
Project Kittyhawk: Building a Global-Scale Computer

Blue Gene/P as a Generic Computing Platform

Jonathan Appavoo Volkmar Uhlig Amos Waterland
IBM T.J. Watson Research Center, Yorktown Heights, NY

Abstract
This paper describes Project Kittyhawk, an undertaking
at IBM Research to explore the construction of a next-
generation platform capable of hosting many simultaneous
web-scale workloads. We hypothesize that for a large class of
web-scale workloads the Blue Gene/P platform is an order
of magnitude more efficient to purchase and operate than
the commodity clusters in use today. Driven by scientific
computing demands the Blue Gene designers pursued an ag-
gressive system-on-a-chip methodology that led to a scalable
platform composed of air-cooled racks. Each rack contains
more than a thousand independent computers with high-
speed interconnects inside and between racks.

We postulate that the same demands of efficiency and
density apply to web-scale platforms. This project aims
to develop the system software to enable Blue Gene/P as
a generic platform capable of being used by heterogeneous
workloads. We describe our firmware and operating system
work to provide Blue Gene/P with generic system software,
one of the results of which is the ability to run thousands of
heterogeneous Linux instances connected by TCP/IP net-
works over the high-speed internal interconnects.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Distributed systems; C.5.1 [Computer System Imple-
mentation]: Large and Medium (”Mainframe”)—Super (very
large) computers

General Terms
Design, Reliability, Performance, Management

1. INTRODUCTION
Project Kittyhawk’s goal is to explore the construction

and implications of a global-scale shared computer capable
of hosting the entire Internet as an application. This re-
search effort is in an early stage, so this paper describes our
conjectures and our ongoing work rather than a completed
set of results.

The explosive growth of the Internet is creating a demand
for inexpensive online computing capacity. This demand is
currently fulfilled by a variety of solutions ranging from off-
the-shelf personal computers connected to the Internet via
broadband to large clusters of servers distributed across mul-
tiple data centers. The general trend however is to consoli-
date many machines in centralized data centers to minimize
cost by leveraging economies of scale. This consolidation

trend includes building of data centers near hydroelectric
power plants [8], colocating physical machines in large data
centers, over-committing physical hardware using virtual-
ization, and software-as-a-service.

At present, almost all of the companies operating at web-
scale are using clusters of commodity computers, an ap-
proach that we postulate is akin to building a power plant
from a collection of portable generators. That is, commod-
ity computers were never designed to be efficient at scale,
so while each server seems like a low-price part in isolation,
the cluster in aggregate is expensive to purchase, power and
cool in addition to being failure-prone. Despite the inex-
pensive network interface cards in commodity computers,
the cost to network them does not scale linearly with the
number of computers. The switching infrastructure required
to support large clusters of computers is not a commodity
component, and the cost of high-end switches does not scale
linearly with the number of ports. Because of the power and
cooling properties of commodity computers many datacen-
ter operators must leave significant floor space unused to fit
within the datacenter power budget, which then requires the
significant investment of building additional datacenters.

Many web-scale companies start in a graduate lab or a
garage [18], which limits their options to the incremental
purchase of commodity computers even though they can rec-
ognize the drawbacks listed above and the value of investing
in the construction of an integrated, efficient platform de-
signed for the scale that they hope to reach. Once these
companies reach a certain scale they find themselves in a
double bind. They can recognize that their commodity clus-
ters are inefficient, but they have a significant investment in
their existing infrastructure and do not have the in-house
expertise for the large research and development investment
required to design a more efficient platform.

Companies such as IBM have invested years in gaining
experience in the design and implementation of large-scale
integrated computer systems built for organizations such
as national laboratories and the aerospace industry. As
the demands of these customers for scale increased, IBM
was forced to find a design point in our Blue Gene super-
computer technology that allowed dense packaging of com-
modity processors with highly specialized interconnects and
cooling components. Our aim is to determine whether IBM’s
deep institutional knowledge, experience and capability in
super-computing—specifically Blue Gene—coupled with this
design point can be leveraged to address the problems facing
web-scale computing. The system software work described
in this paper is aimed at making the incremental purchasing



of Blue Gene capacity as attractive as the current practice
of incremental purchasing of commodity computers.

We postulate that efficient, balanced machines with high-
performance internal networks such as Blue Gene are not
only significantly better choices for web-scale companies but
can form the building blocks of one global-scale shared com-
puter. Such a computer would be capable of hosting not
only individual web-scale workloads but the entire Internet.

This paper is structured as follows: Section 2 describes the
overall vision of the project and Section 3 discusses our mo-
tivating principles regarding large-scale hardware and soft-
ware. Section 4 describes the Blue Gene/P platform and the
firmware and operating system work we have done for it.
Section 5 describes our first experiences running the plat-
form as a generic heterogeneous computer and Section 6
concludes.

