
K42: Building a Complete Operating System

Orran Krieger † Marc Auslander † Bryan Rosenburg † Robert W. Wisniewski †

Jimi Xenidis † Dilma Da Silva † Michal Ostrowski † Jonathan Appavoo †

Maria Butrico † Mark Mergen † Amos Waterland † Volkmar Uhlig †

ABSTRACT
K42 is one of the few recent research projects that is examin-
ing operating system design structure issues in the context
of new whole-system design. K42 is open source and was
designed from the ground up to perform well and to be scal-
able, customizable, and maintainable. The project was be-
gun in 1996 by a team at IBM Research. Over the last nine
years there has been a development effort on K42 from be-
tween six to twenty researchers and developers across IBM,
collaborating universities, and national laboratories. K42
supports the Linux API and ABI, and is able to run un-
modified Linux applications and libraries. The approach we
took in K42 to achieve scalability and customizability has
been successful.

The project has produced positive research results, has re-
sulted in contributions to Linux and the Xen hypervisor on
Power, and continues to be a rich platform for exploring sys-
tem software technology. Today, K42, is one of the key ex-
ploratory platforms in the DOE’s FAST-OS program, is be-
ing used as a prototyping vehicle in IBM’s PERCS project,
and is being used by universities and national labs for ex-
ploratory research . In this paper, we provide insight into
building an entire system by discussing the motivation and
history of K42, describing its fundamental technologies, and
presenting an overview of the research directions we have
been pursuing.

Categories and Subject Descriptors
D.4.0 [Operating Systems]: General; D.4.1 [Operating
Systems]: Process Managment; D.4.1 [Operating Sys-
tems]: Process Managment—Multiprocessing ; D.4.2 [Operating
Systems]: Storage Management; D.4.3 [Operating Sys-
tems]: File Systems Management; D.4.4 [Operating Sys-
tems]: Communications Management; D.4.7 [Operating

†IBM T. J. Watson Research Center
This work was supported in part by a DARPA PERCS grant
contract number NBCH30390004

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’06, April 18–21, 2006, Leuven, Belgium.
Copyright 2006 ACM 1-59593-322-0/06/0004 ...$5.00.

Systems]: Oragnization and Design; D.4.8 [Operating
Systems]: Performance

General Terms
Algorithms,Performance,Design

Keywords
operating system design,scalable operating systems, customiz-
able operating systems

1. BACKGROUND
In 1996 we began K42 to explore a new operating system

design structure for scalability, customizability, and main-
tainability in the context of large-scope or whole-system re-
search issues. K42’s design was based on current software
and hardware technology and on predictions of where those
technologies were headed. In this section we describe those
predictions and discuss the resulting technology decisions.
At the end of the paper, we review how the predictions
changed over the life of the project and the resulting changes
in the technical directions of the project.

1.1 Technology predictions
Key predictions we made in 1996 were:

1. Microsoft Windows would dominate the client space,
and would increasingly dominate server systems. By
the mid 1990s, predictions made by leading consult-
ing firms indicated Unix would disappear from all but
high-end servers and Windows would dominate most
markets.

2. Multiprocessors would become increasingly important
at both the high and low end. For the high end, projects
in academia [24, 1, 20] demonstrated that large scale
NUMA multiprocessors are feasible and can be devel-
oped to be price/performance competitive with dis-
tributed systems. For the low end, the increasing num-
ber of transistors were yielding smaller improvements
to single cores, and it seemed that the ever increasing
density of transistors would instead be used for more
cores and threads on a chip.

3. The cost of maintaining and enhancing current oper-
ating systems would grow increasingly prohibitive over
time. Existing operating systems were designed as
monolithic systems, with data structures and policy
implementations spread across the system. Such global

EuroSys 2006 133

knowledge makes maintenance difficult because it is
hard to ensure that the effect of a small change is con-
tained. The difficulty of innovating in such systems
was inhibiting OS research and making it very difficult
to affect commercial systems. The places where exist-
ing operating systems did have well defined object-
oriented interfaces, e.g., vnode layer, streams, drivers,
etc., allowed greater innovation.

4. Customizability and extensibility would become increas-
ingly critical to operating systems. There was a consid-
erable amount of research in the 1990s on customizable
and extensible operating systems. Projects like Ex-
okernel[14], Spin[7], and Vino[31] demonstrated that
performance gains could be achieved if the OS is cus-
tomized to the needs of specific applications. In the
context of large multiprocessors with potentially many
simultaneous jobs, customizability seemed even more
critical.

5. Within five years all machines would be 64 bit. MIPS
and Alpha had already demonstrated that the incre-
mental cost of supporting 64-bit addressing is min-
imal on chip area and power dissipation. Because
64-bit addressing is beneficial for some software, it
seemed that 32-bit platforms would soon disappear.
Announcements by chip manufacturers supported this.
One piece of software that can benefit from a 64-bit
architecture is the operating system. Assuming 64-
bit addressing allows optimizations throughout the op-
erating system, e.g., mapping all physical memory,
adding state and lock bits to pointers, avoiding compli-
cated data structures by using potentially large virtual
ranges rather than hashing, etc.

We now discuss the technology directions these predic-
tions led us to pursue.

1.2 Technology directions
Many operating system research initiatives chose to ex-

plore new ideas through incremental changes to existing sys-
tems. We believed that the changes in technology since the
existing operating systems were designed were significant
enough, and that the cost of maintaining those systems was
high enough, that operating system research from a clean
slate should be undertaken.

We designed a system that was similar in many ways to
the Exokernel, where much functionality is implemented in
libraries in the applications’ own address spaces. This struc-
ture was based on the premise that the more function that
was moved out of the kernel, the easier it would be to provide
specialized libraries to adapt to applications’ needs. More
importantly, we felt that micro-kernel systems like Work-
place OS [23] failed in part because of the complexity needed
in each server to support multiple personalities. It seemed
that mapping from a specific OS personality to base OS ser-
vices in the application address space could simplify the task
and reduce the overhead.

One of the key design decisions we made in the system
was to use object-oriented (OO) design pervasively. Work
from the University of Toronto’s Tornado project [17] had
demonstrated that an OO methodology that encourages lo-
cal implementations was important for achieving good mul-
tiprocessor performance. Stated alternatively, global data

structures, policies, and implementations do not scale well;
local implementations are needed. While Tornado focused
primarily on exploiting object orientation to improve mul-
tiprocessor performance, the K42 project used it also for
its software engineering advantages of reducing maintenance
costs and enabling innovation.

Fault containment and recovery is a significant issue for
operating systems that run across large numbers of proces-
sors. The cellular approach adopted by Hive[11] and Hurri-
cane[37] had been deemed by both groups of researchers to
have too high a performance cost. In K42 we decided to ex-
plore a model we called Application Managers. On large sys-
tems, multiple OSes of varying sizes would be multiplexed.
An application that did not require many resources would
run on an OS instance scaled to its needs. Our approach
differed from Disco [19] in that fault containment bound-
aries were between OSes that were time multiplexed rather
than space multiplexed. We assumed that the multiplex-
ing would be managed by cooperative minimal kernels, not
imposed by an external entity.

2. INTRODUCTION AND GOALS
The K42 project is an open-source research operating sys-

tem kernel incorporating innovative mechanisms, novel poli-
cies, and modern programming technologies.

In K42 we are examining the issues of designing a com-
plete operating system kernel. It is one of the few recent
research projects[25, 16, 9, 22] that addresses large-scope
operating system research problems. While not every line
of code in K42 was written from scratch, K42 was designed
from the ground up to address scalability and dynamic cus-
tomization of system services. K42 supports the Linux API
and ABI [2], allowing it to run unmodified Linux applica-
tions and libraries.

The principles that guide our design are 1) structuring
the system using modular, object-oriented code, 2) design-
ing the system to scale to very large shared-memory multi-
processors, 3) leveraging the performance advantages of 64-
bit processors, 4) avoiding centralized code paths and global
locks and data structures, 5) moving system functionality to
application libraries that reside in the applications’ address
spaces, and 6) moving system functionality from the kernel
to server processes. While we believe in these design prin-
ciples, our primary emphasis is on performance. Therefore,
as needed, we have made compromises rather than carry-
ing these design philosophies to extremes in order to fully
explore their ramifications.

