffers send requests and forwards
them to the gateway server in batches. As with the file-caching
optimization, the socket-streaming optimization is not appropriate
for all applications. It improves throughput at some cost in latency
(because of the extra layer), so the ability to customize the library
for particular applications is important.

4.2.3 File-cache dump/load

For large-scale throughput applications such as Nutch query, it is
often desirable to add and remove computing resources as demand
shifts. For this reason, it is important to be able to bring a query
cluster online quickly. One impediment to a quick start-up is the
time it takes to bring the index file and commonly requested snip-
pets into the file cache. Starting with a cold cache (on Libra or on
Linux), it can take many minutes and thousands of queries to warm
the cache to the point that the cluster can sustain a reasonable query
rate.

On Libra we have the opportunity to shorten this process by
cloning the file caches from an already-warmed-up cluster to a
new cluster. Because the clusters all search the same data set, and
because the new cluster will be joining in serving the same query
stream, it’s highly likely that the cache content from the running
cluster will be a good starting point for the new cluster.

We implemented a file-cache dump/load mechanism in Libra
to experiment with this idea. A system administrator can send a
request to a running cluster causing each of its back-end servers to
dump the current content of its cache to a file, and the servers in
the new cluster can then load the cache content from the filesystem
when they start. The content is transferred in an orderly manner
in very large blocks, so the process is much more efficient than
the piecemeal warming of the caches that occurs when the servers
start out cold. This mechanism, beneficial and yet invisible to
the application, would be hard to implement in a general-purpose
operating system. It is an example of a feature that is valuable for
only a small class of applications and which should therefore be
selectable when the library is configured for a particular use.

48

5. Performance
We report on three aspects of the performance of our system:
microbenchmarks, standard Java benchmarks, and a Nutch web-
search application that motivated some design and customization
of our system.

We expect that for compute-bound workloads, Java or not, our
system should have performance equal to or better than that of
standard operating systems. For pure computation the performance
should in fact be identical, except that on a standard system the
workload may suffer interference (both in terms of processor cy-
cles and cache pollution) from background operating system ac-
tivity (daemons and interrupts) [18]. In a libOS environment, fur-
ther optimizations driven by application-specific requirements are
possible. For example, the application may benefit from dedicated
memory resources under application control usage [19] and from
appropriate thread-scheduling policies.

For workloads that make heavy use of system services, perfor-
mance may be better or worse, depending on whether the services
are ones that can be handled directly in the libOS or instead have to
be forwarded to the controlling partition. Memory management and
thread-switching operations are examples of the former. Filesystem
or device access are examples of the latter, although customized
support for important special cases is possible in a libOS. Filesys-
tem data can be cached locally, providing faster access to heavily-
used data than a general-purpose OS can provide, and direct access
to some partitionable devices can be provided.

All experiments were run on IBM BladeCenter JS21s [22] with
2-socket dual-core PowerPC 970MP processors running at 2.5GHz,
with 8GB RAM, and a 1MB L2 cache per core. Xen for PowerPC
(XenPPC) [43] was used as the hypervisor, and tests were exe-
cuted in hypervisor partitions that each had one physical core and
1920MB of memory. The memory size was chosen so as to allow 4
partitions simultaneously, with enough of the 8GB left over for the
hypervisor itself.

In the following comparisons we use two versions of the Libra
system, one that implements a local cache for read-only filesys-
tem data (J9-Libra-fc) and one that does not (J9-Libra-nc). Socket-
streaming is only enabled for experiments with the Nutch appli-
cation. The same version of the J9 JVM is compiled for both
Libra and Linux, and both use the same subset of the Java 1.4
J2SE libraries described earlier.4 Linux measurements (J9-dom0)
are made running the JVM on the controller Linux on the dom0
partition under Xen.