2. VISION
We assert that the keys to success of building a global

computational infrastructure (besides the obvious economic
ones) are to embrace diversity, ingenuity, cooperation and
competition. The intention is not to build a single static
system from which a single corporation provides and con-
trols all the value from it. Rather the intention is to create
a shared resource in which global benefit can be derived from
the advantages of consolidation, while enabling individuals
and organizations to provide sustainable, unique, and po-
tentially both cooperative and competitive offerings.

As such the vision we have for our system is very much
in the tradition of systems design. We are focusing on pro-
viding a basic set of primitives which are both sufficiently
primitive to encourage building arbitrary solutions while be-
ing high-level enough to help constrain the complexity and
burden of implementation. With this in mind we propose a
system which is designed to allow others to build computa-
tional services for many aspects of computation including:
systems management, network configuration, optimization,
service construction, migration, over-commitment, and reli-
ability.

We also assert it is critical to provide a model for the sys-
tem to be incrementally deployed and sustained. A global
system has more than just technical impacts but also eco-
nomic and social impacts. These topics will not be covered
in this paper but are considered in the project. In general,
our approach is to enable building blocks that allow others
to explore and provide creative solutions.

From a technical perspective our goal is to isolate the ben-
efits of hardware from those of software and allow as much
of the software value to be provisioned by a diverse popula-
tion of parties. The system is predicated on supporting cur-
rent models and practices while evolving them by enabling
arbitrary forms of virtualization (hardware, software, and
higher-level services) by diverse sets of providers. Our aim
is to minimize the software that the system enforces in order
to allow others to add arbitrary services. The system, how-
ever, is designed to ease the software/service providers’ bur-
den by enabling primitives and examples for management,
billing and development. From a hardware perspective a
consolidated platform has the opportunity to redefine what
is considered commodity. The design of the components
and structure of the machine can be optimized not based on
third party packaging and pricing models but rather to meet
the demand of efficient cost-effective scalable computation.

Upgrade and optimization can be driven by real demand
rather than artificially created upgrade cycles due to busi-
ness models based on server replacement rates. In time new
hardware can be introduced based on proven cost benefit
analysis.

The abstract vision is an underlying system on which base
providers can obtain hardware-backed processing, memory
and communication resources. The resources are provided
in the form of fully documented raw nodes composed of pro-
cessors, memory, and communication interfaces. The use of
the resources will be metered, reported, and billed on an
individual resource basis to the owner1.

In our consolidated machine model, the owner of resources
can construct resource and communication domains to re-
strict which nodes can directly communicate with each other.
The owner is provided with the following primitives for con-
trolling nodes:

• Secure Reset/Power cycling of individual or groups of
nodes,

• Secure communication to a simple boat loader (which
can be replaced) running on the nodes at startup,

• Secure debugging facilities similar to a JTAG interface
[12],

• Secure management interface to reconfigure the net-
work topology and routing configuration,

• Defined hardware failure model,

• Example software for using nodes and the communica-
tion facilities (including device drivers and a complete
open OS and user software environment).

The owner is free to use the processing resources as she
wishes such as reselling, over-committing, and offering man-
agement.

In order to build scalable services, we provide primitives
for simultaneously communicating with groups of nodes,
such as for boot-strapping a cluster with a common soft-
ware stack or debugging multiple nodes at once.

In the rest of this paper we will discuss our prototyping
of this vision on Blue Gene/P. Availability and support of
standard software, interfaces and protocols is paramount;
we provide an example Linux-based kernel and system stack.
The machine does not have all hardware aspects our vision
argues for and in part our goal is to explore and prototype
these new hardware requirements.

3. SCALABILITY AND SUSTAINABILITY
We assert that a global-scale system requires scalable hard-

ware and a sustainable model for software provisioning. In
this section we discuss cluster and SMP designs and sug-
gest that a hybrid machine is more appropriate for a global-
scale system. We then discuss our principles for provisioning
large-scale software services on such a system.

1The units of metering and billing models are beyond the
scope of this paper.



3.1 Structure of Scalable Hardware
When we think of today’s large scale computers the two

main-stream structures we consider are shared memory mul-
tiprocessors, tightly coupled systems, and clusters, loosely
coupled systems. One might easily conclude that, given the
structure of the current Internet, a global scale computer’s
structure would inherently be that of a loosely coupled sys-
tem. We contend however, that neither today’s clusters or
shared memory multiprocessor systems are ideal candidates
for a global scale computer.

Rather we propose that a hybrid is a more appropriate
structure to seed the evolution of a system. In prior work
we have studied the construction of scalable Non-Uniform
Memory Access (NUMA) SMP systems and software [1,10].
Such NUMA systems, including related Cache Only Mem-
ory Access (COMA) systems, have a cluster like architecture
and are designed to scale from a few processors to hundreds
of processors in a modular fashion. They are built from
nodes, containing a small number of processors and memory,
connected by a scalable inter-node interconnect. For exam-
ple, in the case of NUMAchine, the interconnect is a hierar-
chy of high-speed bit-parallel rings. Typically these systems
were constructed to provide a single-system abstraction via
hardware supported shared memory.