Goals of the K42 project include:
Performance: 1) Scale up to run well on large multipro-

cessors and support large-scale applications efficiently. 2)
Scale down to run well on small multiprocessors. 3) Support
small-scale applications as efficiently on large multiproces-
sors as on small multiprocessors.

Customizability: 1) Allow applications to determine
(by choosing from existing components or by writing new
ones) how the operating system manages their resources. 2)
Autonomically have the system adapt to changing workload
characteristics.

Applicability 1) Effectively support a wide variety of
systems and problem domains. 2) Make it easy to modify
the operating system to support new processor and system
architectures. 3) Support systems ranging from embedded
processors to high-end enterprise servers.

134 EuroSys 2006

Wide availability: 1) Be available to a large open-source
and research community. 2) Make it easy to add specialized
components for experimenting with policies and implemen-
tation strategies. 3) Open up for experimentation parts of
the system that are traditionally accessible only to experts.

Having described our overarching goals and principles, in
the rest of the paper we present a summary of our differ-
ent research directions we pursued in K42. We begin in
Section 3 with a discussion of K42’s scalability. Then, in
Section 4, we describe memory allocation, which is key to
achieving good scalability. In Section 5 we discuss how the
object-oriented model allowed us to achieve a dynamically
customizable system. Clustered objects, described in Sec-
tion 6, are important to achieving good scalable performance
and providing an infrastructure for customization. Section 7
describes K42’s user-level scheduler, its threading model and
efficient inter-process communication infrastructure. File
system research directions are described in Section 8. A
key to achieving good performance is understanding perfor-
mance. We describe K42’s performance monitoring infras-
tructure in Section 9. To explore complete operating system
issues, the ability to be able to run applications and have a
user base is critical. We addressed this requirement by pro-
viding Linux compatibility as described in Section 10. In
Section 11 we describe the use of this environment by dis-
cussing application use, debugging, and K42’s development
model. In K42, we considered Application Managers (now
commonly called VMMs Virtual Machines Managers or hy-
pervisors) as a way to achieve greater availability. In the
last several years this work has taken on even wider scope.
We describe the virtualization work associated with K42 in
Section 12. We present concluding remarks in Section 13.

3. SCALABILITY
An early emphasis in the project was achieving good per-

formance on scalable hardware, and scalability remains a
cornerstone of K42. K42 is designed and structured to scale
as hardware resources are increased. The techniques used
in K42 provide a runtime structure that can be efficiently
mapped to the underlying multiprocessor structure, enabling
scalable performance.

Achieving scalable performance requires minimizing shar-
ing, thereby maximizing locality. On shared memory mul-
tiprocessors (SMPs), locality refers to the degree to which
locks are contended and data is shared between threads run-
ning on different processors. The less contention on locks
and the less data sharing, the higher the locality. Max-
imizing locality on SMPs is critical, because even minute
amounts of (possibly false) sharing can have a profound neg-
ative impact on performance and scalability [17, 10].

We use four primary techniques for structuring our soft-
ware to promote and enable scalability:

PPC: A client-server model is used in K42 to represent
and service the demand on the system. A system service
is placed within an appropriate protection domain (address
space) and clients make requests to the service via a Pro-
tected Procedure Call (PPC). Like the Tornado PPC [17],
a call from a client to a server that, like a procedure call,
crosses from one address space to another and back with
the following properties: 1) client requests are always ser-
viced on their local processor, 2) clients and servers share
the processor in a manner similar to handoff scheduling, and
3) there are as many threads of control in the server as there

are outstanding client requests.
Locality-aware dynamic memory allocation: Dy-

namic memory allocation is extensively used in the construc-
tion of K42 services to ensure that memory resources grow
with demand both in size and location. The K42 memory
allocators employ per-processor pools to ensure that mem-
ory allocations are localized to the processors servicing a
request for which the memory was allocated.

Object decomposition: K42 uses an object-based soft-
ware architecture to implement its services. The model en-
courages developers to implement services that can scale as
demand increases. A service is structured as a set of dy-
namic interconnected object instances that are lazily con-
structed to represent the resources that a unique set of re-
quests require. For example, mapping a portion of a pro-
cess’s address space to a file would result in the construc-
tion of several objects unique to that process, file, and map-
ping. Thus, page faults of the process to that address range
would result in execution of methods only on the objects
constructed for that process, file, and mapping. Other map-
pings would result in other independent objects being con-
structed. The object architecture acts as a natural way of
leveraging the locality-aware dynamic memory allocation.
Objects are created on demand on the processor on which
the request was made. Thus, they consume memory local
to those processors and are accessed with good locality.

Clustered objects: K42 uses an SMP object model that
encourages and enables the construction of scalable soft-
ware services. Each object can be optimized with respect
to the concurrent access patterns expected. For example, a
multi-threaded application, such as a web server or a par-
allel scientific application, causes concurrent accesses to the
Process object instance representing that application. This
occurs, for example, when its threads on different processors
page fault. The Clustered Object model provides a standard
way for implementing in a scalable manner the concurrently-
accessed objects using distribution, replication, and parti-
tioning of data structures and algorithms.

4. MEMORY MANAGEMENT
The goals of high performance, multiprocessor scalability,

and customizability, have impacted the design of memory
management in K42. In addition to helping fulfill the over-
all goals, additional goals such as a pageable kernel helped
define the design as well. The design goals and constraints
include:

Locality: Avoid global data structures and locks. Man-
age each processor separately.

Uniform buffer cache: Have a single mechanism for
caching file and computational data in page frames, parti-
tioned for locality.

Enable user-mode scheduling: Reflect page faults and
page-fault completions to the faulting process. Do not block
for page I/O in the kernel.

Bounded kernel resources: Queue delayed work and
resume it when indicated by interrupt or IPC, rather than
blocking threads in the kernel.

External file servers: Provide interfaces so that pro-
cesses other than the kernel can manage file system re-
sources.

Pageable kernel: Provide for paging much of the kernel,
especially the paging-system data needed to represent non-
kernel processes.

EuroSys 2006 135

Unix semantics: Provide implementations of fork and
copy-on-write mappings.

Customizability: Allow customized paging implemen-
tations for specific applications and allow different behavior
for different regions within a given address space.

Processor-specific memory: Provide a space of virtual
memory locations that are backed by different page frames
on different processors.

NUMA and multiple page size support: Keep phys-
ical memory close to where it is used. Use large pages to
reduce hardware and software costs of virtual memory.

To illustrate how an object-oriented model is used in a
kernel, we describe the objects that are used to implement
memory management in K42, what their functions are, and
how they interact. Each K42 process contains a single ad-
dress space. The address space is made up of Regions, each
of which spans a range of contiguous virtual addresses in the
process’s address space. A Region maps its virtual range
onto a range of offsets in a “file”. We use the term file
even for computational storage, although a special version
of the “file” implements this case. A process also contains
the hardware-specific information needed to map virtual ad-
dresses to page frames. We represent this memory structure
using K42 Clustered Objects connected by K42 object ref-
erences.

The Process object is the root of the object tree for each
process in the kernel. It contains a list of Region objects
and refers to the hardware-specific information.

Each Region object represents the mapping from a con-
tiguous range of virtual addresses in the process address
space to a contiguous range of offsets in a file.

The File Representative is the kernel realization of a file,
used to call the external file system to do I/O, and used by
client processes, for example, to memory map the file.

The File Cache Manager (FCM) controls the page frames
assigned to contain file content in memory. It implements
the local paging policy for the file and supports Region re-
quests to make file offsets addressable in virtual memory.

The Page Manager (PM) controls the allocation of page
frames to FCMs, and thus implements the global aspects of
paging policy for all FCMs.

