
Exposing and Exploiting 
Structure in 

Computation: A Unification 
Principle of 

Information Processing Systems 
“Programmable Smart Machines” 

DSRC/DARPA 2008 Summer Conference 
Jonathan Appavoo & Amos Waterland 

IBM Research – T.J. Watson Research Center NY



Programmable:  Simple  
Layered Logical Expression.  
Based on a simple Rational  
Machine Model.  
Can be fabricated and interfaced 
using well know methods. 
(Often overlooked but has an implicit 
model of time and more behavioural 
that most people realize)

Automatically learns and exploits 
structure in both space and time. 
Maintains Global Context -- 
Constant Observation and 
Prediction 
Flexible, Robust and Parallel by 
definition. Function scales with size. 
Hierarchical: 
  Multi-Scale structure 
  Multi-modal Integration 

Abstractly



The Crux ! Novelty

1. Convert ENTIRE operation of a Modern Computer into an 
Execution Signal. 

2. Extract, Represent and Express Structure in Signal. 
3. Exploit Structure to potentially: 

1. Accelerate Future Computation, 
2. Expose Unknown/Un-Expected Correlations and 
3. Enable Extrapolation to generate new Behaviour.



“Logic vs Statistics” 
Mathematician David Mumford, “Pattern Theory: The Mathematics of 

Perception”

We do not believe it is “Logic vs Statistics” 
Rather we conjecture that logical processes and 

statistical processes can be related to one 
another.  And that this relationship speaks to a 
fundamental phenomena relating conscious 
logical mental processes with unconscious 
mental processes.  This relation is a unification 
of information processing and suggests new 
hybrid computational models which exploit the 
relationship.



Meta Computer Science (MCS)

P(I) : Instruction Probability 
P(D) : Data Probability 
P(Ev) : Exogenous Event Probability 
MM    : Machine Model : Implemented in Hardware or by Software (simulator), 

has an explicit model for ordering (time) 

Execution is the Joint of these probabilities given the Machine Model 
Things that are reasoned about and concluded with respect to execution are 

independent of Specific Machines, Programs, Data and Exogenous Events.

Machine 
Model

Programs Data

Exogenous 
Events

Execution



Machine 
Model

Programs Data

Exogenous 
Events

Execution

110100100100010010001…

• Execution can be viewed as a process which describes a time varying signal.  
• This signal varies based on underlying structural aspects of the sources of instructions, data, 

and exogenous events.   
• This is a fundamental conversion in which each of the components of a traditional computer 

system is combined to yield the execution signal. 
• Structure in the signal should be considered as a first class object for analysis and 

manipulation 
It is our conjecture that:  
1) Instructions are not random (there is structure in programs) 
2) Data is not random (data ultimately comes from real world sources) 
3) Exogenous events are not random (the sources in the real world have structure) 
4) Significant structure exists that would allow execution to be compressed 
5) Emergent structure can be exploited in ways that the system was not originally programmed 

for.  

Execution as Information



Meta – Machines : Inputers

Universal 
Turing 
Machine*

Lookup

Response

Information Compression Entropy 
Cache

Lookup

Response

Information
Compression Entropy 

Cache

Execution Engine: 
Qemu*,  

Dynamical System Based 
Simulator, Hybrids,  

etc.

Lookup

Response

Information
Compression Entropy 

Cache

Machine 
Model

Programs Data

Exogenous 
Events

Execution



Entropy Cache:  
Parallel Store and Search Fabric 

Potentially Cache of states, 
Bayesian Graphical Model, etc.

Execution 
Engine

General Purpose 
Computations 
Expressed as Complete 
Systems (All SW, 
External IO, and Machine 
Model).

We are not looking to parallelize the execution but convert it into something that is 
parallel – recognition and retrieval of structure. Rather than thinking about how to 
program all the transistors we want to exploit the majority to learn, store and 
extrapolate on the structure emergent in the Execution.  Leveraging the structure 
not only for acceleration but to enable extrapolation and identification of un-known 
correlations.     