The interconnect network was generally not directly visi-
ble to the software, rather it was utilized as a memory bus.
Despite the shared memory support we found that when de-
signing and implementing the software for such systems it
was critical to exploit locality by utilizing distributed sys-
tems techniques [1]. Given the underlying shared memory
support of these multiprocessors, systems software (operat-
ing systems and hypervisors) are used to provide isolation.
The software allows multiple computations to be executed
in parallel and multiple users to securely share a single sys-
tem. There is, however, an implicit acceptance of a shared
software layer which is installed and owned by a single party
which is responsible for resource management.

In contrast, loosely coupled clusters do not impose a hard-
ware enforced shared memory model between nodes. The
physical communications topology and policies, however, are
hardware enforced, typically by wiring and switching hard-
ware. Access and configuration of a cluster’s wiring and
switching hardware is typically controlled by a single party.
Users of a cluster must request specific wiring and switch
configuration, in order to obtain the physical communica-
tion topology and policies they require. Alternatively, the
cluster can be run in an open configuration, in which all
nodes of the cluster can communicate with each other, and
users employ per-node firewall and/or encryption software
for isolation. In this scenario users must accepting the risk of
both intentional and unintentional communications to their
nodes and the associated costs and side effects, as is typified
by an intentional denial-of-service attack or unintentional
errors in software or hardware.

Given the trend to resurrect machine level virtualization
[9] one might assume that the underlying structure of the
hardware need not impact the virtual machine and virtual
network configuration that independent users desire. It is
worth remembering however, that virtualization cannot cre-
ate something from nothing. It is possible to construct a vir-
tual SMP of 16 processors from four 4 processor nodes of a
cluster [2,14] but in practice the network may not be appro-
priate to act as a memory interconnect. In contrast using a

global shared hypervisor to carve off 16 independent unipro-
cessor virtual machines connected to isolated networks from
a large SMP may not provide the desired isolation given the
underlying hardware sharing.

We claim that a hybrid multiprocessor designed to sup-
port global web-scale numbers of individual owners should
have the following properties:

• large scale consolidated manufacturing processes,

• efficient packaging, powering, cooling and installation,
exploiting large homogeneously structured units of hard-
ware,

• simple and minimalist node architecture,

• scalable NUMA-like interconnect bus for raw general
purpose communications,

• configurable, hardware enforced, communications do-
mains, and

• scalable control and management hardware.

A simple abstract metaphor is to imagine taking a rack
of 1U servers and turning each server into a node which
looks like an enlarged SIMM module, with memory chips
and a system-on-a-chip processor which incorporates addi-
tional bus controllers. Then packaging these into rack sized
quantities which connect the nodes to a control network
and a general purpose interconnect. In many respects, Blue
Gene/P provides a realization of this hybrid model. Sec-
tion 4 describes in further detail the Blue Gene/P architec-
ture.

3.2 Sustainable Software Provisioning
We assert that the following principles are necessary for

the sustainable provisioning and administration of a large-
scale collection of computers. Our use of the word “sustain-
able” refers to a property we desire in the continuing care
and maintenance of large-scale software services deployed on
thousands of nodes.

Statelessness: The software running on each node should
not store permanent state locally. Local administra-
tive actions should have no permanent effects and it
should not be possible to permanently damage by mis-
take or malice the software on a node. A power cycle
should restore the node to a known good state, and in
a transitive manner a system-wide reboot should re-
store the system to a known good state. “Stateless”
does not imply the lack of state altogether, it implies a
careful management and separation of local transient
state from permanent state.

Locality: The software running on each node should in nor-
mal operation consult no entities other than itself. For
example, nodes should not be contending on a central
server to obtain tokens for shared read-only files. This
does not imply a lack of communication entirely, it im-
plies a careful separation of files that are truly used for
communication from files that are common but read-
only.

Commonality: System files should be identical across nodes,
and administrative actions should be done only once



but reflected across sets of nodes in an atomic, time-
bounded and scheduled manner. The reflection of the
shared state should be an O(1) operation.

Auditability: Administrative actions, such as the edit of
a configuration file or the install of a new application,
should leave an audit trail similar to the version control
history of software projects. Administrative actions
should be transactional and should be able to be rolled
back.

A collection of machines provisioned in a manner consis-
tent with the above principles contrasts with a collection of
machines installed in the traditional ad-hoc server model. In
the latter, individual administrative actions over time pro-
duce increasing entropy in which the state of each machine
diverges permanently from that of its peers.

