Scalable Elastic Systems Architecture

Dan Schatzberg

Boston University
dschatz@bu.edu

Jonathan Appavoo

Boston University
jappavoo@bu.edu

Orran Krieger

VMware
okrieger@vmware.com

Eric Van Hensbergen

IBM Austin Research Lab
ericvanhensbergen@us.ibm.com

1. Introduction

Elasticity should be treated as a first class system parameter. Partic-
ularly in large cloud environments, elastic applications would bene-
fit if the underlying infrastructure provided primitives for elasticity
and were themselves elastic. If you want to provide an elastic ser-
vice and the cloud does not provide good primitives for the degree
of elasticity you require, then you are forced to over-provision —
acquire more resources than you instantaneously need and subse-
quently hoard them. Doing so hinders the cloud’s ability to opti-
mize global system utilization. Free or idle resources become hid-
den. If however, each cloud layer provides appropriate primitives
that permit resources to be acquired and released at a scale that is
equal to or better than what is required, then hoarding is less likely
to occur. This permits the cloud infrastructure to collectively mi-
grate resources to the real demand. To achieve this in a multi-layer
system, demand must be transparently reflected from top to bot-
tom. We must focus on the design and evaluation of primitives for
expressing and managing elasticity at all levels, across nodes, and
potentially across data centers.

If research focuses on pushing the boundaries of elasticity, new
classes of applications can be developed. For example, if a cloud
would permit an application to grow and shrink the use of thou-
sands of processors between mouse clicks, then High Performance
Interactive Applications would be viable. Consider a medical imag-
ing and analysis application. Using a raw megapixel image with an
algorithm requiring quadratic memory in the size of the input, this
requires roughly 14 terabytes of memory, putting it well outside
the reach of the ram capacities of desktop computers. However,
a “small” supercomputer today (1/10 of the largest current IBM
BlueGene P System), capable of approximately 10'* operations per
second, can not only contain the data, but can perform an operation
on each data value in under a second. All of a sudden, operating
on the image not only becomes viable, but we can even do it at
interactive speeds.

While an interactive version of this application has large value,
it is not feasible today. Suppose a doctor’s office had the necessary

[Copyright notice will appear here once ’preprint’ option is removed.]

software and wanted to use Amazon’s EC2 HPC offering for an 8
hour work day. To operate on the image would require 623 compute
instances[1]. Given pricing at the time of writing, this translates
to approximately $8000.00 per day. Due to the interactive nature
of the application, the actual utilization of the instances will be a
small fraction of the time that is being paid for. This is likely a cost
prohibitive proposition. If, however, it was possible to acquire and
release the resources at interactive time scales, then the instances
could be reallocated to other EC2 users and the doctor’s cost would
more closely reflect the usage. Researching dramatically higher
degrees of elasticity with respect to the scale of the resources
and duration they are held would enable such high performance
interactive applications.

If we develop effective ways of exporting the elasticity via de-
signed and usable primitives, then we can not only ease the bur-
den of developing elastic applications and services, but also we can
foster and encourage them. We can reduce the application develop-
ment burden by providing suptport for representing and reflecting
dynamic demand and translating it into dynamic requests for re-
sources. Similar to how a traditional operating system transparently
manages memory via mappings and pages faults, one can explore
how systems can enable primitives for elasticity.

In summary we argue that elasticity is an important area of re-
search and hypothesize that research in this area will lead to more
efficient systems with less hoarding, new applications that exploit
massive cloud resources elastically, and system software and li-
braries that will simplify the task of developing elastic applications.

In this talk we will present our goals for a system that supports
extreme elasticity. Motivated by these goals, we will present our
Scalable Elastic Systems Architecture (SESA).

2. Goals

Based on our observations, we posit the following goals for a
systems architecture for elasticity:

Top-Down Demand The system should enable demand on ser-
vices to flow from high level layers as transparently as possible
to the lowest layers of the system. Hoarding should be discour-
aged or at least made transparent. Event driven interfaces and
services should be supported and encouraged by the system.

Bottom-Up Support We advocate that elasticity should be an
explicit characteristic that should be supported in the lowest
layers of a system and, if possible, all the way into the hardware.
The construction of layers that are explicit about the elasticity
they provide with respect to the base elasticity of the system
should be encouraged via systems support.

201172724

Exploit Modularity Use modularity to enable applications to map
elasticity in their demand as closely to the capabilities of the
system when desired. Embrace the layering of cloud computing
as an abstract architecture but ensure that all but the lowest layer
can have varying implementations or be over-ridden. Further,
provide some form of support for a component model that
enables the base elasticity to be exploited by new and advanced
applications.

3. SESA

Motivated by these observations, we are exploring a Scalable Elas-
tic System Architecture (SESA) which aims to enable extreme de-
grees of elasticity across all system layers, aiding in the construc-
tion of elastic software. Along with an abstract layering, we pro-
pose a distributed elastic component model that can be used to
construct layers of the system that are tuned to exploiting fine grain
elasticity.