Abstract Model



Execution Engine
• Implement General Purpose (GP) Programmable Machine Model (eg. PC) 
• Online conversion of execution into information for storage where 

information is not traditional instruction traces but rather encapsulates all 
structure in io events, instructions and data, generate from entire GP 
System being executed. Implicitly includes the Machine Model constraints. 

• Basic Approach 
– Information is put into a global parallel shared store which can be queried and 

used to “accelerate” future execution (Execution caching). 
– Execution Engine queries parallel shared store to identify re-occurrence of 

structure and “advance” the execution.  
• Advanced Approach 

– Integrates learning mechanisms including pattern extraction, recognition, 
prediction, and extrapolation (eg. speculation).  

– Interface to structural store which can be queried to utilize the correlations the 
system has learnt and utilize the structure to synthesize new execution.



Exploring the “Execution Signal” 
with a Classical Machine Model 

Emulator on BlueGene 



Using an Emulator to Expose & Study 
Execution Signals of a Modern 

Full x86 Computer System Emulation Loop 
(IO and CPU) Implemented as an  

application program

X86 Installation
Exogenous Interactions 

With IO Devices

Execution 
Signal

Simulated 
State

Translation 
Cache

Execution 
Signal 

Generator

+ a SuperComputer ;-)

Entropy 
Cache 

Interface

Entropy Cache Structural  
Processing

QEMU 
+



It seems possible to recognize structure independent of 
syntax. 

A form of information processing exists that extracts 
Statistical Structure which is Multi-Scale, Multi-
modal, and correlated in both time and space. 

Our Goal:   
Explore exploitation of structure in execution (in an ISA 

independent way), which is correlated over time in a 
consistent, way in order accelerate the programmed 
function and potentially enable new un-programmed 
function.  



Structure is multi-scale but periodicity may not be 
present at all scales.  Structure can be episodic and 
event driven in nature (underlying structure may be 
driven from an external source/cause). 

Do not over think it! Don’t focus on machine semantics 
treat structure as a first class entity.



A Prototype Model Under Construction

X86 Linux

X86 Linux

Windows
Windows

khNets

Cache 
Services

LinuxFW

khNets

Cache 
Services

LinuxFW

khNets

Cache 
Services

LinuxFW

khNets

Cache 
Services

LinuxFW

khNets

Cache 
Services

LinuxFW

khNets

Cache 
Services

LinuxFW

khNets

Cache 
Services

LinuxFW

khNets

Cache 
Services

LinuxFW

Entropy 
Cache

Entropy 
Cache

Entropy 
Cache

Entropy 
Cache

Entropy 
Cache

Entropy 
Cache

Entropy 
Cache

Entropy 
Cache

External Ethernet

CN CN CN ION CNCNCNION

PPC Linux

Windows

Windows
X86 Linux

PPC Linux

Qemu*Qemu*Qemu*Qemu*Qemu*Qemu*Qemu*Qemu*



BG/P QEMU Demo
Goals:  Given a full I/O Model and Timing Model 
1. Construct Framework for Validation and Experimentation 
2. Generate Data via controlled and uncontrolled 

experiments. 
3. Prototype Hand Driven Structural Acceleration across 

instances. 
4. Data for “Execution” Feature based sensor design for 

interfacing to Hierarchical Graphical Models such as 
HTM’s.   



200 x86 Windows XP instances (800 PPC 
cores) on a common shared BG/P “QEMU-” 

Infrastructure (plenty of cores left 3296 + ****)



Booting Windows XP on BG/P “QEMU-” : 
FULL AND DIRTY Environment



Dynamical System Based 
Simulator Designed to Explore 

Exploitation of Structure in 



 A Dynamical System Execution Engine
Developed a mathematical formalism (based on the physics notion of a dynamical 
system)  for expressing execution which allows us  to construct an x86 ISA 
compatible machine which utilizes lookup as its core primitive for resolving/advancing 
-- LEAPING -- execution forward in the phase space.  Natural and simple way to 
exploit the deterministic structure in Execution via relationship between locations in 
phase space and Machine Model implementation.