The Hardware Address Translator (HAT) manages the
hardware representation of an address space. The Segmen-
tHAT manages the representation of a hardware segment.
Segments are of hardware-dependent size and alignment, for
example 256 megabytes on PowerPC. The hardware data
they manage might be a segment’s page table or a PowerPC
virtual segment id. SegmentHATs can be private or shared
among multiple address spaces.

This particular decomposition was chosen because it was
judged to separate mechanisms and policy that could be
independently customized and composed. For example, a
normal Region, or one specialized to implement processor-
specific memory by including the processor number in its
mapping of virtual address to file offsets, can each be con-
nected to different kinds of files.

5. CUSTOMIZATION
K42 was designed so that each instance of a resource is

managed by a different set of one or more object instances.
For example, each open file in K42 has a different set of in-
stantiated file object instances that provide the bits for that
file. This is true for most other resources such as memory re-

gions, processes, pipes, etc. Using different object instances
for different resources allows the way in which the operating
system manages resources on behalf of an application to be
customized. Specifically, different applications that are run-
ning simultaneously can have different resource management
policies applied to the same type of resource, such as mem-
ory, file, etc. Further, even within an application, different
memory regions, or different files, etc., can be managed by
different objects providing different customized policies.

This infrastructure also allows K42 to vary the level at
which the hardware and software layer interfaces are imple-
mented. For example, on different hardware platforms the
interface can move up or down depending on the available
hardware features. This is also true for software boundaries,
e.g., the interface to glibc. Applications that are interested
in specialized services can call customized interfaces of the
K42 objects implementing the particular policy that the ap-
plication needs rather than through the glibc layer.

Dynamic customization
The ability to customize how the operating system man-
ages an application’s resources can be used to improve ap-
plication performance. The capability to modify the re-
source management on the fly provides even greater ability
to match the needs of the application, but also provides a
qualitatively different capability of improving the availabil-
ity, upgradability, and security of the system.

There are a variety of reasons for modifying a deployed op-
erating system. A common example is component upgrades,
particularly patches that fix security holes. Other examples
include dynamic monitoring, system specializations, adap-
tive performance enhancements, and integration of third-
party modules. Usually, when they are supported, distinct
case-by-case mechanisms are used for each example.

K42’s dynamic customization support is divided into hot
swapping [34] and dynamic upgrade [4, 5, 6]. Hot swapping
replaces an active component instance with a new component
instance that provides the same interface and functionality.
Internal state from the old component is transfered to the
new one, and external references are relinked. Thus, hot
swapping allows component replacement without disrupting
the rest of the system and without placing additional require-
ments on the clients of the component. Dynamic upgrade
uses hot swapping to replace all of the objects in the system
providing a given service. If an upgrade was made to the
object representing the process, for example, the dynamic
upgrade would be used to replace the objects in the system
representing each process. There can be a potentially large
number of objects to swap and thus it is important to be
able to perform the swap lazily.

Applying dynamic customization
Hot swapping and dynamic upgrade are general tools that
provide a foundation for dynamic OS improvement. The re-
mainder of this section discusses several categories of com-
mon OS enhancements that are supported by hot swapping
and dynamic update and how those OS enhancements may
be implemented with hot swapping or dynamic update.

Patches and updates: As security holes, bugs, and per-
formance anomalies are identified and fixed, deployed sys-
tems must be repaired. With dynamic upgrade, a patch can
be applied to a system immediately without the need for
down-time. This capability avoids having to make a trade-

136 EuroSys 2006

off among availability and correctness, security, and better
performance.

Adaptive algorithms: For many OS resources, different
algorithms have better or worse performance under differ-
ent conditions. Adaptive algorithms are designed to com-
bine the best attributes of different algorithms by monitor-
ing when a particular algorithm would be best and using
the preferred algorithm at the correct time. Using dynamic
customization, developers can create adaptive algorithms in
a modular fashion, using several separate components. Al-
though in some cases implementing such an adaptive al-
gorithm may be simple, this approach allows adaptive al-
gorithms to be updated and expanded while the system is
running. Each independent algorithm can be developed as a
separate component and hot swapped in when appropriate.

Specializing the common case: For many individ-
ual algorithms, the common code path is simple and can
be implemented efficiently. However, supporting all of the
complex, uncommon cases often makes the implementation
difficult. To handle these cases, a system with dynamic
customization can hot swap between a component special-
ized for the common case and the standard component that
handles all cases. Another way of getting this behavior is
with an if statement at the top of a component with both
implementations. A hot-swapping approach separates the
two implementations, simplifying testing by reducing inter-
nal states and increasing performance by reducing negative
cache effects of the uncommon case code.

Dynamic monitoring: Instrumentation gives develop-
ers and administrators useful information about system anoma-
lies but introduces overheads that are unnecessary during
normal operation. To reduce this overhead, systems provide
“dynamic” monitoring using knobs to turn instrumentation
on and off. Hot swapping allows monitoring and profiling
instrumentation to be added when and where it is needed,
and removed when unnecessary. In addition to reducing
overhead in normal operation, hot swapping removes the
need for developers to a priori know where probes would
be useful. Further, many probes are generic (e.g., timing
each function call, counting the number of parallel requests
to a component). Such probes can be implemented once,
avoiding code replication across components.

Application-specific optimizations: Specializations for
an application are a well-known way of improving a par-
ticular application’s performance based on knowledge only
held by the application [13, 15, 18, 38]. Using dynamic
customization, an application can provide a new specialized
component and swap it with the existing component imple-
mentation. This allows applications to optimize any compo-
nent in the system without requiring system developers to
add explicit hooks.

Third-party modules and Linux adoption: An in-
creasingly common form of dynamic customization is load-
able kernel modules. It is common to download modules
from the web to provide functionality for specialized hard-
ware components. As value-add kernel modules are pro-
duced, such as “hardened” security modules [21, 30], the
Linux module interface may evolve from its initial focus on
supporting device drivers toward providing a general API for
hot swapping of code in Linux. The mechanisms described
in this paper are a natural endpoint of this evolution, and
the transition has begun; we have worked with Linux devel-
opers to implement a kernel module removal scheme using

quiescence [27].

Summary
Dynamic customization is a useful tool that provides bene-
fits to developers, administrators, applications, and the sys-
tem itself. Each individual example can be implemented
in other ways. However, a generic infrastructure for hot
swapping can support all of them with a single mechanism.
By integrating this infrastructure into the core of an OS,
the OS becomes considerably more amenable to subsequent
change.

6. CLUSTERED OBJECTS
Clustered Objects [3] are a crucial component to achieving

scalability in K42, and they form the base infrastructure on
which customizability support is built. The term “cluster”
is derived from the fact that an object resides on one or more
processors and services requests for one, some, or all of the
processors. As we have described earlier, object orientation
is a fundamental aspect of K42. Clustered objects build on
standard object-oriented features such as inheritance, poly-
morphism, and specialization. Clustered Objects also pro-
vide multi-threading and semi-automatic garbage collection.

In addition to standard object-oriented features, Cluster
Objects provide an interface that facilitates the design and
implementation of scalable services. In particular, the im-
plementation is hidden behind a user-visible interface in such
a manner that the underlying service may be implemented
on one, a subset, or all the processors as appropriate for that
particular service. To illustrate this we describe a simple ex-
ample of a counter object implementation.

Clustered Objects allow each object instance to be de-
composed into per-processor Representatives (or Reps). A
Representative can be associated with a cluster of processors
of arbitrary size; they are not necessarily one per proces-
sor. A simple example would be a counter object, that has
one data member, val, and methods inc, dec, and getVal.
Externally, a single instance of the counter is visible, but
internally, the implementation of the counter could be dis-
tributed across a number of Representatives, each local to a
processor. An invocation of a method of the Clustered Ob-
ject’s interface inc or dec on a processor is automatically
and transparently directed to the Representative local to
the invoking processor. If common operations are inc and
dec then the most efficient implementation would be for each
Rep to maintain their val and only when getVal is invoked
do the Reps need to communicate. This avoids unnecessary
sharing and ensures good inc performance. If, however, the
common operation is getVal then a shared implementation
of val will perform better. This decision is transparent to
the clients because their view is the interface exported by
the clustered object.