Many software objects that are currently called “appli-
ances” are not stateless and auditable. It is true that they
do not require configuration, but their runtime state is ca-
pable of being damaged with no simple push-of-a-button
reset capability. For example, one can download a canned
web server virtual appliance and then immediately lose the
property of statelessness by storing the main copy of one’s
website in it. At this point one must speak in the singu-
lar of the web server as opposed to an arbitrary collection
of stateless machines of which any and all in parallel may
serve as the web server.

4. BLUE GENE PROTOTYPE
The Blue Gene super-computer has highly desirable prop-

erties in the areas of density, cooling costs, and performance
per dollar for a company wishing to provide massive com-
pute capacity on demand. In this section we describe the
relevant aspects of the Blue Gene platform and our software
layer as provided to the resource owners.

4.1 Node Model
A Blue Gene/P node is composed of four 850 MHz cache-

coherent PowerPC cores in a system-on-a-chip with DRAM
and interconnect controllers. The nodes are grouped in units
of 32 on a node card via the interconnects and the node
cards are grouped in units of 16 onto a midplane. There are
2 midplanes in a rack providing a total of 1024 nodes and, in
its current configuration, a total of 2TB of RAM. Multiple
racks can be joined together to construct an installation.
The theoretical hardware limit to the number of racks is
16384. This results in the maximum size in nodes of an
installation being 16.7 million and in cores 67.1 million with
32 Petabytes of memory. See Figure 1 for a photo of a Blue
Gene/P node and node card.

Additionally, each node card can have up to two IO nodes
featuring the same basic unit but with an additional 10G
Ethernet port. Hence, each rack has a external IO band-
width of up to 640 Gbit/s; the aggregate IO bandwidth of
the maximum installation is 10.4 Petabit/s.

The key fact to note is that the nodes themselves can be
viewed for the most part as general purpose computers, with
processors, memory and external IO. The one major excep-
tion to this is that the cores have been extended with an
enhanced floating point unit [11] to enable super-computing
workloads.

4.2 Communications and Network models
The interconnects seamlessly cross all the physical bound-

aries described before, at least with respect to the software,
once the machine is configured. There are four relevant net-
works on Blue Gene/P: (1) a global secure control network,
(2) a hierarchical collective network (which provides broad-
casts and multicasts), (3) a three-dimensional torus network,
and (4) a 10 Gbit Ethernet for external communication.

4.2.1 Dynamic Network Topologies
Blue Gene’s networks provide all-to-all connectivity. Pack-

ets flow from node to node and either get deposited in the
receive buffers or forwarded to the next neighboring node.
The internal networks are all reliable; packets are guaran-
teed to be delivered.

The hardware allows for electric partitioning of nodes at
the granularity of 16, assuming the allocation has at least
one IO node in the network. In our typical environment we
use one IO node for one or two node cards, thus having a
minimal allocation size of 32 or 64 nodes.

The collective and torus networks form our basic link
layer; point-to-point communication is best performed on
the more powerful torus while broadcast and multicasts are
most efficient on the collective network. The functionality
of the torus network is comparable to an Infiniband network
including remote-DMA capabilities. The collective network
supports up to 16 routes which allow for flexible creation
of communication domains within subsets of nodes thereby
minimizing the payload on the global network.

At this point we lack the hardware capabilities to restrict
communication beyond the electrical partitioning. Instead
we use a (trusted) virtualization layer to enforce communi-
cation permissions.

4.2.2 Network and Storage
We packetize and multiplex standard protocols such as

Ethernet and the console on top of the underlying commu-
nication fabrics. We achieve external connectivity by using
IO nodes as network routers or bridges which then forward
the packets to the external network. However, routing is
not limited to external networks; standard network tech-
niques such as firewalling, IP masquerading, and proxying
are all applicable between Blue Gene nodes. We therefore
can construct isolated and secure subnets as independent
trust domains and enforce security properties on the net-
working layer.

Blue Gene does not contain internal storage and we there-
fore rely on externally provided disk capacity. From our ini-
tial experiments with a high-end server providing NFS we
quickly learned that scalability is quite limited: booting a
128 node configuration over NFS is nearly impossible due to
constant network timeouts. We are trying to push as much
of the storage complexity as possible into Blue Gene and
are pursuing two directions. First, we use storage devices
which operate on the block level, such as the Coraid’s Ether-
Drive [3]. The disks can then be accessed by multiple nodes
in parallel and coherency mechanisms can be implemented
over Blue Gene’s high-performance networks. Second, we
try to use the internal memory as storage. This is feasi-
ble considering the sheer amount of available and quickly
accessible memory capacity of 2 TBytes per rack.



(a) (b)

Figure 1: Blue Gene/P components. (a) compute node with a 4-core PowerPC 450 and 2GB RAM, (b) pop-
ulated node card with 32 compute nodes and 2 IO nodes (two 10G Ethernet connectors on the front). 32
node cards form a rack.