Stored-program computers are dynamical 
systems

• A dynamical system is a phase space 
combined with an evolution rule 

• A phase space is an object in which 
every state of a system can be 
represented as a unique coordinate 

• An evolution rule is a function that 
maps a point in the phase space to 
another point in the space 

• Integration is self-composition 
• Evolution rule is integrated 
• Offers an enduring denotational 

semantics



Deterministic Structure Manifests in 
Phase Space ! Predictive “LEAPING”

Entropy Cache ! Cache of Known Orbits
Every point in phase space is a 
fully specified Machine Model 
state.  Past Execution Drescribes 
Orbits given a set of determinism 
constraints. 

If the Machine Model’s current 
state corresponds to a point on a 
known Orbit then we can simply 
LEAP the machine state to the 
future point determined by the 
Orbit.  

Orbits and the likelihood of 
reoccurrence is a description of 
structure in the Execution Signal.  

Look up / Search is Parallel Operation



Extrapolating Execution in Phase 
Space ! Speculation as Orbit 

Exploration

Speculation is trivially Parallel.  Given enduring denotational semantics of orbits 
all future execution can benefit from orbits determined and cached.



DEMO/Status



“Simulate”

Linux x86 Binary (elf)

X86 CPU MM  
Evolution Rule

Execution 
Signal

Simulate



Cortical Computational Models 
and Advances -- Inspiration, 

Influence and possible 



Why is there hope that the statistical 
structure can be recognized and 

exploited?

“The cortex functions as a very robust associative memory and computing device. It integrates data from 
different senses, different times and different resolutions, allowing us to identify correlations across time 
and across sensory modalities. Not only does the cortex enable us to robustly recognize patterns in the 
midst of noisy backgrounds, but we can do so even if we have never encountered a given pattern at a 
particular scale, orientation or brightness or in the midst partially occluding distractions. The cortex 
continuously predicts what we are likely to perceive next and warns us if events run counter to 
expectations.”   
Thomas Dean, Brown University ‘Computational Models of the Neocortex’. 

Telencephalic circuits (90%) 
cortex, striatal complex, hippocampal 
formation, amygdala nuclei

“ancient 
circuits”, 
crebellum & 
brain stem



Biology (in vivo)

1. Re-interpret biology as 
Hierarchical Bayesian 
Inference 

2. Combine Bayesian 
Architectures based on 
biological evidence

Bayesian Inference/ 
Pattern Theory

Modern Neuro-computational models 
 Dean, Granger, Hawkins/Dileep (HTMs),etc.

Researchers propose that the recognition and storage of commonly occurring sequences and sequences of sequences are 
a central role of neural systems and this ability is can be modeled with Bayesian hierarchies.



A Machine Learning/Biological 
Interpretation of Execution

Cause/Source: 
With some stable deterministic 
properties which are invariant 
under some “useful” conditions.

Sensor/tranducer 
(signal generator) 
Observers source via some carrier 
which is constantly changing  and 
generates a compatible signal for 
down stream processor

P

D

E

MM Entropy 
Cache

Execution Signal

Invariant, correlated features of execution  
identified and stored. 
How we use this knowledge is up to us. 
(we can also identify when something unexpected 
is happening)

Signal Processor:  
Extracts/Learns and Stores  
relationships in signal which are 
deterministic, invariant and correlated both 
in space and time and potentially at 
multiple scales.  Corresponds to invariant 
features/objects in source.



Hierarchical Structure Hypothesis
Reproduced from “On Intelligence”, Hawkins

touch audition vision spatially 
specific

fast 
changing

“features” 
“details”

spatially 
invariant

slow 
changing “objects”



Amodal Cortical Inspired Primitives 
for Structure 

• Grammars:  Clusters and Sequences ! 
Sequences of Clusters hierarchically nested to 
form trees. 

• A way of knowing what is happening at multiple 
scales in space and time.  Thus inherently 
enabling prediction and verification.  (Constantly 
predicting based on what you are observing now 
and in the past but know when you are going off 
the rails) 

• Constant maintenance of  ‘Hierarchical 
Expectation’ which are feed both up and down to 
improve prediction.