To provide additional insight into how Clustered Objects
help achieve scalability we describe the core aspects of their
implementation. A more thorough treatment is available [3].
Each Clustered Object is identified by a unique interface to
which every implementation conforms. An implementation
of a Clustered Object consists of a Representative defini-
tion and a Root definition. The Representative definition of
a Clustered Object defines the (potentially) per-processor
portion of the Clustered Object. The Root class defines the
global portions of an instance of the Clustered Object. Ev-
ery instance of a Clustered Object has exactly one instance

EuroSys 2006 137

of its Root class that serves as the internal central anchor
or “root” of the instance. The methods of a Rep can access
the shared data and methods of the Clustered Object via its
Root pointer.

At run-time, an instance of a given Clustered Object is
created by instantiating the desired Root class. Instantiat-
ing the Root establishes a unique Clustered Object Identifier
(COID) that is used by clients to access the newly created in-
stance. To the client code, a COID appears to be a pointer to
an instance of the Rep Class. To provide code isolation this
fact is hidden from the client code. There is a single shared
table of Root pointers called the Global Translation Table
and a set of Rep pointer tables called Local Translation Ta-
bles, one per processor. The Global Translation Table is
split into per-processor regions, while the Local Translation
Table resides at the same address on each processor by the
use of processor-specific memory. This allows requests to
Reps to be transparently directed to the local instance. Lo-
cal Reps are created lazily when needed by a given cluster
of processors.

The map of processors to Reps is controlled by the Root
Object. A shared implementation can be achieved with a
Root that maintains one Rep and uses it for every processor
that accesses the Clustered Object instance. Distributed
implementations can be realized with a Root that allocates
a new Rep for some number (or cluster) of processors, and
complete distribution is achieved by a Root that allocates a
new Rep for every accessing processor. There are standard
K42 Root classes which handle these scenarios.

7. USER-LEVEL IMPLEMENTATION OF KER-
NEL FUNCTIONALITY

As mentioned in the introduction, one of the research di-
rections in K42 has been moving functionality traditionally
implemented in the kernel into application space. This can
be used, for example, to avoid system calls for poll() and
select(). It can also be used to reduce the amount of stor-
age and pinned memory required by the kernel. One piece of
kernel functionality we have moved to in user-space in K42
is that of thread-scheduling. The kernel dispatches address
spaces while a user-level scheduler dispatches threads. With
threading models implemented at user-level, some aspect of
communication can also be moved out of the kernel.

7.1 Scheduling
The scheduler is partitioned between the kernel and application-

level libraries. The K42 kernel schedules entities called dis-
patchers, and dispatchers schedule threads. A process con-
sists of an address space and one or more dispatchers. Within
an address space, all threads that should be indistinguish-
able as far as kernel scheduling is concerned are handled by
one dispatcher.

A process might use multiple dispatchers to either attain
real parallelism on a multiprocessor, or to establish differing
scheduling characteristics, such as priorities or qualities-of-
service, for different sets of threads.

A process does not need multiple dispatchers simply to
cover page-fault, I/O, or system-service latencies, or to pro-
vide threads for programming convenience. These require-
ments can be met using multiple user-level threads running
on a single dispatcher. The dispatcher abstraction allows in-
dividual threads to block for page faults or system services

without the dispatcher losing control of the processor. When
a thread suffers an out-of-core page fault (a fault that cannot
be resolved by simply mapping or copying a page already in
memory, or zero-filling a new page), its dispatcher receives
an upcall that allows it to suspend the faulting thread and
run something else. A subsequent completion notification
tells the dispatcher that the faulting thread can be resumed.
System services provided by the kernel and other servers
are invoked via protected procedure calls (PPCs). A thread
making a PPC is blocked until the PPC returns, but its
dispatcher remains runnable, allowing it to regain control
and run other threads, should the PPC get delayed in the
server for any reason. With this design, dispatchers tie up
kernel resources, e.g., pinned memory; threads do not. A
process that creates thousands of threads for programming
convenience has no more impact on the kernel than a single-
threaded process.

The kernel scheduler operates independently on each pro-
cessor and determines which dispatcher is to run on the pro-
cessor at any given time. It supports a small number of
fixed priority classes and uses a weighted proportional-share
algorithm to schedule dispatchers within a priority class.
Any runnable thread of a higher priority class will always
supersede any thread of a lower priority class. The small
number of fixed priority classes are used to provide differing
service guarantees to mixed workloads consisting of time-
sharing, soft-real-time, gang-scheduled, and background ap-
plications. For example, priority classes are used to ensure
that soft-real-time applications get the resources they have
requested no matter how many time-sharing applications
happen to be running, while the remaining processing re-
sources are distributed among the time-sharing programs
on a proportional-share basis. Also, for example, any task
placed in the background priority class will really be in the
background and will not take cpu time from any time-shared
task. Though the choice of scheduling algorithm within each
class is flexible, we use proportional share to provide under-
standable scheduling guarantees.

The user-level scheduler implements a threading model
on top of the dispatcher abstraction provided by the ker-
nel. The model allows different applications to have differ-
ent threading models. The thread library is responsible for
choosing a thread to run when the kernel gives control of the
processor to a dispatcher. It is responsible for suspending
and resuming a thread when it suffers a page fault, start-
ing new threads to handle incoming messages, and handling
asynchronous events such as timeouts. The thread library
provides services for creating new threads as well as the ba-
sic suspend and resume operations that are needed for the
implementation of locks and other higher-level synchroniza-
tion facilities. Standard threading interfaces such as Posix
Threads can be supported efficiently on top of the default
threading library.

7.2 Interprocess and intraprocess communi-
cation

K42 provides both synchronous and asynchronous messag-
ing primitives for communicating between processes, and it
provides a fast signaling mechanism to facilitate communi-
cation between dispatchers within a process.

The primary interprocess communication mechanism in
K42 is the protected procedure call, or PPC, which is the
invocation of a method on an object that resides in another

138 EuroSys 2006

address space. The mechanism is designed to enable scala-
bility (as discussed in Section 3) and allow efficient commu-
nication between entities in different address spaces but on
the same physical processor. Calls are generally made from
a client process to a server process that the client trusts to
perform some service. The client thread making the call is
blocked until the call returns. Control is transferred to a dis-
patcher in the server process, and a new thread is created to
execute the specified method. The thread terminates when
the method returns, and control is returned to the client
process.

Objects that a server wants to export are specified with
an annotated C++ class declaration, which is processed by
an interface generator. The interface generator produces a
stub object on which the client can invoke methods and an
interface object that invokes the corresponding method on
the real object in the server. The stub and interface objects
marshal and demarshal, parameters and return values, and
use kernel primitives to accomplish the call and return of
control. The processor registers are used to transfer data
from caller to callee and back, and for this reason the dis-
patchers involved in a PPC are expected to be running on
the same processor. For moderate amounts of data, i.e., for
data too large to fit in the registers but smaller than a page,
K42 provides a logical extension to the register set which
we call the PPC page. Each processor has a unique physi-
cal page that is read-write mapped at a well-known virtual
address into every process that runs on the processor. The
contents of the page are treated as registers (i.e., saved and
restored on context switch), although a process can dynam-
ically specify how much of the page it’s actually using to
cut down on the save/restore costs. On a PPC, the con-
tents of the PPC page are preserved from caller to callee
and back, as are the real registers, so the page can be used
for parameter and return value passing.

K42 also provides an asynchronous interprocess commu-
nication mechanism that can be used by server processes to
signal untrusted clients. Like a PPC, an asynchronous call
looks like a remote method invocation, however for asyn-
chronous IPC, a message describing the call is injected into
the target process and control remains with the sender. The
sending thread is not blocked, and no reply message is gener-
ated or expected. Asynchronous calls are limited to a small
number of parameter bytes and are generally used to inform
a client that new data is available or that some other state
change has occurred. The target dispatcher need not be on
the same processor as the sender.