4.3 Control and Management Model
Blue Gene’s original control system was constructed for

a very challenging task: booting a single “task” on 64000
nodes within a few minutes. The unit of allocation is a block
which contains from 16 up to all nodes in an installation.

For a general purpose environment the existing control
system has a primary limitation which is that all nodes run
the same software image. While in many cases we may use
the same kernel image, we want to be able to customize the
boot-strap ramdisk image and command line parameters to
the OS kernel. Instead of taking the obvious approach of
extending the control system we took a different route which
enables a very flexible resource allocation and management
scheme.

Blue Gene’s control network provides access to all parts
of the hardware and is therefore inherently insecure. Expos-
ing it out to many clients requires a sophisticated security
infrastructure, scalable management infrastructure, scalable
storage for storing boot images, scalable network connectiv-
ity etc. We try to push as many of these services as possi-
ble into Blue Gene and use Blue Gene resources themselves
for management and accounting. This approach inherently
scales: every time a new rack comes online a fraction of that
rack’s resources is used for management.

Our node allocation still happens in blocks, however, we
allocate them in large quantities into a standby pool. Each
of the nodes is boot-strapped with a small but powerful
firmware (see also Section 4.5) which allows interaction with
the node over the network. From the standby pool nodes are
then allocated and accounted to individual user accounts.
Upon each node allocation we return a list of node addresses
which are available for use. When the user deallocates a
node, the node is reset, the memory gets scrubbed, and
the node placed back into the pool ready to be handed out
again.2

4.4 Reliability and Failure Model
Reliability is a key problem at scale: machines fail. Here,

Blue Gene has a significant advantage over commodity plat-
forms. Blue Gene was designed for a reliability target of 7

2This scheme also fits seamlessly into the primary use of our
Blue Gene installation, namely scientific computing. Allo-
cating nodes out of a pre-allocated pool makes this pool
appear to be running a scientific application to the other
users of the system.

days mean time between failure for a machine with 72 racks,
which is roughly 73,000 nodes and 146TB of memory. Since
the machine is built to run one application, a single node
failure is considered a machine failure. Hence, individual
node reliability is two orders of magnitudes higher than a
commodity server.

Blue Gene’s control network is also used for failure report-
ing back to the control system. The control system primarily
reports the errors into a central database which is then used
to deactivate faulty components and route around errors.

We are extending the existing infrastructure to allow nodes
to actively react to hardware failures. Node failures are
in many cases non-fatal for the application and recovery is
possible. However, node failures which traditionally do not
affect a node need to be handled due to the high level of
integration. For example, when a node fails which acts as
a forwarding node at the physical layer, a network segment
may become unreachable. While we can easily deallocate
the faulty node from the pool, we must ensure that all nec-
essary nodes still provide networking functionality. Here,
the reliability of a single-chip solution is very advantageous.
The failure of nodes are often due to failing memory mod-
ules. However, each processor chip has 8MB of integrated
eDRAM. If more than one RAM chip fails we can usually
bring the node back into a state where it still acts as a router,
even though normal workloads cannot be run.

The key to handle hardware failures gracefully is a de-
terministic failure model. For example an operating system
may recover from certain RAM failures if the necessary re-
covery code is located in memory with error correction and
higher reliability. Furthermore, networking errors can be
compensated via an out-of-band channel through the con-
trol network. We make each node explicitly aware of the
hardware outages so that the nodes, for example, reconfig-
ure the network links and route around outages.

4.5 Boot Loader
As mentioned before, the Blue Gene control system only

allows booting a single image on all nodes of a block. Nodes
are completely stateless; there is no flash or ROM in any of
the nodes. Thus, even the initial firmware which initializes
the hardware is loaded via the control network into each
node of the machine.

We take over the node from the firmware via a generic
boot loader which is placed on all nodes by the existing



control system. The boot loader, U-Boot [5], offers rich
functionality including a scripting language, network boot-
ing via NFS and TFTP, and a network console. We extended
U-Boot with the necessary device drivers for the Blue Gene
hardware and integrated the Lightweight IP stack [6, 7] to
provide support for TCP as a reliable network transport.

With this base functionality, individual nodes can be con-
trolled remotely, boot sequences can be scripted, and spe-
cialized kernel images can be uploaded on a case-by-case,
node-by-node basis. We envisage two models for boot-strap-
ping: a pull and a push model. In the pull model, a node
fetches its images from a network location, such as an NFS
server.

In the push model, the controlling host pushes the kernel
images into the node. The push approach has a number
of advantages. First, no public storage is required to boot-
strap a node. An owner/user of a node can directly load a
kernel and boot image (boot stack) from their client device
or they can construct services which automatically acquires
a node and pushes the appropriate boot stack to meet the
demand that triggered the need for an additional node. Sec-
ond, since a node does not need to independently connect to
a storage server, no security-sensitive authentication creden-
tials need to be transmitted to a node’s boot loader. Third,
parallel boot-strapping is simplified as a push model is more
amenable to the use of multi-cast communication.