An example of the kind of approach 
we hope to explore

General Purpose Practical Deterministic Mechanisms as typified by Waterland’s 
Dynamical Systems Simulator 

+ 
 Predictive ability of Cortical algorithms to exploit structure in generalized Stochastic 

signals (Assuming Structural Assumptions) 
! 

Hybrid which utilize a combination mixing stochastic processing and deterministic 
processing

Cortical Processing of Execution Signal 
Constantly Predicting Likely Future Points in  

Phase Space 
(Given Stochastic Variables)

System looks for current state (includes exact values for Stochastic Variables) in Entropy Cache  
IF NOT FOUND  

Evolves current Orbit given Machine Model and Exogenous Values  (exposing execution signal)  
ELSE  

LEAP state forward= !

Entropy Cache 
Orbits are cache given 
Execution and speculated 
Given Predictions

Execution Signal Orbit evolved 
In cache

Lookup (may utilize Pat Recog)



Summary: A Different way of thinking 
about how to exploit more Transistors

• Rather than thinking about how to program all the transistors we want to 
exploit the majority to learn, store and extrapolate on the structure 
emergent in the Programmable Machine Model Execution.   Not only 
accelerating the function specified (programmed) but enabling new 
unspecified function to arise.     

• Interface/Program Statistical Learning mechanisms via a standard 
Programmable Machine Model.   

• Auto-Parallelization not of the programs but of the underlying information 
transformation that the entire system achieves.

Implements 
Programmable 
Machine 
Model 
Generating 
Execution

Learning, Storing 
and Extrapolating 
on the emergent 
Structure in the 
Execution of the 
Programmable 
Machine Model

LSES
PMM



Additional



Some Implications and Impacts
Some technical Implications: 
• If execution can be converted to information then it should be possible to build a system whose 

storage capacity should have a direct relationships to its computational function.  Eg the larger the 
storage the more capable.  It turns out that this is exactly the property displayed by biological 
cortexes.  Computational ability increases with pure increase in size by replication of the uniform 
structure of the cortex. 

• Computation can be converted into search.  Arbitrary mechanisms for search can be employed: 
Parallel, Quantum, Cortical, etc. 

• Computation can be interfaced directly to machine learning. 
• Machine learning can be applied via general purpose systems. 
• Standard digital techniques can be used to program and interface neural based systems. 
Scientific Implications: 
• We perhaps closer at a understanding information processing and the relationship between logical 

and statistical processes. 
Industrial Impacts: 
• The potential to build new products and services which are fundamentally unique, proprietary and 

superior: 
– Cloud computing services in which a simulator takes traditional machines as input and is capable of exploiting 

high degrees parallelism to more efficiently execute them providing greater margins. 
– Smart machines which can be programmed in human friendly ways but exploit underlying structure. 
– Independence from ISA 
– Suggests new architectures which utilize the fact that such continuous optimization is taking place to simplify 

construction and programming burden 

• Exploit the burgeoning field of neuro-computation. 
• Establish a new kind of computer and field of hybrid computation in which MCS can be rigorously 

explored.



Fun with Structure

• behavesostrangely.mp3 
• Dreams of Mice and Men : 

– Play it again Sam ! Structure in Neural Spike 
Activity correlated by “Accident” 

– Dreaming of a day of Mazes and new 
Problems 

• Ferrets seeing with there “Ears”. 
• Feeling a rubber hand. 
• Sensory equivalency : “tongue” sight





Better Slide on Clustering, 
Sequences, Prediction, Time, Global 

View/Context (All Boundaries 
Eliminated ! Exposing structural 

relationship at all scales but unified) 



What do we really mean by an 
Entropy Cache

• A Table and lookup methodology 
• A Compression tool  
• Search mechanism 
• Memory mechanism 
• A general purpose cache which can be used 
by dynamic simulation/optimization.  
• A synonym for a component of a hybrid 
system which stores and retrieves information. 
• A mechanism for storing and retrieving 
statistical structure.