K42 provides a fast signaling mechanism to facilitate com-
munication between the dispatchers belonging to a single
process. Such dispatchers share an address space so data
transport is not a problem. Message queues or other struc-
tures can be implemented in shared memory but a signaling
mechanism is needed so that dispatchers do not have to
waste time polling for incoming messages. In K42, a thread
in one dispatcher can request a soft interrupt in another
dispatcher in the same process. The soft interrupt will give
control to the target dispatcher, allowing it to process the
signal and switch to a more important thread if it was en-
abled by the signal.

8. FILE SYSTEMS
K42’s file-system-independent layer performs name space

caching on a per-file-system basis with fine-grain locking.

Part of path name resolution is performed in user-level li-
braries that cache mount point information.

K42’s file system (KFS) [33, 12] KFS runs on Linux and
embodies many K42 philosophies including object-oriented
design, customization within and between processes, mov-
ing kernel functionality into server processes, avoiding large-
grain locking, and not using global data structures. For
example, for KFS running on K42 there is no global page
cache or buffer cache; instead, for each file, there is an in-
dependent object that caches the blocks of that file. When
running on Linux, KFS is integrated with Linux’s page and
buffer cache.

We designed KFS to allow for fine-grained adaptability of
file services, with customizability at the granularity of files
and directories in order to meet the requirements and usage
access patterns of various workloads.

In KFS, each resource instance (e.g., a particular file, open
file instance, block allocation map) is implemented by com-
bining a set of Clustered Objects. The object-oriented na-
ture of KFS makes it a particularly good platform for ex-
ploring fine-grained customization. There is no imposition
of global policies or data structures.

Several service implementations, with alternative data struc-
turing and policies, are available in KFS. Each element (e.g.,
file, directory, open file instance) in the system can be ser-
viced by the implementation that best fits its requirements.
Further, if the requirements change, the component repre-
senting the element in KFS can be replaced accordingly us-
ing hot swapping. Applications can achieve better perfor-
mance by using the services that match their access patterns
and synchronization requirements.

In traditional Unix file systems, the inode location is fixed,
that is, given an inode number, it is known where to go
on the disk to retrieve or update its persistent representa-
tion. In KFS, the data representation format for a given
inode may vary during its lifetime, potentially requiring a
new location on disk. As in the Log-Structured File sys-
tem (LFS) [29], inode location is not fixed. The RecordMap
object maintains the inode location mapping. It also keeps
information about the type of implementation being used
to represent the element, so that when the file/directory is
retrieved from disk, the appropriate object is instantiated
to represent it.

9. PERFORMANCE MONITORING
The importance of using performance monitoring to achieve

good multiprocessor performance is generally understood,
especially for multiprocessors. With K42 we have shown the
usefulness of a performance monitoring infrastructure [39]
well-integrated into the system. Many operating systems did
not contain in their original design a mechanism to under-
stand performance. Many times, as those systems evolved,
different tailored mechanisms were implemented to exam-
ine the portion of the system that needed evaluation. For
example, in Linux, there’s a device-driver tracing infrastruc-
ture, one specific to the file system, the NPTL trace facility,
one-off solutions by kernel developers for their own code,
plus more-general packages including oprofile, LKST, and
LTT. Even commercial operating systems often have several
different mechanisms for obtaining tracing information, for
example, IRIX [32] had three separate mechanisms. Other
mechanisms such Sun’s DTrace provide good dynamic func-
tionality but are not well suited for gathering large amounts

EuroSys 2006 139

of data efficiently. Some of these mechanisms were efficient,
but often they were one-off solutions suited to a particular
subsystem and were not integrated across all subsystems.

Part of the difficulty in achieving a common and effi-
cient infrastructure is that there are competing demands
placed on the tracing facility. In addition to integrating
the tracing infrastructure with the initial system design, we
have developed a novel set of mechanisms and infrastruc-
ture that enables us to use a single facility for correctness
debugging, performance debugging, and performance moni-
toring of the system. The key aspects of this infrastructure
are the ability to log variable-length events in per-processor
buffers without locks using atomic operations, and given
those variable-length events, the ability to randomly access
the data stream. The infrastructure, when enabled, is low
impact enough to be used without significant perturbation,
and when disabled has almost no impact on the system, al-
lowing it to remain always ready to be enabled dynamically.

K42’s infrastructure provides cheap and parallel logging
of events across applications, libraries, servers, and the ker-
nel into a unified buffer. This event log may be examined
while the system is running, written out to disk, or streamed
over the network. The unified model allows understanding
between different operating system components and across
the vertical layers in the execution stack.

Post-processing tools can convert the event log to a hu-
man readable form. We have written a set of trace analy-
sis tools, including one designed to graphically display the
data. It is hard to overstate the importance of being able
to graphically view the data. This capability has allowed
us to observe performance difficulties that would otherwise
have gone undiagnosed. Another tool evaluates lock con-
tention on an instance by instance basis. In addition, the
data can be used for correctness debugging and performance
monitoring.

The tracing infrastructure in K42 was designed to meet
several goals. The combination of mechanisms and technol-
ogy we employ achieves the following:

1. Provide a unified set of events for correctness debug-
ging, performance debugging, and performance moni-
toring.

2. Allow events to be gathered efficiently on a multipro-
cessor.

3. Efficiently log events from applications, libraries, servers,
and the kernel into a unified buffer with monotonically
increasing timestamps.

4. Have the infrastructure always compiled into the sys-
tem allowing data gathering to be dynamically en-
abled.

5. Separate the collection of events from their analysis.

6. Have minimal impact on the system when tracing is
not enabled, and zero impact by providing the ability
to “compile out” events if desired.

7. Provide cheap and flexible collection of data for either
small or large amounts of data per event.

The tracing facility is well integrated into our code, easily
usable and extendable, and efficient, providing little pertur-
bation of the running system. The facility has been invalu-
able in helping us understand the performance of application
and the operating system and in achieving good scalability

in K42. Further, because K42 can run Linux application,
it has been used by people trying to understand the perfor-
mance of a Linux application. They have run the application
on K42 using K42’s performance analysis tools, make im-
provements, and then can obtain those same improvements
when they run again on Linux.

10. LINUX COMPATIBILITY
To be an operating system with the capability of run-

ning large applications requires supporting an existing well-
known and well-used API. While this requirement of back-
ward compatibility hampers system development and per-
formance, it remains a necessity in today’s computing com-
munity. In addition to an API, research operating systems
face the challenge of supporting enough devices, network
protocols, filesystems, and programs to become relevant as
a platform. In K42 we have made design decisions to man-
age this complexity that have resulted in a full-featured user
space with underlying support for many important protocols
running on a critical subset of PowerPC hardware.

Although K42 supports the standard Linux software stack
from the C library and upward, it is an object-oriented ker-
nel and departs significantly from traditional UNIX kernel
design. Our design decisions have thus been a balancing
act between getting as much from Linux and its associated
open source user space as we can, while remaining capable of
exploring what we set out to do with our design principles.

For example, in a design inspired by the Exokernel[14]
work, processes under K42 can directly branch to certain
unprivileged kernel code that is behind a system call gate in
most UNIX designs. This poses a conflict with our desire to
use the GNU C library (glibc) in unmodified form, as glibc
is written to issue a system call instruction in its call stubs.
We have settled on an approach where we support glibc in
completely unmodified form straight from a standard Linux
distribution by reflecting system call traps back into the ap-
plication’s address space, but also provide a patch that one
may apply to glibc to replace the traps with direct branches.
System call micro-benchmark results indicate that the direct
branch is 44% faster than trap reflection.

K42 can be cross-compiled with the standard GNU tool
chain, augmented with a stub compiler that allows program-
mers to express inter-procedure call invocations as normal
C++ method calls. K42 is distributed with a root filesys-
tem that provides a standard Linux environment out of the
box. For people with an x86 Debian development machine,
the setup required to build K42 is to install the Debian de-
velopment kit packages and build. K42 can then be booted
on several different PowerPC hardware platforms, including
Apple’s G5, POWER3, and POWER4, or on the Mambo
full system simulator[8].