5.1 Microbenchmarks

Figure 4 shows throughput for Section 1 of the Java Grande Fo-
rum multi-threaded benchmarks [24] on J9-Libra-nc relative to the
performance of the same on J9-dom0. File caching makes no differ-
ence for this benchmark, so results for only one of the Libra system
configurations are shown. Libra provides all thread services needed
by the JVM natively, while Linux requires a system call for at least
some operations. J9-Libra clearly outperforms J9-dom0 on some of
the tests (e.g. “Barrier:Simple”), while performing equivalently on
the rest.

As stated previously, many system services are not handled di-
rectly by Libra. Instead, we rely on services provided by the oper-
ating system running in the control partition. Notable among these
are filesystem and network I/O. Figure 5 illustrates the performance
of forwarding standard filesystem read and write operations on a
128MB file with varying buffer sizes. The benchmark and work-
load are configured so that all data read should be present within the
Linux page cache. Since in our design all remote resource actions

4 Because of the incomplete libraries, the SPECjvm98 and SPECjbb2000
results reported in this paper do not conform to SPEC run rules.

2 3 4 5 6 7 8

Number of threads

0

1

2

3

Sp
ee

du
p

ov
er

 J
9/

do
m

0

Barrier:Simple
Barrier:Tournament
ForkJoin:Simple
Sync:Method
Sync:Object

Figure 4. Speedup of J9/Libra over J9/dom0 on the Java Grande
Forum Thread Benchmark Suite.

devolve into filesystem operations, the difference between Libra
and Linux-native I/O performance is representative of the overhead
of most remote operations.

Raw read performance (without a Libra file-cache) varies from
1/12 to 1/3 that of native Linux due to the increased latency in-
curred by forwarding the operation. In our test environment, a read
operation of 1024 bytes of cached data typically incurs around a 4
microsecond overhead on Linux. Accessing the same data from J9-
Libra-nc incurs a 37 microsecond latency, decreasing performance
by roughly an order of magnitude. As buffer sizes increase, the la-
tency per message increases somewhat disproportionately on Libra
due to a relatively naive transport implementation. However, since
the total number of operations decrease, the relative performance
of J9-Libra-nc improves.

When the Libra file cache is used, read performance improves
dramatically. Since requests are satisfied completely within the
Libra partition, there is no overhead for forwarding the operation.
Furthermore, since the operation is handled entirely as a library call
versus a system call, the latency of a read operation is about half
that of native Linux. The native block-size of the J9-Libra-fc cache
is 64KB, as such it also benefits in this particular benchmark from
prefetching. The effect of both of these performance advantages
decrease as the buffer size increases, resulting in roughly equivalent
performance when using 64KB buffers.

Write operations are buffered by Linux, but eventually trigger
disk operations which results in a higher average latency of ap-
proximately 12 microseconds. Libra currently makes no attempt
to buffer write operations, so all actions are directly remoted with
approximately the same per-operation overhead as the reads. How-
ever, since Linux write operations already incur higher latency the

49

1 4 8 16 32 64

Block size (KB)

0.0

0.5

1.0

1.5

Sp
ee

du
p

ov
er

 J
9/

do
m

0

No cache, reads
No cache, writes
With cache, reads
With cache, writes

Figure 5. Speedups of file-block reads and writes: J9/Libra over
J9/dom0, with and without a file cache.

relative performance impact of writes from Libra is reduced sig-
nificantly, varying between 1.2 to 4 times the overhead of a native
write.

A similar effect can be observed for both read and write op-
erations when the filesystem being accessed is mounted on the
controller via NFS. In such an environment, write operations with
buffer sizes of 4KB and higher are essentially identical. We believe
that workloads with poor cache locality and other scenarios with
high storage pressure would behave similarly.

5.2 JVM Benchmarks

The file-caching optimization was implemented in Libra specifi-
cally for the Nutch web-searching application (see Section 4), but
we found it useful for the read-only input files of the SPECjvm98
benchmarks as well. Figure 6 shows the performance of the
SPECjvm98 benchmarks on J9/Libra, with and without file-caching,
relative to their performance on Linux on the controller partition
under Xen. Each program was run in a separate JVM invocation.
For each program we report the best time from 20 repetitions with
input size 100, using the autorun mode (-s100 -m20 -M20 -a). The
application and its data files reside on a local ext3 filesystem.

