
Portability Events
A Programming Model for Scalable System Infrastructures

Chris Matthews Yvonne Coady
University of Victoria

{cmatthew, ycoady}@cs.uvic.ca

Jonathan Appavoo
IBM Research

jappavoo@us.ibm.com

Abstract
Clustered Objects (COs) [1] have been proven to be an effective
abstraction for improving scalability of systems software [2, 3].
But can we devise a programming model that would allow COs
to live outside the specialized environments of these operating sys-
tems and still provide benefit? This paper presents an overview of
SCOPE (Scalable COs with Portability Events), a prototype user-
level library derived from the original implementation of COs in
the K42 OS. Our initial results indicate that not only do the benefits
of COs hold, but that the notion of a “portability event”, responsible
for maintaining the runtime environment of COs, provides a pow-
erful programming model that will enable COs to be seamlessly
transplanted into systems beyond K42. This paper overviews this
programming model, provides details and preliminary results from
its prototype implementation in SCOPE, and provides motivation
to consider simple language mechanisms to further support porta-
bility events and this programming model in general.

Categories and Subject Descriptors D.4.8 [Operating Systems]:
Performance; D.1.3 [Programming Techniques]: Concurrent Pro-
gramming

Keywords Clustered Objects, SCOPE, K42, scalability

1. Introduction
Symmetric MultiProcessors (SMPs) – specifically those where
more than one processor operates in one shared memory space
– offer a programming environment that is a natural extension of a
typical uniprocessor. But OS development for SMPs that embraced
this natural extension fell short of yielding high performance SMP
OSes [1–7]. Part of the problem is that scalability has proven to be
an elusive goal due to the negative impact of sharing in SMP sys-
tems. Sharing is a phenomenon that naturally results from caching
on SMP systems. Figure 1 shows an example of how sharing takes
its toll on the standard benchmark SDET [8]. The SDET bench-
mark simulates a representative workload at increasing levels of
concurrency in order to generate a graph of throughput vs. offered
load [8].

On Linux, the benchmark suffers from the effects of sharing.
As more processors are added to satisfy the load, per processor
utilization eventually lessens and the toll of sharing ultimately

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLOS 2006, Oct. 22, 2006, San Jose, California, United States
Copyright c� 2006 ACM 1-59593-577-0/10/2006. . . $5.00

becomes so great that throughput actually drops. The other line in
Figure 1 represents SDET on the K42 OS. K42 is a research OS
designed with scalability in mind. K42 was designed to mitigate
the effects of sharing by exploiting locality, and per processor data.
The scalability characteristics of K42 are a vast improvement over
Linux – as processors are added, throughput improves, though not
quite linearly.

One strategy for reducing sharing is structuring systems in an
object-oriented manner, so that individual requests on the system
are serviced by different objects. Despite the fact that K42 is ex-
plicitly structured in an object-oriented manner with independent
resources represented by independent object instances, when run-
ning with four processors throughput is only 3.3 times that of one
processor. Running with 24 processors, throughput is 12.5 times
that of one processor. Ideally, throughput should increase linearly
with the number of processors. Closer inspection revealed that the
SDET workload induces sharing on OS resources, thus limiting
scalability. In K42, the remaining sharing in common code paths
has been further mitigated by leveraging distribution, partitioning
and replication in the form of a CO facility. As depicted in Figure 1,
with this CO facility in place, the same workload yields a 3.9 times
throughput at four processors and a 21.1 times throughput at 24
processors. Thus, with COs it is indeed possible to reduce sharing
and produce highly scalable systems.

Mitigating the effects of sharing has proven itself as one way
to increase scalability of SMP operating systems. But the effects of
sharing are not just felt at the OS level. User-level programs can ex-
perience the same sharing related slowdowns regardless of the OS.
This is the motivation for SCOPE, to provide some of the mech-
anisms used in K42 that reduce sharing to the user-level of other
systems. However, the question remains as to whether or not the
intrinsic dependencies on K42 specific features can be eliminated
from the implementation of SCOPE, allowing these benefits to be
realized in other systems. This paper details our extension to COs
called portability events. Then details how portability events allow
the use of clustered objects outside of the K42 kernel.

2. Background: K42 and the Clustered Objects
Model

A CO presents the interface of a single object to the client, but in ac-
tuality is composed of several component objects. Each component
handles calls from a specific subset of the machines processors,
maximizing locality and mitigating the negative effects of sharing.
Inside every CO, the notion of global information and distributed
information is made explicit. Each type of data is separated out into
different classes, of which the distributed data classes may have per
processor instances. When a request is made, the CO infrastruc-
ture allows the programmer to customize where the request will be
directed, and how to ultimately satisfy the request. Which data is

0

8750

17500

26250

35000

0 2 4 6 8 10 12 14 16 18 20 22 24

Linux K42

12.9.8

21.

Processors

Th
ro
ug
hp
ut

SDET

Figure 1. Throughput of a standard benchmark on two different
OSes taken by the K42 team [9]. The effects of sharing limit
scalability on Linux, K42 is not affected.

global, which data is distributed, and how the distribution and ag-
gregation of the data occurs is defined by the creator of a CO and
is transparent to the client. This customization is what helps make
COs easier for programmers to build scalable objects and therefore
services that will scale better.