K42 accomplishes kernel support for Linux compatibil-
ity by directly linking in Linux’s TCP/IP stack, filesystems,
and device drivers, such as those for disks and network cards.
The Linux kernel contains hundreds of thousands of lines of
device driver, network, and filesystem code. Unfortunately
for research operating systems like L4[26] and K42, this code
is tightly coupled and somewhat difficult to reuse. K42 has
developed techniques to provide the Linux code with an en-
vironment similar to idealized hardware, but even so, a fairly
significant maintenance effort is required to keep K42’s use
of Linux up to date.

140 EuroSys 2006

Linux application environment
The environment of a K42 user who logs in via ssh or rlogin
appears very similar to a regular Linux distribution. Stan-
dard utilities like bash, ls, and gcc work as expected, and
large applications such as Apache and MySQL work mostly
as expected. We have run MPI applications on heteroge-
neous clusters of Linux and K42 nodes, and on homogeneous
clusters of up to eight K42 nodes. However, one of the core
value propositions of K42 is that complex performance sen-
sitive Linux applications can be iteratively accelerated by
selectively rewriting critical sections to directly branch to
K42 services rather than invoking Linux system calls. To
support this, K42 offers macros that an application pro-
grammer can use to switch the application in and out of
Linux emulation mode.

As described, we allow unmodified Linux binaries and li-
braries to generate system-call exceptions, which the K42
kernel reflects to the system library for execution. The pro-
cess is typically referred to as trap reflection.

We provide an alternative glibc library that has a different
implementation of the system-call mechanisms that, instead
of generating exceptions, calls into the K42 system library
directly. This option relies on the system library publishing
a vector of system-call entry points at a known location so
that the system-call mechanism does not rely on referenc-
ing symbols in the K42 system library. The reason for this
is that the K42 system library should be invisible to appli-
cations that have not been linked against it. Furthermore,
the K42 system library is actually responsible for loading
the application and dynamic-linker, and the dynamic-linker
cannot have symbol dependencies on an external library.

This approach works well as most applications are written
to the glibc interfaces and tolerate the library being changed,
as would be the case if a user updated the glibc package on
their Linux system.

A design goal to support the majority of applications’ re-
quirements was to take advantage of the commonly provided
interfaces, but where it improves performance, to call K42
services directly by linking against the K42 system library.
This is accomplished by providing a specially modified copy
of the dynamic library at run-time; when the dynamic linker
loads the library, the ELF headers of the library force the
linker to look at the image of the system library that is al-
ready in memory, and resolve K42 symbols to that library
image.

One major problem with all of these approaches is multi-
threading/pthreads. K42 implements its own threading schemes
that are active when running in the K42 system library.
When an application is running a pthread, we must ensure
that the thread-specific data associated with that thread is
what the pthreads library expects. But K42’s thread-specific
data is not the same and so we must track when a thread
switches from pthread-mode to K42-mode. A possible so-
lution is to write our own implementation of the pthreads
library that cooperates with the K42 system library and its
notion of thread structures and data.

11. USING K42
One of the goals of the K42 project has been to be able

to run large applications so an evaluation against known
benchmarks could be done. For K42, we decided to imple-
ment the Linux API. On the positive side, this meant that

applications that ran on Linux would be available to run on
K42. On the negative side, as stated in previous sections,
that meant having to support inefficient interfaces. As pre-
vious sections have alluded to, even though K42 supports a
Linux API there are still difficulties in making it work seam-
lessly. K42 also aims at being flexible so it can run across
different platforms, support different applications, and be
used by different users that have varying constraints.

11.1 Running and debugging applications on
K42

The focus of the K42 project is on performance, scala-
bility, and maintainability. Thus, rather than attempting
to provide a complete Linux API, we initially provided the
commonly used subset of the API’s functionality, and then
added what was needed to enable specific applications and
subsystems that became of interest. For example, in the
last year we have added support for 32-bit Linux system
calls and for a more complete set of Gentoo [35] libraries
and commands.

Because most of the functionality of the Linux API was
available on K42, a large number of Linux binaries exe-
cuted on K42 without any changes. The initial set of func-
tionality allowed us to run applications such as Apache,
dbench, most of SPEC SDET, SPECfp, SPECint, UMT2K,
an ASCII nuclear transport simulation, and test suites such
as LTP (Linux Test Project). However, some libraries such
as LAM/MPI as well as two large subsystems, specifically
the Java Virtual Machine J9 and the Database DB2, needed
some functionality that was lacking. More recently, we have
made efforts to enable these complex commercial applica-
tions. We now have J9 and LAM/MPI running and are
currently working on DB2.

Getting the J9 Java Virtual Machine running on K42 was
reasonably straightforward. Only a few additional files in
/proc had to be supported. However, sometimes discov-
ering which ones were required took longer than might be
desired. The ones that were needed were those that iden-
tify the processor type to the just-in-time compiler. The
LAM/MPI library required the ssh server and client, and
these required that we complete the K42 implementation of
Unix-domain sockets, and find an ssh daemon configuration
suitable for K42. In addition, ssh uncovered bugs in the K42
implementation of select.

DB2, a large commercial database system, now runs on
K42. This is an important milestone for a research oper-
ating system. To get DB2 working required finishing Unix
domain socket implementation, additional /proc functional-
ity, semaphores, and some aspects of shared memory. We
extended our ability to tracking missing components to ioctl
and filectl. With these large subsystems now in place K42
has become a reasonable stable platform for experimenting
with new applications. However, developers still must be
aware that missing functionality may turn up when running
new applications. Currently, the primary places where such
issues arise in matching the exact behavior regarding error
conditions.

There are many tools to debug K42 itself, and to help in
running new applications on K42. Most important among
these is the debugger. Each process contains a GNU debug-
ger (gdb) stub. When a process traps, the stub is bound to
a TCP/IP port. We can subsequently connect a remote gdb
client to the trapped process. We also can force a process

EuroSys 2006 141

to trap and enable this mechanism. We use the same mech-
anism to debug the kernel, but in this case we connect the
stub to the serial port. Currently gdb does not run natively
on K42.

11.2 Development model
A common goal of open-source software is to be available

to a wide audience of users. This implies the software should
be configurable in different ways to meet the disparate audi-
ences’ needs and should be flexible enough so the core code
base does not fragment. As a framework for conducting op-
erating systems research, K42 1) allows groups to leverage
development work of other groups, 2) allows developers on
different hardware platforms to take advantage of the fea-
tures available on those platforms, 3) runs on both large-
and small-scale machines, and 4) provides a mechanism and
tools for developers to understand the performance of the
system. Though additional requirements could be listed, the
overarching theme is that system software should be flexible
so it can run across different platforms, support different ap-
plications, and be used by different users that have varying
constraints. The description of K42 throughout this paper
is consistent with these goals and thus forms a successful
development model for an open-source community.

The modular design allows rapid prototyping of operat-
ing system policies and mechanisms, providing developers
a conduit through which they may quickly test potential
operating system innovations. The modular design, in com-
bination with the Linux API and ABI support, allows devel-
opers interested in new operating system policies, e.g., a new
memory management policy, to experiment without requir-
ing detailed knowledge of the whole system. Technologies
that are shown to be beneficial can then be incorporated
into Linux [28, 40].

Another key consequence of K42’s object-oriented struc-
ture is that K42’s per-instance resource management allows
base K42 code to affect only specific applications. Thus, de-
velopers with non-mainstream needs can have their code in-
tegrated into K42 without affecting other users, unless those
users also desire the modifications. This allows developers
with more esoteric needs to contribute as effectively as those
whose needs are mainstream allowing broad community in-
volvement.

12. VIRTUALIZATION
Since its inception in 1996, K42 has had the notion of

application managers. An application manager is a copy
of K42 configured for the number of processors needed by a
given application. Multiple copies of K42 interact via a very
thin layer that provided basic multiplexing. Several years
ago, a larger research effort was initiated that is now called
the Research Hypervisor[36]. The technology that was de-
veloped in the Research Hypervisor is being transfered to
PowerPC Xen.