Three of the benchmarks (compress, mpegaudio, and mtrt)
show equivalent performance under Linux and Libra (with or with-
out file-caching). One (db) performs better under Libra and one
(javac) performs worse, also independent of file-caching. For the
remaining two (jess and jack), file-caching determines whether
performance under Libra compares favorably with performance un-
der Linux or not.

Table 1 helps explain why file-caching makes a real difference
for some of the benchmarks and not for others. It shows the exe-
cution times of the different benchmarks under J9/Libra with and

201_compress

202_jess

209_db

213_javac

222_mpegaudio

227_mtrt

228_jack

0.0

0.5

1.0

1.5

Sp
ee

du
p

ov
er

 J
9/

do
m

0

J9/Libra, no cache
J9/Libra, with cache

Figure 6. Speedups on the SPECjvm98 benchmarks: J9/Libra over
J9/dom0, with and without a file cache.

Name Time (s) Reads KB read
Cache No cache

201 compress 6.00 6.08 25 45950
202 jess 1.68 2.12 12539 12
209 db 10.56 11.22 19048 1161
213 javac 3.38 3.60 4992 8261
222 mpegaudio 3.87 3.95 1956 3180
227 mtrt 2.07 2.05 344 678
228 jack 1.48 11.38 289901 283

Table 1. Effect of the file cache on SPECjvm98.

without file-caching, and it also shows the number of read calls
made and the total number of kilobytes read by a single iteration
of each application. We see that jess and jack, the two bench-
marks for which caching is most beneficial, each make a very large
number of small reads. The file cache helps these applications, not
because it amortizes costs across multiple reads of the same data,
but because it coalesces many small reads into a few large ones.

The db application also makes a large number of relatively small
reads (62 bytes, on average), and file-caching indeed improves its
performance. But db is compute-bound, and its performance is
better under Libra than under Linux, even without file-caching, for
a reason yet to be determined.

File-caching helps the performance of javac, but not enough
to bring it up to the level it achieves under Linux. Preliminary
indications are that in addition to read calls, it makes a large
number of open and stat calls, the results of which are not cached.
There may be an opportunity here for a more aggressive caching
strategy.

50

63 72 81 4 5

Number of warehouses

0.0

0.5

1.0

1.5

Sp
ee

du
p

ov
er

 J
9/

do
m

0,
 1

 W
ar

eh
ou

se

J9/dom0
J9/Libra, with cache, 4KB pages
J9/Libra, with cache, 16MB pages (default)

Figure 7. SPECjbb2000 throughput normalized to J9/dom0 at 1
warehouse. J9/Libra with both 16MB pages (default) and with 4KB
pages.

Figure 7 shows the normalized throughput of the SPECjbb2000
benchmark running on Libra and on Linux, for from 1 to 8 “ware-
houses”. The application was run on just one processor on both
systems, so it is not surprising that the throughput does not increase
with the number of warehouses. The file cache in Libra makes no
noticeable difference for this benchmark, so cache-disabled results
are not shown. The JVM heap size was fixed at 512MB for all cases.