We added a simple HTTP server to U-Boot so that indi-
vidual nodes can be booted via a PUT command that pushes
the desired boot images and kernel command line. The com-
mand line is evaluated via the scripting environment before
it gets passed on to the OS kernel thereby allowing per-
node customizations. With this simple extension to U-Boot
we are able to construct powerful scripted environments and
bootstrap large numbers of nodes in a controlled, flexible,
and secure way.

4.6 Operating System
At this point we are working on two system stacks, Linux

as a general purpose operating system and the L4 hyper-
visor/microkernel [15]. Linux provides us with a standard
UNIX environment and a rich and well-tested software stack.
We added device drivers for the key devices in Blue Gene:
the collective network, the torus network, the external Eth-
ernet adapter, the interrupt controller, and a bring-up con-
sole. Layered upon the internal networks we added support
for an Ethernet adapter which supports jumbo packets. Sur-
prisingly, these few drivers made the system available for a
huge amount of general purpose workloads.

We are aiming for a simple virtualization solution to ex-
periment with new system software models and hardware
extensions. L4 gives us a good lightweight virtualization
layer where we can experiment with new resource allocation
and sharing models. L4 provides another important fea-
ture: Blue Gene’s current security model is that of a single
application and all nodes are trusted among each other. A
security domain spans the size of a block allocation which
can be thousands of nodes. A trusted intermediary software
layer, such as a hypervisor, enables us to enforce admission
control to the hardware. When the hypervisor work is com-
pleted we will run the boot-loader as a virtual machine on
top of L4 and we can guarantee a root of trust [16].

5. FIRST EXPERIENCES
In this section we describe our first experiences using a

super-computer for general purpose workloads. As expected,
when using standard practices we experienced problems re-
lated to the scalability of core services like NFS, DHCP, and
LDAP.

5.1 Software Packaging
A common approach to centrally manage a large num-

ber of servers is to use diskless machines that retrieve their
system files from a central network file server. In [4] we de-
scribe an implementation of this model where the transient
per-node state is maintained in local RAM disks mounted
over the permanent centralized global state maintained in a
read-only export. As an increasing number of nodes using
this model access the centralized storage, the network server
becomes a bottleneck despite the fact that all accesses are
read-only.

In order to address our scalability problems of running
large numbers of nodes, we pursued an approach of building
small root filesystem images that can be efficiently loaded
into RAM during boot. We built a tool that automatically
generates from a stock Linux filesystem an image containing
only the files necessary to run a given application. We call
this packaging a “software appliances” to emphasize that
they are a tiny but complete working system.

Table 2 presents the size of the software appliances our
tools automatically constructed from a typical Linux root
filesystem of around 2 GB. The appliances are generally 5%
of the size of the full root filesystem.

Appliance Size (MB)
Shell 3

SSH Server 10
x86 Emulator 11

Ruby on Rails Website 12
SPECint2006 14
SPECjbb2005 90

Figure 2: Software appliance sizes.

The images are packaged in a format that Linux supports
as a pure RAM image that does not require double buffering
to a block store. Note that by using just a Linux kernel plus
a RAM image we are able to enjoy the benefits of software
appliances without requiring virtualization.

This approach allows us to reprovision a block of 512
nodes in about 45 seconds, switching for example from Java
workers to Ruby on Rails web servers etc. We built tools to
edit and merge images, so that the use of the tool for image
capture is only necessary when determining the filesystem
requirements of a new application.

The principles that make this approach successful are dis-
cussed in Section 3.2. Specifically, since each appliance is
has no permanent state and is running entirely out of local
RAM, we satisfy the “statelessness” and “locality” princi-
ples. Since the Blue Gene control system allows us to scal-
ably boot the same image across nodes, we have a controlled
form of the “commonality” principle. Since we can checksum
and archive known-good images, we built a rudimentary ver-
sion control system that tracks the lineage of images, which
satisfies the “auditability” principle.



5.2 Applications
We experimented with a diverse set of applications pack-

aged as software appliances to test our hypothesis that the
Blue Gene platform can be used for a wide variety of usage
cases. We primarily focused on a class of applications that
fit into the Web 2.0 paradigm or are requirement thereof. In
the following we briefly discuss some of our test applications:

SpecJBB: SPECjbb2005 [17] is a Java benchmark that
measures the number of business operations a ma-
chine can sustain. The benchmark has a multi-JVM
mode to deal with non-scalable JVMs. We used this
mode and were able to spread the load across 256 Blue
Gene nodes3 by using a harness that transparently for-
wards the network and filesystem accesses made by
each worker.