Why should a Systems Software 
Researcher have anything to say 

about MCS
Intuition and statistics about execution are our bread and 

butter: 
• Patterns and Probabilities in execution 
• Patterns and Probabilities in memory access and data 

values 
• Privy to all software layers and hardware structure.  
• Caching and lookups are fundamental in our thought 

processes 
• Confluence of global dynamic and static structure 
• Global view and Exogenous Event Management 
• Serious study of general purpose scalable software layer, 

hence forced to consider implications of large  scale 
parallelism. 



Jonathan’s Background
Pre 2002: Parallel Computer Systems and OS research: Masslin, Gamsa, Smith, 

Liedtke, Rosenblum, Mazieres (LBFS), Tridgell (rsync), Peterson (Scout), 
etc.  

2002 : Confluence of my research,  ML milieu, and robotics hobby   
1) Interaction with Vision and ML students at Toronto (course Decision Making 

Under Uncertainty ) 
2) Dynamic Simulator 
3) Self-optimizing System using Hypervisor based introspection, indirection, and 

modification 
2003 – 2007 : Turing, Godel, Von-Neumann, Shannon, Bayes, Pearl, Granger, 

Dean, Mumford, Grenader, Hawkins, Mountcastle, Widrow, etc.  
Looking for something more than intuition to guide construction.  Want to 

characterize the phenomena first.   Then collaborate and utilize the right 
techniques. Eg.  Biologically motivated Bayesian inference is likely to be 
far more robust than adhoc voting schemes.   I do not want to reinvent 
Pattern Theory or Neurology rather looking for viable integration 
framework. 



Amos’s Background



General QEMU Experimental 
Methodology

Entropy 
CacheQemu* Qemu**Trace

Workload

DB Analysis

Reports, Observations and Discussion

Metrics



Project Plan: Initial Experiments 
and Hypotheses

Workload            Parameters
Async Responder Response 

function
In,Out 
chan

Domain 
config & 
Lang

Webserver Content # con Domain 
config

File corpus search Content # files Domain 
config

Compilation Source Size complexity
Mixed



Running 1000s of Machines 
as a Single Workload

Windows
Windows

Windows
Windows

Windows
Windows

Windows

Windows
Windows

Windows
Windows

Windows
Windows

Windows

Windows
Windows

Windows
Windows

Windows
Windows

Windows

Windows
Windows

Windows
Windows

Windows
Windows

Windows

Windows
Windows

Windows
Windows

Windows
Windows

Windows

W
i

n

d

o w
s W

i

n

d

o w
s W

i

n

d

o

w
s

Virtualization to the Extreme 
1.A virtual machine is faster than a “real” one. 
2.Virtualizing 1000’s is more efficient than 1. 
3.ISA independent optimization.

Exploit Structure at Large Scale



Some Questions to Keep in 
Mind

The 2000’s version of the RISC questions -- questions of reuse, caching and 
compressing computation: 

• Is there redundancy/structure in the instructions executed? 
• Is there redundancy/structure in data values? 
• Is there redundancy/structure in Exogenous Events? 
• Is there redundancy/structure in the joint probabilities? 
• Is redundancy/structure in the systems overall behavior detectable? 

Can structure in computation be exploited in generic ways to more “efficiently” 
implement a complete computational system independent of how it is 
programmed?  

 Dynamically accelerate what needs acceleration. 
Automating the time space tradeoff and potentially exploiting alternate 

information processing models. 
Exploiting structure across multiple scales and domains while  leveraging 

redundancy.



Historical Slides of things that I 
have considered along the way



Complete System Optimization
• Can trace construction work across protection 

boundaries?  For that matter arbitrary 
communication boundaries? 

• Can traces/streams/fragments be first class 
primitives manage by the system? 

• What are the equivalence of trace heads, trace 
exits, dynamo context switches etc when 
considering the entire system? 

• Are deeper optimizations possible when all of the 
system behavior is being considered? 