Our initial measurements showed SPECjbb2000 performing
consistently better (by 18% to 20%) on Libra than on Linux.
More efficient threading and synchronization primitives might ex-
plain a small disparity, but nothing of that magnitude. It turns out
SPECjbb2000 is known to benefit from the large virtual page sizes
provided by some modern memory-management architectures. The
PowerPC 970 processor supports two page sizes, the traditional
4KB page and a large 16MB page. Mapping large, flat regions with
large pages reduces the pressure on translation lookaside buffers
or other address-translation hardware structures, allowing the pro-
cessor to spend more time computing and less time waiting for the
memory-management unit to look up translations in page tables.
Libra maps all its memory in one flat space, and it naturally uses
the large page size to do it. Linux, on the other hand, uses 4KB
pages by default (with good reason), and a program such as a JVM
has to specifically request large pages if it wants them for parts of
its address space. For experimental purposes, we changed Libra to
use small rather than large pages. Figure 7 shows SPECjbb2000
performance on Libra for both page sizes. Performance with 4KB
pages is only slightly better than that on Linux. It is possible that
the comparatively good performance of the SPECjvm98 db bench-
mark on J9/Libra is also attributable to the use of large pages, but
that guess remains to be verified.

Configuration Queries
per second

Default 5.9
File-caching 12.8
File-caching & socket-streaming 16.0

Table 2. Nutch queries per second on a single back-end server
under three configurations: with no optimization, with file-caching,
and with both file-caching and socket-streaming.

63 72 81 4 5

Number of 5-blade clusters

0

50

100

150

200

Q
ue

ri
es

 p
er

 s
ec

on
d

J9/Libra

Figure 8. Nutch queries per second versus number of clusters
serving requests. Each cluster has 5 4-core blades.

5.3 Nutch Benchmark

For the Nutch query application, the relevant performance metric
is queries-per-second. We present query throughput results for a
single back-end server running on Libra and for varying numbers
of server clusters.

For our experiments, we arbitrarily chose a 150GB data set and
partitioned it into 15 10GB segments. The index for each segment
is roughly 1GB in size. The data sets and indices are housed in a
Linux ext3 filesystem on a SAN-connected storage device.

Table 2 shows the query throughput for a single back-end server
running on Libra and searching just one of the 10GB segments. The
rows in the table correspond to different Libra configurations. The
back end can process fewer than 6 queries per second with Libra
configured without the file-caching and socket-streaming optimiza-
tions. Throughput more than doubles when file caching is enabled
and improves by another 25% when socket streaming is added.

Our test machines have 4 cores each, so for our 15-segment
cluster experiments, we used 5 machines for each cluster. Each
machine runs one Linux/dom0 controller partition and 3 Libra/J9
back-end partitions, each searching one of the 15 segments of the
partitioned data set. The front-end process for the cluster runs
on one of the Linux/dom0 partitions. File-caching and socket-
streaming are enabled.

51

Figure 8 shows total system throughput as 5-machine query
clusters are added to the system. A single cluster, with 15 back-
end servers jointly searching a 150GB data set, achieves about
31 queries per second. (This number can’t be compared with the
16 queries per second that a single back end searching a 10GB
segment achieves, because the ratio of snippet requests to search
requests changes as more back-end servers are added.) The figure
shows that throughput scales reasonably well as clusters are added.
Eight clusters (40 machines in total) achieve a throughput of about
225 queries per second, for a speedup of more than 7 over a single
5-machine cluster.

We experimented with the same workload on Xen user domains
(domUs) running Linux. Throughput on Linux/domU was roughly
20% lower than on Libra. However, these results are rather prelim-
inary, as the Linux experiments were somewhat hampered by the
immaturity of the underlying XenPPC hypervisor. We expect that
with careful tuning of the application on Linux/domU, the perfor-
mance gap will be reduced or closed. On the other hand, we also
expect to find more opportunities for optimizing Libra for this ap-
plication (see Section 7).

6. Related Work
BEA Systems has announced a version of its Java Virtual Machine
named LiquidVM which runs directly on top of a VMware parti-
tion [10]. This will be used to run their custom WebLogic middle-
ware application. LiquidVM has optimized TCP/IP and filesystem
implementations that provide fast I/O but whose use incurs addi-
tional administrative overhead. The primary focus of LiquidVM
seems to be on running general-purpose JVM workloads, with no
provision for application-specific customization.

