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“And now for something completely different...”
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A programmable child that is pedantically obedient 
without the attitude :-)

Properties



Simply and yet Richly 
Programmed

Simple synchronously clocked 
uni-processor system

• Easy to grok 
deterministic model

• General Purpose 'elastic'

• Easy to implement higher 
level  SW machines 

ALU

CLOCK

IO MEMORY

Logic Based Computer

Let's not throw the baby out with the bath water
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hash table ht 

Using knowledge of runtime 
behavior introduce a cache 
based optimization:

get(key,value)
put(key,value)

key = hf(s); 
if (get(key,&value)==hit) { 
  fast(value);
} else { 
  slow(&value); 
  put(key,value); 
} 



Hmmm Now What?
• Simply and yet Richly 

Programmed 

• Automatically improves with its 
size

• Automatically improves/adapts 
with experience

• Amenable to implementation 
with low power devices

Yikes... 
I did warn you ;-)
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Need an Interface

ALU

CLOCK

IO MEMORY

Logic Based Computer

Apply

Stimulus Signal

Response Signal

Learning System
(eg. Associative 
Memory, Neural 
Network, Deep 

Network) 

Extract

Extract a Signal
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Execution Signal

See our HotPAR'12 Paper, "Parallelization by Simulated Tunneling", 
Waterland et al.  For a more technical view of  execution as state 

space traversal (Dynamical Systems Interpretation)
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Intriguing Possibilities
• “Derivatives” expose fascinating 

structure

• Simple to construct and study 
filters

• Unified statistical representation 
exposes unexpected patterns 
across all of system execution

• Opportunities for studies are 
proving to be amazingly fun and 
challenging our intuitionsXOR
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Need a Method

How can we Apply the 
Response

ALU

CLOCK

IO MEMORY

Logic Based Computer

Apply

Stimulus Signal

Response Signal

Learning System
(eg. Associative 
Memory, Neural 
Network, Deep 

Network) 

Extract
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Back to the Loop
m-bit binary state vector s

(registers + ram + I/O channels)

fetch
execute

loop

loop(void) {
while(1){

    fetch(s,&op);
    execute(op,&s);
  }
}

State Pairs are computation (Again See our HotPAR'12 Paper)
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while(1){
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m-bit binary state vector s
(registers + ram + I/O channels)

fetch
execute

loop
loop(void) {
  while (1){
    if (lookup(s,&d)==hit){
    update(d,&s);

    } else {
fetch(s,&op);

    execute(op,&s);
    }
  }
}

lookup

update

Cache of
 state pairs



Putting it together 
m-bit binary state vector s

(registers + ram + I/O channels)

fetch
execute

loop

Stimulus Signal

Response Signal

Learning System
(eg. Associative 
Memory, Neural 
Network, Deep 

Network) lookup

update

Cache of
 state pairs

Predictive
Execution

Predicted 
States

State 
Pairs
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Hints of Smoke
• Deterministic computation 

• All I/O up front 

• Restricted x86 simulator

• MPI on Blue Gene

• Simple learning hypothesis

• Simple Bayesian predictor

Initial results are documented again in our HotPAR'12 Paper.



Computational Battery
• Split things up into two 

distinct phases a learning 
problem (charging) and later 
use mode

• train ML model on large scale 
systems and store model 
along with initial DB of state 
pairs

• VMs uses this along with local 
cores to accelerate 
computation

Trained Probabilistic
Models

+
Initial State Cache



All Done the Talk ... Work is Just Starting

• These are all just first steps and all 
very rough

• But wow a ton of fun!

• Able to apply and explore fascinating 
relationships between classical logic 
and statical mechanisms

• Amos and I have been growing the 
set of crazies (from complexity, 
information theory, physics, 
mathematics, and HW)

• Thanks to them all:  Margo Seltzer, 
Steve Homer, and all the brave and 
excellent students that have joined 
Amos: Katherine Zhao, Elaine 
Angelino, and others.  

Fetch-Execute Loop

Extract Apply

Massive Parallel Store and Search 
Fabric of Patterns

Registers+Memory+I/O

Classical 
Programmed

Machine
(The Interface)

Long Term 
Associative 
Memory of 

Computational 
Patterns