• What is the equivalent to the Dynamo loop 
assumption when general purpose system are 
considered?



System Trace Cache Support
With a little though any of us can come up with several 
architectures and technical solutions for system wide trace 
cache integration.  The question however, is not how but 
why.   Before we move on to why let’s walk trough a couple 
of possible architectures.

1) Straight forward integration of Dynamo like approach 
2) More aggressive Parallel simulation approach



System Trace Caching – One 
Possibility : Building Virtual 

S   : Instruction stream in ISA of virtual CPU as generated by complete SRO 
S’  : Instruction stream presented to real CORE 
OS: Optimized instructions for CORE 

S’ = a*S + b*OS

COREOPTIMIZER

Monitor Data

S S’



A Dynamic Optimizer Component 
with Global Scope and Protection

LinkerSynthesizer

Inspector

S

S’OS



A Hypervisor Realization

1. How to start optimizing 
• Introspection on exogenous events ! hypervisor 

allows Dispatcher to register introspection 
functions on interrupts to target partition 

• Hypervisor exports Hardware Performance 
monitoring control to Dispatcher 

2. Control transfer to trace :   
• Place Partition Branch commands (IPC) at trace 

entry points control transfer from trace 
3. Some Mechanisms required: 

• Shadow Partitions : A partition which has access 
to all of another partitions memory in place.  Plus 
its own memory protected from the Casting 
Partition. 

• Branch to Shadow Partition (IPC):  Causes 
transfer to shadow  

• Step Partition 
• Read Partition 
• Write Partition



Computation as Simulation

1. All computation can finally be realized by a 
simple machine (UTM). 

2. HW and Software have (d)evolved to implement 
various forms of (de-)virtualization which are 
primarily to support software abstractions. 

3. Significant portions of computation can be 
cached. 

4. The larger the time frame and the great the view 
the cache can have the more effective it can be. 

5. Simulating 1000 of machines is more efficient 
that simulating 1



Go big or Go Home ;-)
VM instances

inspector
dispatcher

global cache 
HW & Software

unified 
underlying  
HW



Things we have considered doing
(a) system wide generalized trace cache, and 
(b) a system wide generalized infrastructure for trace management, manipulation and transformation 
(c) identification/marking of "Interesting" event : 
 i. External Interrupts 
 ii. Loads and Stores to "meaning full" addresses 
 iii. Synchronization primitives 
 iv. Shared Data access 
(d) Unified support for hardware performance monitoring with respect to partition optimization 
(e) A framework for using -- Qemu and Hercules to study complete machine execution across multiple ISA's and OSes 

– 
 i. Target Partition Creation: Launching Qemu and Hercules in "raw" partitions on top of either HW, Xen or Rhype 

on either PPC or X86-64 depending on resources and availability -- here we would use either a hand configured 
minimal Linux kernel, the K42 microkernel, L4 or LibOS as most appropriate to act as a base run-time to run one 
of the above in a partition. 

 ii. Extend the hypervisor as necessary with mechanisms to support introspection and manipulation of a Target 
Partition including: 

  A. Suspension 
  B. Single stepping 
  C. Tracing 
  D. Modification 
  E. Profiling  
  F. Marking 
 iii. Construction of analysis techniques and infrastructure which allow hypotheses about structure to be tested. At 

this point we are not necessarily concerned with specific optimization techniques but rather to see if certain types 



Back to Why
• How to implement system wide caching is not as important as 

understanding what there is to optimize ! must establish that 
it is worth it. 

• As such we are focusing on studying computational phenomena 
at large scales.  Both within a traditional SRO instance and 
across instances.  

• We want to be able to design the infrastructure based on real 
data : 

– Are traces really the right thing to cache? 
– Can arbitrary boundaries and sequences of unfolded deterministic code 

be found and eliminated?   
– Is it worth dedicating hw resources either in the form of caches, state 

machines or morphs to accelerate the components? 
• Scientifically worth exploring relationship between Computation 

and Information.  Can general computation be expressed as 
search/compression. UTM as Information generator.  