We were able to run the benchmark across the 256
nodes that were available to us with a per-node perfor-
mance of 9565 Business Operations per second (BOPS),
yielding a reported score of 2.4 million BOPS. It is
important to note that the benchmark rules state a
requirement of a single operating system image, so
we are not able to submit our performance results at
this point. However, our initial results show that Blue
Gene/P provides a powerful generic platform to run
complex workloads.

Web 2.0: We experimented with Web 2.0 applications that
are typically constructed from a LAMP stack (that is
Linux, Apache, MySQL and PHP). We package the
PHP business logic and Apache webserver in a 20MB
appliance. By separating the database from the rest
of the application stack, the nodes remain stateless.
It is interesting to note that once the cost has been
paid to parallelize a workload, the performance of in-
dividual nodes becomes irrelevant compared to overall
throughput and efficiency. Since web programmers are
implicitly forced to parallelize their programs through
the use of stateless business and display logic, their
workloads make a good fit for an efficient highly par-
allel machine like Blue Gene. It is also important for
the survival of a web company that suddenly becomes
popular to be able to quickly scale their capacity, some-
thing that is difficult to do with commodity hardware
that can require weeks of integration effort to bring on-
line an additional thousand nodes. In contrast, a Blue
Gene rack of 1024 nodes is validated during manufac-
ture as a single system.

System S: System S [13] is a stream-processing system that
can utilize a diverse set of platforms. Nodes can be dy-
namically added and removed from a collective and a
workload balancer places jobs on the available com-
pute resources. Our infrastructure naturally fits the
System S paradigm and we are testing System S on
Blue Gene on a number of nodes that it had never run
on before.

This example revealed another important aspect of the
availability of a consolidated platform: it is now pos-
sible to test workloads at scales of tens of thousands

3The availablity of Blue Gene/P resources to us is still fluc-
tuating and limited at this early point in the product cycle.

of nodes and reveal and eliminate scalability bottle-
necks which are not apparent at scales of a few hundred
nodes. There is significant scientific value in being able
to run at scale, a capability that has usually been re-
served for those able to port their code to specialized
kernels.

Compute Farm: The time required to compile large soft-
ware projects may severely hinder development pro-
ductivity. For some projects groups use thousands
of underutilized servers and developer workstations to
run distributed compilation, number crunching, and
simulation jobs. Capacity at scale significantly reduces
the turn-around time and the resources can be effi-
ciently shared between multiple organizations. For ex-
ample, we are experimenting with running distcc on
hundreds of nodes to reduce compile times. Develop-
ers simply point their make logic to a farm of standby
nodes which process the compile requests in parallel.

Storage: Blue Gene/P has no inherent permanent storage,
but processors and memory are plentiful. A single rack
contains 2 TB of memory. As a first experiment we use
some nodes to act as ramdisks; a volume manager then
stripes across multiple ramdisks and provides the ag-
gregate storage capacity, for example via NFS. If per-
sistence is a requirement we use external storage at-
tached as closely as possible to the 10G Ethernet link.
A trickle-out model with a hierarchical storage system
(local RAM, remote RAM, external storage) is a possi-
bility we consider, however, we also consider more so-
phisticated storage models an important area of future
research. We have experimented with using BitTorrent
as a peer-to-peer distribution model for loading large
software appliances from permanent storage.

6. SUMMARY
In this paper we described the vision and exploration

of Project Kittyhawk, an ongoing effort at IBM Research
which explores the construction of a next-generation com-
pute platform capable of simultaneously hosting many web-
scale workloads. At scales of potentially millions of con-
nected computers, efficient provisioning, powering, cooling,
and management are paramount. Some of these problems
have been successfully addressed by the super-computer com-
munity and we are leveraging the scientific investments into
IBM’s Blue Gene/P super-computer platform, a system which
is specifically designed to scale to hundreds of thousands of
nodes as is now demanded by constantly and quickly grow-
ing Internet services.

Our early results are promising and show that it is in-
deed feasible to construct flexible services on top of a sys-
tem such as Blue Gene. Our design uses the system’s high-
speed networks to provide internal and external connectiv-
ity, combines the significant memory capacity with access to
Ethernet-attached storage for low-latency permanent stor-
age, and groups processors into networks of collaborating
machines. Our envisaged model is where compute resources
are provisioned and used in highly flexible manners. There-
fore, in our prototype we attempt to minimize the restric-
tions to maximize the flexibility for users. To test our hy-
pothesis, we are prototyping a stack consisting of a network-
enabled firmware layer to bootstrap nodes, the L4 hypervi-
sor for partitioning and security enforcement, Linux as a



standard operating system, and an efficient software pack-
aging and provisioning system. An important aspect is that
while these building blocks allow us to run a large variety of
standard workloads, none of these components are required
and therefore can be replaced as necessary to accommodate
many diverse workloads. This flexibility, efficiency, and un-
precedented scale makes Blue Gene a powerhouse for run-
ning computation at Internet scale.