Project SPIN [7], VINO [35], and Scout [28] have explored the
specialization of operating systems to meet the performance and
functionality requirements of applications:

• In the SPIN operating system, the specialization is done through
extensions written in a type-safe language that are dynamically
linked into the operating system kernel. Applications can be
written in any language and execute within their own virtual
address space, but code that requires low-latency access to
system services has to be written in the safe extension language.

• VINO supports the download of application extensions into the
kernel. It uses software fault isolation to safeguard the kernel
and a lightweight transaction system to cope with resource-
hoarding.

• Scout is an operating system targeting network appliances,
which typically perform a single specialized function. The
specialized operating system behavior in Scout is achieved by
configuring each Scout instance as a composition of available
building-blocks. Scout is designed around a communication-
oriented abstractions called paths; all resource-management
decisions are made on a per-path basis.

Unlike these three systems, Libra does not bring specialized func-
tionality into the kernel. Libra implements traditional operating
system services directly into application-level libraries, as done
in the Exokernel operating system [25]. Also, Libra differs from
SPIN, VINO, Scout, and Exokernel on its goal of supporting spe-
cialized behavior of existing applications.

Synthesis [34] and Synthetix [33] provide improved flexibility
and functionality by identifying commonly executed paths and
producing optimized versions of them, on a per-system-call basis.
In Libra we are able to optimize specific paths, but also alter higher-
level services such as scheduling and memory management.

The Proxos system [41] allows applications to isolate their most
sensitive components from the OS itself. The application developer

specifies which system calls should be served by the untrusted
commodity OS and which are to be handled by a trusted private
OS. This partition of functionality focuses on security while our
work aims to open up new opportunities for optimization of both
existing and novel APIs.

Singularity [21] is a micro-kernel operating system for the con-
struction of dependable systems. Singularity eliminates the distinc-
tion between an operating system and a safe language run-time sys-
tem. The Singularity architecture can host completely different run-
time systems, allowing each process to have its own customized
version. For example, processes with certain allocation strategies
may be able to pre-allocate or stack-allocate memory for all used
objects, obviating the need for a garbage collector in the runtime.
Like SPIN, VINO, and Scout, Singularity is not appropriate for ex-
isting systems.

In the High Performance Computing arena, the Blue Gene/L
system is an example of deploying a specialized kernel to directly
support applications. Nodes are split into two types: the I/O nodes,
which run the Linux operating system, and compute nodes which
run a custom kernel called the Blue Gene/L Run Time Supervisor
(BLRTS) [1]. The BLRTS is extremely lightweight, co-exists in the
same address space as the application, and remotes many system
calls to a specialized daemon running on the I/O Node, which
provides job control and I/O operations. BLRTS addresses the
requirements of a large class of applications, but it does not aim
at application-specific optimizations.

Specialized hardware has been used to accelerate Java appli-
cations. Azul Systems has designed a custom system (CPU, chip,
board, and OS) specifically to run garbage collected virtual ma-
chines [11]. In 2003, IBM designed and developed the System z
Application Assist Processor (zAAP) for its System z9 mainframe
line [13]. While the underlying hardware for the processor is iden-
tical to the general-purpose z9 processors, the zAAP’s microcode
is optimized for the execution of Java workloads. The zAAP re-
lies on more conventionally configured processors and the general-
purpose z/OS operating system to function. Similarly, the Inte-
grated Facility for Linux (IFL) [45] and Z Integrated Information
Processors (zIIP) [44] function as offload processors for Linux and
DB2. All three represent microcode-implemented optimizations for
hardware. In the case of IFL, the Linux systems run on logical parti-
tions on top of the specialized processors, and use HiperSockets [6]
to communicate with each other as well as other processors on the
mainframe.

7. Future Work
In the short-term, there are some limitations of the initial imple-
mentation that can be addressed with straightforward engineering.