SESA defines four meta layers to a system that can easily be
mapped to current and future cloud computing environments. At
the bottom is the physical Elastic Node/HW Layer that represents a
data center’s underlying computer resources. We assume a model in
which the resources of the data center are decomposed into nodes
that form the basic unit of resource allocation and thus elasticity.
The next layer up, the Elastic Partition Layer, provides groups or
partitions of node resources that can be associated with a consumer
or principal. A partition is the basic unit by which a principal can
elastically aggregate node resources. To enable applications to scale
and exploit the elasticity of a partition, the next layer provides an
Elastic Building Block model. Elastic Building Blocks (EBBs) are
the primary way in which application software is structured so
that it is scalable and changes in demand can be converted into
elastic consumption of node resources for a particular application
of a principal. The top layer is the Elastic Service and Runtime
Layer. The specific service and or runtime code of the application
is written as a dynamically allocated set of EBBs.

Our systems software focus is on the top two layers. Our goal
is to introduce a distributed library OS runtime that enables Elastic
Building Blocks (EBBs) for the construction of system and appli-
cation layers that express and exploit the maximum elasticity of the
hardware to meet the demands of interactive workloads. Our model
attempts to achieve the goals of top-down demand, bottom-up sup-
port and exploiting modularity. Specifically, it uses an event model
that maps events to method invocations of EBB’s. EBB construc-
tion and destruction are by default to be triggered by event access
and quiescence. The components will have an associated IPC like
model so that invocations can cross layers. The library model will
enable EBB constructed services to be constructed and deployed in
conjunction with existing implementations.

4. Concluding remarks

Systems in the past were designed to efficiently share fixed re-
sources among a mix of different applications. We are currently
building our clouds and elastic cloud applications using the HW
and SW systems that arose from this legacy.

In this talk we will propose a new research agenda focused on
elasticity. We argued that elasticity is an important area of research
and hypothesized that research in this area will lead to more effi-
cient systems with less hoarding, new applications that exploit mas-
sive cloud resources elastically, and system software and libraries
that will simplify the task of developing elastic applications.

We will discuss some of our thoughts on a top-to-bottom cloud-
scale system focused on elasticity. We argue that such a system will
require: 1) a HW/IaaS layer that can quickly reallocate resources to
different applications, 2) an event driven model where resource de-

mand flows from the high level layers as transparently as possible
to the lowest level of the system, and 3) a model of modularity that
allows layers to be overridden as necessary and provides applica-
tions with a component model that enables the base elasticity to be
exploited by new and advanced applications.

These requirements have led to the design of the SESA sys-
tem briefly described in the previous section. We are just start-
ing to build this system. The elastic building blocks extend our
previous work on building blocks from K42[5] and draw addi-
tional inspiration from Fragmented Objects[7], Distributed Shared
Objects[4], and Distributed Shared Abstractions[3]. We will incor-
porate EBB into a library OS inspired by our experience with Li-
bra [2]. This library OS will be able to automatically and quickly
extend across and release VMs or HW nodes as the application’s
demands change. Our prototype will initially focus on a MATLAB
like environment built utilizing SAGEJ[8].

We expect to rapidly have an end-to-end simple operational
implementation of SESA focused on a medical imaging application
on top of SAGE running on both BG/Q systems and vCloud[6].
Focusing this work on one relevant application domain, a particular
programing model, and two interesting large scale systems will
give us good experience on the applicability of these ideas.

Cloud computing makes whole new classes of elastic applica-
tions, applications that can exploit thousands of nodes for minutes
or even seconds, possible. The nature of cloud computing makes
it practical to develop whole new systems, targetting elasticity, and
have them be useful for some workload while those system co-exist
with legacy systems and applications. Research in elastic systems
software is both urgent and can quickly be made relevant to a broad
community.

Acknowledgments

This material is based upon work supported in part by the Depart-
ment of Energy Office of Science under its agreement number DE-
SC0005241 and DE-SC0005365.

References

[1] Amazon. Amazon EC2 Pricing. http://aws.amazon.com/ec2/
pricing/.

[2] G. Ammons, R. W. Wisniewski, J. Appavoo, M. Butrico, D. Da Silva,
D. Grove, K. Kawachiya, O. Krieger, B. Rosenburg, and E. Van Hens-
bergen. Libra. In Proceedings of the 3rd international conference on
Virtual execution environments - VEE ’07, 2007.

[3] C. Clmenon, B. Mukherjee, and K. Schwan. Distributed shared ab-
stractions (dsa) on multiprocessors. IEEE Transactions on Software
Engineering, 1993.

[4] P. Homburg, M. V. Steen, and A. S. Tanenbaum. Distributed shared
objects as a communication paradigm. In In Proc. of the Second Annual
ASCI Conference, 1996.

[5] O. Krieger, M. Mergen, A. Waterland, V. Uhlig, M. Auslander,
B. Rosenburg, R. W. Wisniewski, J. Xenidis, D. Da Silva, M. Ostrowski,
J. Appavoo, and M. Butrico. K42. In ACM SIGOPS Operating Systems
Review, 2006.

[6] O. Krieger, P. McGachey, and A. Kanevsky. Enabling a marketplace of
clouds: Vmware’s vcloud director. SIGOPS Oper. Syst. Rev., 2010.

[7] M. Makpangou, Y. Gourhant, and J. pierre Le Narzul. Fragmented ob-
jects for distributed abstractions. In Readings in Distributed Computing
Systems, 1992.

[8] Sage. Sage: Open source mathematics software. http://www.
sagemath.org/.

201172724