7. ACKNOWLEDGEMENTS
We would like to acknowledge and thank the many re-

searchers, over many years, who have contributed to making
Blue Gene a reality. The Blue Gene effort incorporates ad-
vances in many diverse areas of super-computing including,
architecture, networking, packaging, manufacturing, control
systems and applications. Our work in exploring a global-
scale, general purpose, computational platform has been
dramatically accelerated by the existence and access to Blue
Gene. We would like to explicitly thank Jose Moreira, Jim
Sexton, Robert Wisniewski, Mark Giampapa, and Dilma Da
Silva for their help and support.

8. REFERENCES
[1] Appavoo, J., Silva, D. D., Krieger, O.,

Auslander, M., Ostrowski, M., Rosenburg, B.,
Waterland, A., Wisniewski, R. W., Xenidis, J.,
Stumm, M., and Soares, L. Experience distributing
objects in an SMMP OS. ACM Transactions on
Computer Systems (TOCS) 25, 3 (2007), 6.

[2] Carter, J. B., Khandekar, D., and Kamb, L.
Distributed shared memory: Where we are and where
we should be headed. In Fifth Workshop on Hot
Topics in Operating Systems (HotOS-V) (1995).

[3] Coraid. EtherDrive Storage. http://coraid.com.

[4] Daly, D., Choi, J. H., Moreira, J. E., and
Waterland, A. Base operating system provisioning
and bringup for a commercial supercomputer. In
International Parallel and Distributed Processing
Symposium (IPDPS) (2007), IEEE.

[5] Denx Software Engineering. Das U-Boot – the
Universal Boot Loader.
http://www.denx.de/wiki/UBoot.

[6] Dunkels, A. lwIP – A Lightweight TCP/IP stack.
http://www.sics.se/~adam/lwip/.

[7] Dunkels, A. Full TCP/IP for 8-bit architectures. In
The International Conference on Mobile Systems,
Applications, and Services (MobiSys) (San Francisco,
CA, May 2003), USENIX.

[8] Fan, X., Weber, W.-D., and Barroso, L. A.
Power provisioning for a warehouse-sized computer. In
Proceedings of the 34th annual international
symposium on Computer architecture (ISCA ’07)
(New York, NY, USA, 2007), ACM Press.

[9] Goldberg, R. P. Survey of virtual machine research.
IEEE Computer Magazine 7, 6 (1974).

[10] Grbic, A., Brown, S., Caranci, S., Grindley, G.,
Gusat, M., Lemieux, G., Loveless, K.,
Manjikian, N., Srbljic, S., Stumm, M., Vranesic,
Z., and Zilic, Z. Design and implementation of the
NUMAchine multiprocessor. In Proceedings of the
1998 Conference on Design Automation (DAC-98)
(Los Alamitos, CA, June 15–19 1998), ACM/IEEE.

[11] IBM. Exploiting the Dual Floating Point Units in
Blue Gene/L. White Paper 7007511, IBM,
http://www-1.ibm.com/support/docview.wss?uid=

swg27007511, June 2006.

[12] IEEE. 1149.1-1990 IEEE Standard Test Access Port
and Boundary-Scan Architecture–Description. IEEE,
New York, NY, USA, 1990.

[13] Jain, N., Amini, L., Andrade, H., King, R., Park,
Y., Selo, P., and Venkatramani, C. Design,
implementation, and evaluation of the linear road
benchmark on the stream processing core. In
Proceedings of the 2006 ACM SIGMOD international
conference on Management of data (SIGMOD ’06)
(New York, NY, USA, 2006), ACM Press.

[14] Li, K. IVY: A shared virtual memory system for
parallel computing. Proceedings of the 1988
International Conference on Parallel Processing, Vol.
II Software (Aug. 1988).

[15] Liedtke, J. On µ-kernel construction. In Proceedings
of the 15th ACM Symposium on Operating System
Principles (SOSP ’95) (Copper Mountain Resort, CO,
Dec. 1995).

[16] Seshadri, A., Luk, M., Shi, E., Perrig, A., van
Doorn, L., and Khosla, P. Pioneer: Verifying
integrity and guaranteeing execution of code on legacy
platforms. In Proceedings of the 20th ACM Symposium
on Operating System Principles (SOSP ’07)
(Brighton, UK, Oct. 2005), ACM.

[17] The Standard Performance Evaluation
Corporation (SPEC). SPECjbb2005 Java Server
Benchmark. http://www.spec.org/jbb2005.

[18] Vise, D., and Malseed, M. The Google Story:
Inside the Hottest Business, Media, and Technology
Success of Our Time. Delta, Aug. 2006.