The main functional limitation is the inability to support arbi-
trary native methods. By moving the Libra API to be a subset of
the standard libc API, we will be able to run many native methods
in the Libra partition. Handling native methods that stray outside
of this subset could be implemented either lazily by redirecting to
the controller partition when a native method actually calls an un-
supported function or eagerly by analyzing the method when it is
dynamically loaded and if necessary marking it to be redirected
when invoked.

Much of the overhead in our remote I/O model is due to multiple
unnecessary copies of data and header information present in our
current transport implementation. User-space gateway servers on
the controller add further copies and latency. Most of these copies
and associated latency can be removed by a rework of the underly-
ing transport and integration of the gateway services into the con-
troller kernel. Providing facilities for direct read-only memory shar-
ing and shared page-caches would provide further performance and

52

efficiency gains, particularly on systems running multiple applica-
tion partitions.

Longer term, we believe that our approach opens up a number
of interesting avenues for future research.

We believe that our architecture enables many JVM optimiza-
tions beyond those we describe in this paper. For example, in JVMs
that use “safe-points” to support type-accurate garbage collection,
whenever the JVM wants to initiate a garbage collection cycle it
must roll forward all runnable threads to their next safe point. If in-
stead the JVM and the operating system cooperated to ensure that
thread context–switches only occurred at JVM-level safe points, the
transition to garbage collection could be accomplished instantly.
Although rolling forward is not a significant cost in stop-the-world
collectors, it can impact the performance of incremental collectors
such as Metronome [3]. Another promising possibility is that be-
cause the JVM could handle interrupts directly instead of receiving
them second-hand from the OS, read barriers implemented with the
virtual-memory hardware could be faster than software read barri-
ers [11]. In general, the JVM could rely on our system to provide
stronger invariants than traditional systems provide and optimize
accordingly.

Real-time applications may also benefit from our architecture.
Modern hypervisors allow partitions to run in real mode [2]; to-
gether with advances in real-time garbage collection [3, 23] and
deterministic Java tasks (eventrons) [36], a system like ours could
run hard real-time tasks and even device drivers written in Java.
Legacy code could run in other partitions without breaking the real-
time guarantees.

As processors acquire more cores and clusters acquire more pro-
cessors, operating systems will need to scale beyond small SMPs.
We believe that hypervisors are an ideal platform for such systems.

8. Conclusions
In this paper we have described our vision of how hypervisors
can be used to transform existing software systems into high-
performance exokernel systems. Our progress to date in building
Libra, a library operating system specialized for running particular
classes of workloads on the J9 JVM, leads us to believe that this
is a viable approach for optimizing the performance of important
workloads and subsystems. We intend to continue to improve Li-
bra and to explore the extent to which the co-design of the libOS
and the JVM can yield significant performance or functional ad-
vantages for large-scale Java applications that could not easily be
obtained in traditional execution environments.

However, engineering custom operating system components for
each application or service is not tractable in the long term. Many
possible customizations can be organized into recognizable com-
ponents with well-defined interfaces which may be interchanged
by the developer or even during execution. Some of the key ques-
tions to be explored in such an effort are:

• What are the defining characteristics of execution environments
and to what extent are they architecture dependent?

• Can abstractions within customized environments be standard-
ized to an extent that maintains the portability of applications,
or do standards stifle innovation?

• What are the right tools and languages for implementing a
component systems infrastructure?

• What degree of dynamic customization needs to be supported?

We believe that further research along these lines could dramat-
ically alter the way in which software stacks are developed and
deployed.

Acknowledgments
We thank David Bacon, Muli Ben-Yehuda, Mark Mergen, Michal
Ostrowski, Volkmar Uhlig, Amos Waterland, and Jimi Xenidis for
their valuable insights.

This material is based upon work supported in part by the
Defense Advanced Research Projects Agency under its Agreement
No. HR0011-07-9-0002.

References
[1] G. Almási, R. Bellofatto, J. Brunheroto, C. Caşcaval, J. G. Castaños,

L. Ceze, P. Crumley, C. C. Erway, J. Gagliano, D. Lieber, X. Mar-
torell, J. Moreira, A. Sanomiya, and K. Strauss. An overview of the
Blue Gene/L system software organization. In Proceedings of the
Euro-Par Conference on Parallel and Distributed Computing, 2003.

