
In Pursuit of a New
Kind of Computer

Programable Smart Machine Lab (PSML)
Jonathan Appavoo, Boston University

“And now for something completely different...”

Properties

• Simply and yet Richly Programmed

Properties

• Simply and yet Richly Programmed

• Automatically improves with its size

Properties

• Simply and yet Richly Programmed

• Automatically improves with its size

• Automatically improves/adapts with experience

Properties

• Simply and yet Richly Programmed

• Automatically improves with its size

• Automatically improves/adapts with experience

• Amenable to implementation with low power
devices

Properties

• Simply and yet Richly Programmed

• Automatically improves with its size

• Automatically improves/adapts with experience

• Amenable to implementation with low power
devices

A programmable child that is pedantically obedient
without the attitude :-)

Properties

Simply and yet Richly
Programmed

Simple synchronously clocked
uni-processor system

• Easy to grok
deterministic model

• General Purpose 'elastic'

• Easy to implement higher
level SW machines

ALU

CLOCK

IO MEMORY

Logic Based Computer

Let's not throw the baby out with the bath water

Hmmm Now What?
• Simply and yet Richly

Programmed

• Automatically improves with its
size

• Automatically improves/adapts
with experience

• Amenable to implementation
with low power devices

Hmmm Now What?
• Simply and yet Richly

Programmed

• Automatically improves with its
size

• Automatically improves/adapts
with experience

• Amenable to implementation
with low power devices

hash table ht

Using knowledge of runtime
behavior introduce a cache
based optimization:

get(key,value)
put(key,value)

key = hf(s);
if (get(key,&value)==hit) {
 fast(value);
} else {
 slow(&value);
 put(key,value);
}

Hmmm Now What?
• Simply and yet Richly

Programmed

• Automatically improves with its
size

• Automatically improves/adapts
with experience

• Amenable to implementation
with low power devices

Yikes...
I did warn you ;-)

3 x 7

Need an Interface

ALU

CLOCK

IO MEMORY

Logic Based Computer

Apply

Stimulus Signal

Response Signal

Learning System
(eg. Associative
Memory, Neural
Network, Deep

Network)

Extract

Extract a Signal

1

Execution Signal

See our HotPAR'12 Paper, "Parallelization by Simulated Tunneling",
Waterland et al. For a more technical view of execution as state

space traversal (Dynamical Systems Interpretation)

i

i

i+1

i

i+1

i

i+1

i xor i+1

Intriguing Possibilities
• “Derivatives” expose fascinating

structure

• Simple to construct and study
filters

• Unified statistical representation
exposes unexpected patterns
across all of system execution

• Opportunities for studies are
proving to be amazingly fun and
challenging our intuitionsXOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

Need a Method

How can we Apply the
Response

ALU

CLOCK

IO MEMORY

Logic Based Computer

Apply

Stimulus Signal

Response Signal

Learning System
(eg. Associative
Memory, Neural
Network, Deep

Network)

Extract

2

Back to the Loop
m-bit binary state vector s

(registers + ram + I/O channels)

fetch
execute

loop

loop(void) {
while(1){

 fetch(s,&op);
 execute(op,&s);
 }
}

State Pairs are computation (Again See our HotPAR'12 Paper)

Back to the Loop
m-bit binary state vector s

(registers + ram + I/O channels)

fetch
execute

loop

loop(void) {
while(1){

 fetch(s,&op);
 execute(op,&s);
 }
}

State Pairs are computation (Again See our HotPAR'12 Paper)

m-bit binary state vector s
(registers + ram + I/O channels)

fetch
execute

loop
loop(void) {
 while (1){
 if (lookup(s,&d)==hit){
 update(d,&s);

 } else {
fetch(s,&op);

 execute(op,&s);
 }
 }
}

lookup

update

Cache of
 state pairs

Putting it together
m-bit binary state vector s

(registers + ram + I/O channels)

fetch
execute

loop

Stimulus Signal

Response Signal

Learning System
(eg. Associative
Memory, Neural
Network, Deep

Network) lookup

update

Cache of
 state pairs

Predictive
Execution

Predicted
States

State
Pairs

Jonathan Appavoo
Sorry Animated gif broken in
 PDF VERSION

Hints of Smoke
• Deterministic computation

• All I/O up front

• Restricted x86 simulator

• MPI on Blue Gene

• Simple learning hypothesis

• Simple Bayesian predictor

Initial results are documented again in our HotPAR'12 Paper.

Computational Battery
• Split things up into two

distinct phases a learning
problem (charging) and later
use mode

• train ML model on large scale
systems and store model
along with initial DB of state
pairs

• VMs uses this along with local
cores to accelerate
computation

Trained Probabilistic
Models

+
Initial State Cache

All Done the Talk ... Work is Just Starting

• These are all just first steps and all
very rough

• But wow a ton of fun!

• Able to apply and explore fascinating
relationships between classical logic
and statical mechanisms

• Amos and I have been growing the
set of crazies (from complexity,
information theory, physics,
mathematics, and HW)

• Thanks to them all: Margo Seltzer,
Steve Homer, and all the brave and
excellent students that have joined
Amos: Katherine Zhao, Elaine
Angelino, and others.

Fetch-Execute Loop

Extract Apply

Massive Parallel Store and Search
Fabric of Patterns

Registers+Memory+I/O

Classical
Programmed

Machine
(The Interface)

Long Term
Associative
Memory of

Computational
Patterns