Work on the Research Hypervisor follows the para-virtualization
model. This model implies slight modifications to the op-
erating system and the awareness that it is running on a
hypervisor. With this model, applications can run at the
speed the operating system would have provided. The rapid
prototyping advantages of K42 provide a good infrastructure
for studying how best to optimize the interface between the
operating system and the hypervisor.

In K42 we are examining the issue of what is the best

level of interface between the operating system and the hy-
pervisor and how much functionality the hypervisor needs
to provide. We are also exploring the notion of providing
a minimal library operating system on which to run appli-
cations. This expands the notion of hardware resources we
had designed in application managers and extends it to the
software realm as well. The goal we are exploring with K42
and the Research Hypervisor is to determine how to design
a library OS providing only the services needed by the ap-
plication running on that library OS, thereby decreasing OS
perturbation, increasing maintainability, and providing an
easy path for backward compatibility.

We believe that a hypervisor should be as thin a layer as
possible and that the Hypervisor should only be concerned
with the management of memory, processors, interrupts, and
a few simple transports. The heart of the Research Hyper-
visor design is to keep the core hypervisor restricted to these
items and keep the code as small and simple as possible. All
other services are the domain of surrounding cooperating
operating systems.

The goals of the Research Hypervisor project are as fol-
lows:

• Be a small, auditable, and configurable source base;
• Provide security through complete isolation, and allow

attestation;
• Support open-source operating systems such as Linux,

BSD, Darwin, etc.;
• Explore architectural and processor enhancements;
• Develop simple library operating systems to run appli-

cations;
• Provide support for real-time operating systems;
• Support full virtualization from within an operating

system;
• Provide operating system management;
• Provide new logical transports and inter-operating-system

services.

13. FINAL REMARKS
In this section, we describe the impact of the changing

technology on K42’s design and then present concluding re-
marks.

13.1 Evolution of the system
The prediction about Windows dominating the market

did not come to pass. By around 2000, it became clear to
the team that Linux had a real chance of competing. The
K42 team became heavily involved in IBM’s Linux strategy.
We contributed to the 64-bit PPC Linux community code
(glibc, gdb, ABI, tool chain) that we had developed for K42,
and we transitioned K42 from supporting multiple person-
alities to supporting the Linux personality with the ability
to call past this personality to exploit K42 specific features.
The decision to not support multiple personalities reduced
the importance of moving functionality into application li-
braries.

The predictions about the importance of massive NUMA
multiprocessors have not borne out to date. For large servers,
while systems have had some NUMA characteristics, and
caches arguably make all systems NUMA, there has been
an increasing trend in the industry to solve problems in
hardware. That is, rather than design software that can
exploit relatively loosely coupled NUMA systems, hardware
has been designed to make the large systems look to be

142 EuroSys 2006

as tightly coupled as possible to avoid having to modify
the software. The impact of this trend is that large mul-
tiprocessors are both smaller than we predicted, and are
increasingly less price/performance competitive with small-
scale systems. We continue to believe that economics will
force more loosely coupled NUMA systems to become im-
portant, and the investments we have made in supporting
such systems will be important.

The predictions we made that chips would be multi-core
and multi-threaded did happen as supported by recent an-
nouncements by IBM, Intel, and AMD. However, this trend
occurred more slowly than expected. This meant that the
investments we made in scalability have not until recently
been of relevance except to high-end servers. However, the
technologies developed in K42 for handling multiple cores
are becoming of more interest for low-end machines.

Our prediction about the cost of innovating in existing
operating system has, we believe, been correct. The pace of
evolution of operating systems, the cost of making incremen-
tal modifications, and the massive scale of the open-source
effort needed for Linux, demonstrate the challenges of cur-
rent operating system design. Moreover, operating systems,
including Linux, have moved incrementally to a more object-
oriented design.

The customizability turned out be valuable. In addition
to providing customizability within and across applications
running simultaneously on the machine, it has allowed us
to pursue hot swapping and dynamic upgrade capabilities
in the OS. The object-oriented design has been critical to
achieving these capabilities.

The prediction about 64-bit processors becoming domi-
nant was, again, optimistic. Only in the last year are 64-
bit processors starting to appear in the high-volume low-
end market. The optimizations we did that relied on 64-
bit architectures have resulted in K42 being available on
only more expensive machines, limiting collaborative op-
portunities (except recently with Apple’s Xserve). More-
over, the lack of support for 64-bit processors in open-source
toolchains resulted in the group investing a large amount of
time and effort in infrastructure in the early years. This
infrastructure turned out to be very valuable in getting a
64-bit Linux on the PowerPC architecture, but for our small
research group it has been a large time sink. Only in the
last year has a larger community started developing around
K42, and that community is porting the system to Intel and
AMD processors.

One area we only started working on only in 2002 was
the application manager. By that time, IBM had adopted
a hypervisor as a part of the firmware for IBM’s Power sys-
tem, and it became clear that a hypervisor would not only
enable fault containment, but would also allow K42 to co-
exist with other operating systems. We ended up writing
our own hypervisor, IBM’s “research hypervisor”, and have
more recently transitioned our research in this space to the
Xen hypervisor for Power from Cambridge.

13.2 Conclusion
The K42 project has been exploring full-scale operating

system research for nine years. In this paper, we presented
an overview of the directions we have pursued in K42. We
have successfully demonstrated good performance. We have
successfully achieved the goals of scalability and customiz-
ability through the object-oriented design. Over time, as

more groups contribute, we will examine our other goal of
maintainability.

Currently, K42’s modular structure makes it a valuable
research, teaching, and prototyping vehicle, and we expect
that the policies and implementations studied in this frame-
work will continue to be transferred into Linux and other
systems. In the longer term we believe it will be important
to integrate the fundamental technologies we are studying
into operating systems.

Our system is available open source under an LGPL li-
cense. Please see our home page www.research.ibm.com/K42
for additional papers on K42 or to participate in this re-
search project.

Acknowledgments
A kernel development project is a massive undertaking, and with-
out the efforts of many people, K42 would not be in the state it is
today. In addition to the authors, the following people have con-
tributed much appreciated work to K42: Reza Azimi, Andrew
Baumann, Michael Britvan, Chris Colohan, Phillipe DeBacker,
Khaled Elmeleegy, David Edelsohn, Raymond Fingas, Hubertus
Franke, Ben Gamsa, Garth Goodson, Darcie Gurley, Kevin Hui,
Jeremy Kerr, Edgar Leon, Craig MacDonald, Iulian Neamtiu,
Michael Peter, Jim Peterson, Eduardo Pinheiro, Bala Seshasayee,
Rick Simpson, Livio Soares, Craig Soules, David Tam, Manu
Thambi, Nathan Thomas, Gerard Tse, Timothy Vail, and Chris
Yeoh.

14. REFERENCES
[1] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson,

D. Kranz, J. Kubiatowicz, B.-H. Lim, K. Mackenzie,
and D. Yeung. The MIT Alewife machine:
architecture and performance. In ISCA ’95:
Proceedings of the 22nd annual international
symposium on Computer architecture, pages 2–13,
New York, NY, USA, 1995. ACM Press.

[2] J. Appavoo, M. Auslander, D. Edelsohn, D. da Silva,
O. Krieger, M. Ostrowski, B. Rosenburg, R. W.
Wisniewski, and J. Xenidis. Providing a Linux API on
the scalable K42 kernel. In Freenix track, USENIX
Technical Conference, pages 323–336, San Antonio,
TX, June 9-14 2003.

[3] J. Appavoo, K. Hui, M. Stumm, R. Wisniewski,
D. da Silva, O. Krieger, and C. Soules. An
infrastructure for multiprocessor run-time adaptation.
In WOSS - Workshop on Self-Healing Systems, pages
3–8, 2002.

[4] A. Baumann, J. Appavoo, D. da Silva, O. Krieger,
and R. W. Wisniewski. Improving operating system
availability with dynamic update. In Workshop of
Operating System and Architectural Support for the
On-demand IT Infrastructure (OASIS), pages 21–27,
Boston Massachusetts, October 9, 2004 2004.