[2] W. J. Armstrong, R. L. Arndt, D. C. Boutcher, R. G. Kovacs,
D. Larson, K. A. Lucke, N. Nayar, and R. C. Swanberg. Advanced
virtualization capabilities of POWER5 systems. IBM Journal of
Research and Development, 49(4):523–540, 2005.

[3] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage collector
with low overhead and consistent utilization. In Proceedings of the
30th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 285–298, Jan. 2003.

[4] C. Bailey. Java technology, IBM style: Introduction to the IBM
developer kit. http://www-128.ibm.com/developerworks/
java/library/j-ibmjava1.html, May 2006.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proceedings of the Symposium on Operating System
Principles, Bolton Landing, New York, U.S.A., 2003.

[6] M. Baskey, M. Eder, D. Elko, B. Ratcliff, and D. Schmidt. zSeries
features for optimized sockets-based messaging: Hipersockets and
OSA-Express. IBM Journal of Research and Development, 46(4/5),
April 2002.

[7] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility, safety and
performance in the SPIN operating system. In SOSP ’95: Proceedings
of the Fifteenth ACM Symposium on Operating systems Principles,
pages 267–283. ACM Press, 1995.

[8] M. Cafarella and D. Cutting. Building Nutch: Open source search.
Queue, 2(2):54–61, 2004.

[9] M. J. Cafarella and O. Etzioni. A search engine for natural language
applications. In WWW ’05: Proceedings of the 14th International
World Wide Web Conference, pages 442–452. ACM Press, 2005.

[10] G. Clarke. BEA adopts virtual strategy with VMware. The Register,
December 2006.

[11] C. Click, G. Tene, and M. Wolf. The pauseless GC algorithm. In VEE
’05: Proceedings of the 1st ACM/USENIX International Conference
on Virtual Execution Environments, pages 46–56. ACM Press, 2005.

[12] S. Crosby and D. Brown. The virtualization reality. Queue, 4(10):34–
41, 2007.

[13] D. Deese. Introduction to zSeries Application Assist Processor
(zAAP). In Proceedings of the 32nd International Conference for
the Resource Management and Performance Evaluation of Enterprise
Computing Systems, pages Vol 2, 517–528. Computer Measurement
Group, 2005.

[14] R. Figueiredo, P. A. Dinda, and J. Fortes. Resource virtualization
renaissance. IEEE Computer, 38(5):28–69, 2005.

[15] General parallel file system (GPFS). http://www.almaden.ibm.
com/StorageSystems/File_Systems/GPFS/.

[16] G. Guardiola, R. Cox, and E. V. Hensbergen. Persistent 9P sessions
for Plan 9. In Proceedings of 1st International Workshop on Plan 9,
December 2006.

53

[17] E. Hatcher and O. Gospodnetic. Lucene in Action. Manning
Publications, 2004.

[18] E. V. Hensbergen. The effect of virtualization on OS interference.
In Proceedings of the 1st Annual Workshop on Operating System
Interference in High Performance Applications, August 2005.

[19] E. V. Hensbergen. Partitioned reliable operating system environment.
Operating Systems Review, 40(2), April 2006.

[20] E. V. Hensbergen and K. Goss. PROSE I/O. In Proceedings of 1st
International Workshop on Plan 9, December 2006.

[21] G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken, P. Barham,
M. Fähndrich, C. Hawblitzel, O. Hodson, S. Levi, N. Murphy,
B. Steensgaard, D. Tarditi, T. Wobber, and B. Zill. An overview
of the Singularity project. Technical Report MSR-TR-2005-135,
Microsoft Research, 2005.

[22] IBM Corporation. BladeCenter JS21. http://www-03.ibm.com/
systems/bladecenter/js21/.

[23] IBM Corporation. WebSphere Real-Time User’s Guide, 2006.

[24] Java Grande Forum. Java Grande Forum Benchmark Suite.
http://www2.epcc.ed.ac.uk/javagrande/index_1.html.

[25] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceño, R. Hunt,
D. Mazières, T. Pinckney, R. Grimm, J. Jannotti, and K. Mackenzie.
Application performance and flexibility on exokernel systems.
In SOSP ’97: Proceedings of the Sixteenth ACM Symposium on
Operating Systems Principles, pages 52–65, 1997.

[26] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wisniewski,
J. Xenidis, D. D. Silva, M. Ostrowski, J. Appavoo, M. Butrico,
M. Mergen, A. Waterland, and V. Uhlig. K42: Building a complete
operating system. In Proceedings of EuroSys’2006, pages 133–145.
ACM SIGOPS, April 2006.

[27] Linux: KVM paravirtualization. http://kerneltrap.org/node/
7545, January 2007.

[28] D. Mosberger and L. L. Peterson. Making paths explicit in the Scout
operating system. In Symposium on Operating Systems Design and
Implementation, volume 30, pages 153–167. ACM, 1996.

[29] The Open Group Base Specifications Issue 6, IEEE Std 1003.1.
http://www.opengroup.org/onlinepubs/009695399/, 2004.

[30] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson,
H. Trickey, and P. Winterbottom. Plan 9 from Bell Labs. Computing
Systems, 8(3):221–254, Summer 1995.

[31] R. Pike, D. Presotto, S. Dorward, D. M. Ritchie, H. Trickey, and
P. Winterbottom. The Inferno operating system. Bell Labs Technical
Journal, 2(1), Winter 1997.

[32] R. Pike, D. Presotto, K. Thompson, H. Trickey, and P. Winterbottom.
The use of name spaces in Plan 9. In Proceedings of the 5th ACM
SIGOPS Workshop, Mont Saint-Michel, 1992.

[33] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye,
L. Kethana, J. Walpole, and K. Zhang. Optimistic incremental
specialization: streamlining a commercial operating system. In
ACM Symposium on Operating System Principles, volume 29, 3–
6 December 1995.

[34] C. Pu, H. Massalin, and J. Ioannidis. The Synthesis kernel. Computing
Systems, 1(1):11–32, Winter 1988.

[35] M. Seltzer, Y. Endo, C. Small, and K. A. Smith. An introduction
to the architecture of the VINO kernel. Technical report, Harvard
University, 1994.

[36] D. Spoonhower, J. Auerbach, D. F. Bacon, P. Cheng, and D. Grove.
Eventrons: a safe programming construct for high-frequency hard
real-time applications. In PLDI ’06: Proceedings of the 2006
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 283–294, 2006.

[37] R. M. Stallman, R. Pesch, and S. Shebs. Debugging with GDB: The
GNU Source-Level Debugger. January 2002.

[38] Standard Performance Evaluation Corporation. SPECjbb2000 Java
Business Benchmark. http://www.spec.org/jbb2000.

[39] Standard Performance Evaluation Corporation. SPECjvm98 Bench-
marks. http://www.spec.org/jvm98.

[40] Sun MicroSystems. Connection limited device configuration; JSR
30, JSR 139. http://java.sun.com/javame/reference/apis.
jsp.

[41] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Making
trust between applications and operating systems configurable. In
Proceedings of the 16th USENIX Symposium on Operating System
design and Implementation, pages 279–292, November 2006.

[42] B. Walters. VMware virtual platform. Linux J., 1999(63es):6, 1999.

[43] XenSource. XenPPC. http://wiki.xensource.com/xenwiki/
XenPPC.

[44] System z9 integrated information processor (zIIP). http://www.
ibm.com/systems/z/ziip, 2006.

[45] Integrated facility for Linux. http://www.ibm.com/systems/z/
os/linux/ifl.html, 2006.

54

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