[5] A. Baumann, J. Appavoo, D. D. Silva, J. Kerr,
O. Krieger, and R. W. Wisniewski. Providing dynamic
update in an operating system. In USENIX Technical
Conference, pages 279–291, Anaheim, CA, April 2005.

[6] A. Baumann, J. Kerr, J. Appavoo, D. D. Silva,
O. Krieger, and R. W. Wisniewski. Module
hot-swapping for dynamic update and reconfiguration
in K42. In Proc. of 6th Linux.conf.au (LCA),
Canberra, April 2005.

[7] B. N. Bershad, S. Savage, P. Pardyn, E. G. Sirer,
M. E. Fiuczynski, D. Becker, C. Chambers, and

EuroSys 2006 143

S. Eggers. Extensibility, safety and performance in the
SPIN operating system. In ACM Symposium on
Operating System Principles, 3–6 December 1995.

[8] P. Bohrer, J. Peterson, M. Elnozahy, R. Rajamony,
A. Gheith, R. Rockhold, C. Lefurgy, H. Shafi,
T. Nakra, R. Simpson, E. Speight, K. Sudeep, E. V.
Hensbergen, and L. Zhang. Mambo: a full system
simulator for the PowerPC architecture.
SIGMETRICS Perform. Eval. Rev., 31(4):8–12, 2004.

[9] J. Bruno, E. Gabber, B. Ozden, and A. Silberschatz.
The Eclipse operating system: Providing quality of
service via reservation domains. In USENIX Technical
Conference, New Orleans, LA, June 1998.

[10] R. Bryant, J. Hawkes, and J. Steiner. Scaling Linux to
the extreme: from 64 to 512 processors. In Ottawa
Linux Symposium. Linux Symposium, 2004.

[11] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri,
D. Teodosio, and A. Gupta. Hive: Fault containment
for shared-memory multiprocessors. In Proceedings of
the Fifteenth ACM Symposium on Operating Systems
Principles, pages 12–25, 1995.

[12] D. da Silva, L. Soares, and O. Krieger. KFS:
Exploring flexilibity in file system design. In Proc. of
the Brazilian Workshop in Operating Systems,
Salvador, Brazil, August 2004.

[13] D. R. Engler, S. K. Gupta, and M. F. Kaashoek.
Avm: application-level virtual memory. In Hot Topics
in Operating Systems, pages 72–77. IEEE Computer
Society, May 1995.

[14] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr.
Exokernel: an operating system architecture for
application-level resource management. In ACM
Symposium on Operating System Principles, pages
251–266, 3–6 December 1995.

[15] M. E. Fiuczynski and B. N. Bershad. An extensible
protocol architecture for application-specific
networking. In USENIX. 1996 Annual Technical
Conference, pages 55–64. USENIX. Assoc., 1996.

[16] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
O. Shivers. The Flux OSKit: a substrate for kernel
and language research. In SOSP ’97: Proceedings of
the sixteenth ACM symposium on Operating systems
principles, pages 38–51, New York, NY, USA, 1997.
ACM Press.

[17] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm.
Tornado: maximizing locality and concurrency in a
shared memory multiprocessor operating system. In
Symposium on Operating Systems Design and
Implementation, pages 87–100, February 22-25 1999.

[18] G. R. Ganger, D. R. Engler, M. F. Kaashoek, H. M.
Briceno, R. Hunt, and T. Pinckney. Fast and flexible
application-level networking on exokernel systems.
ACM Transactions on Computer Systems,
20(1):49–83, February 2002.

[19] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum.
Cellular disco: resource management using virtual
clusters on shared-memory multiprocessors. ACM
Transactions on Computer Systems (TOCS),
18(3):229–262, 2000.

[20] R. Grindley, T. Abdelrahman, S. Brown, S. Caranci,
D. DeVries, B. Gamsa, A. Grbic, M. Gusat, R. Ho,
O. Krieger, G. Lemieux, K. Loveless, N. Manjikian,

P. McHardy, S. Srbljic, M. Stumm, Z. Vranesic, and
Z. Zilic. The NUMAchine multiprocessor. In Proc. of
International Conference on Parallel Processing
(ICPP’00), pages 487–496. IEEE Computer Society,
2000.

[21] Guardian digital, inc.,
http://www.guardiandigital.com/.

[22] G. C. Hunt, J. R. Larus, D. Tarditi, and T. Wobber.
Broad new OS research: Challenges and
opportunities. In Proc. of the 10th Workshop on Hot
Topics in Operating Systems, Santa Fe, NM, June
2005. USENIX.

[23] F. L. R. III. Experience with the development of a
microkernel-based, multi-server operating system. In
HotOS - Workshop on Hot Topics in Operating
Systems, pages 2–7, 1997.

[24] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D.
Weber, A. Gupta, J. Hennessy, M. Horowitz, and
M. S. Lam. The stanford dash multiprocessor.
Computer, 25(3):63–79, 1992.

[25] I. M. Leslie, R. B. D. McAuley, T. Roscoe, P. Barham,
D. Evers, and R. F. E. Hyden. The design and
implementation of an operating system to support
distributed multimedia applications. IEEE Journal on
Selected Areas In Communications, 17(7), May 2005.

[26] J. Liedtke. On micro-kernel construction. In
Proceedings of the 15th ACM Symposium on Operating
Systems Principles, pages 237–250. ACM Press, 1995.

[27] P. McKenney, J. Appavoo, A. Kleen, O. Krieger,
R. Russell, D. Sarma, and M. Soni. Read Copy
Update. In OLS: Ottawa Linux Symposium, July 2001.

[28] P. E. McKenney, D. Sarma, A. Arcangeli, A. Kleen,
O. Krieger, and R. Russell. Read copy update. In
Proceedings of the Ottawa Linux Symposium (OLS),
pages 338–367, 26–29 June 2002.

[29] M. Rosenblum and J. K. Ousterhout. The Design and
Implementation of a Log-Structured File System.
ACM Transactions on Computer Systems,
10(1):26–52, 1992.

[30] Security-enhanced linux,
http://www.nsa.gov/selinux/index.html.

[31] M. Seltzer, Y. Endo, C. Small, and K. A. Smith. An
introduction to the architecture of the VINO kernel.
Technical report, Harvard University, 1994.

[32] SGI. Sgi irix.
http://www.sgi.com/developers/technology/irix/.

[33] L. Soares, O. Krieger, and D. D. Silva. Meta-data
snapshotting: A simple mechanism for file system
consistency. In SNAPI’03 (International Workshop on
Storage Network Architecture and Parallel I/O), pages
41–52, 2003.

[34] C. A. N. Soules, J. Appavoo, K. Hui, R. W.
Wisniewski, D. da Silva, G. R. Ganger, O. Krieger,
M. Stumm, M. Auslander, M. Ostrowski,
B. Rosenburg, and J. Xenidis. System support for
online reconfiguration. In USENIX Technical
Conference, pages 141–154, San Antonio, TX, June
9-14 2003.

[35] G. Team. Gentoo linux. http://www.gentoo.org.

[36] R. H. Team. The research hypervisor.
www.research.ibm.com/hypervisor, march 2005.

144 EuroSys 2006

[37] R. Unrau, O. Krieger, B. Gamsa, and M. Stumm.
Hierarchical clustering: A structure for scalable
multiprocessor operating system design. Journal of
Supercomputing, 9(1/2):105–134, 1995.

[38] D. A. Wallach, D. R. Engler, and M. F. Kaashoek.
Ashs: application-specific handlers for
high-performance messaging. In ACM SIGCOMM
Conference, August 1996.

[39] R. W. Wisniewski and B. Rosenburg. Efficient,
unified, and scalable performance monitoring for
multiprocessor operating systems. In Supercomputing,
Phoenix Arizona, November 17-21 2003.

[40] T. Zanussi, K. Yaghmour, R. W. Wisniewski,
M. Dagenais, and R. Moore. An efficient unified
approach for trasmitting data from kernel to user
space. In Proceedings of the Ottawa Linux Symposium
(OLS), pages 519–531, July 23-26 2003.

EuroSys 2006 145

146 EuroSys 2006