COs are referenced by a global CO reference that logically
refers to the whole CO. Each access to this common reference
is automatically directed to a local representative(rep). Figure 2
shows a simple case with three processors marked P1, P2 and
P3. Each processor accesses the CO through a global reference,
then the CO system redirects the call to a local representative
assigned to that processor. Every CO is made up of a root and
one or more representatives. These components correspond directly
with global and distributed data. Roots contain global data, reps
contain instances of distributed data and the methods that control
and aggregate the distributed data. A root is not directly accessible
except through its representatives; so, in this respect representatives
are responsible for providing local access to global data. Roots
themselves are responsible for dictating which reps are assigned
to handle requests in any given locality domain. In this context
we define a locality domain as the memory used by a particular
processor.

3. Why Events?
In order to separate the details of the runtime requirements from the
use of COs, we introduce a programming model that includes the
notion of a portability event. Conceptually, the event is a period in
the current thread’s execution in which a CO’s runtime environment
must be available. Once such an event starts, the current environ-
ment is determined and made available for the CO’s access, and
when the event ends, the environment is no longer available, and
any appropriate tear-down activity is performed. This model pro-
vides a means of dynamically capturing precisely what COs need
to execute, and thereby enables their subsequent decoupling from
K42 and extraction into a user-level library in Linux and beyond,
potentially even into the internals of other operating systems and
virtual machines.

One fundamental difference between the K42 kernel environ-
ment and the Linux user-level that portability events allow us to
deal with is K42’s ability to map real addresses to different phys-

Figure 2. Processors P1,P2 and P3 access a CO through its com-
mon reference. The request made to the global reference redirects
the call to a different rep for each processor, so that each processor
is using a different rep. The root is not shown in this figure.

ical address on a per processor basis. This custom mapping is the
backbone of the mechanism used to access a CO. Specifically, this
mapping allows the local representative lookup table to be located
at the same virtual address for each processor, but be backed by
different physical memory and therefore a different table on each
processor. The use of this local table means the dereference of a CO
only takes two regular pointer dereferences. In K42, a reference to
a CO is a pointer into this local table. Thus, to the programmer, an
access of a CO c with method m looks like **c->m();. In order
to abstract this dereference and ensure programmers do not lever-
age implementation dependant features of the CO infrastructure,
K42 developers created a preprocessor macro called DREF which
performs a CO dereference. A typical CO access in K42 actually
looks like: DREF(c)->m();. Of course, in K42, the DREF is just
defined to prepend the **. Beyond K42 however, DREF is a more
substantial operation. For example, redefining the DREF can give
us a way to make up for the lack of per processor memory. In a
newly defined DREF we can look up which processor we are on,
then access the appropriate local table.

Before a CO can be dereferenced, the availability of the runtime
environment must be ensured. Similarly, after the dereference has
taken place, there may be some tear-down logistics required. In the
programming model proposed here, the portability event maps to
the period of time in which this dynamic environment is available.
Starting an event has to be simple, and in our current prototype im-
plementation of this model requires client involvement. In order to
ensure that the client is shielded from most of the details, the client
program calls a simple macro. For example in out SCOPE imple-
mentation for Linux user-level, this allows the CO infrastructure
to resolve which CPU that the current thread is running on, and to
acquire a base pointer to the current CPUs local translation table.
Figure 3 is an example of how a CO is accessed in K42 compared
with how a CO is accessed in SCOPE.

The START EVENT macro is the macro that sets up the current
thread for a CO dereference. In our pthreads implementation, the
macro checks a pthread key value to ensure the thread is initialized.
In future versions, the macro might check if a representative migra-
tion to another processor has been triggered then act accordingly,
and record garbage collection information. END EVENT macro

CORef ref;
ClusteredObject :: Create(ref);
//In K42
DREF(ref)->someMethod ();
//vs. in SCOPE
START_EVENT;
DREF(ref)->someMethod ();
END_EVENT;

Figure 3. An example of how a CO is called.

marks the end of an event. In future implementations of SCOPE
it will record garbage collection information, and if necessary trig-
ger a CO deallocation.

To port this event model to other systems, these macros must be
appropriately modified, but everything else from the client’s per-
spective remains stable. For instance in K42, START EVENT and
END EVENT could be empty because in K42 all of the features
required do not need to be triggered by the client program. But
in Windows, a JVM, or a simple application program, the appropri-
ate runtime environment associated with CO dereferencing requires
further support. The ultimate goal of this programming model is to
increase the portability of this effective approach for scalable sys-
tems. The model makes it simple for a CO written on one system,
for example the pre-existing set of K42 COs, to run on other sys-
tem, such as the Linux application library provided by SCOPE.

All of that said, if the client programmer knows which system
the CO is intended for, and how that system works, they can opt
to only call the event macros when they are actually needed, and
not according to the model in general. In the case of the current
pthread version provided by SCOPE, it would suffice to call the
START EVENT only once when a new thread is created; however,
doing so is not portable to other systems, or possible later versions
of the pthreaded system. We believe this introduces a dangerous
amount of flexibility in the implementation, and consequently ar-
gue that the systematic application of those linguistic mechanisms
would enforce safe and predictable management for COs, without
compromising any of the benefits.

4. Scope: Implementation Overview
In SCOPE, START EVENT is responsible for preparing a thread
with a virtual processor (VP) assignment. In K42’s COs, the VP
abstraction is the level at which per processor information is main-
tained. VPs are thus the logical entities to which representatives
are assigned in SCOPE. Each VP has its own local lookup table. In
K42, VPs are assumed to map closely to the physical processors of
the machine.

Once a thread is assigned to a VP, a local lookup table can be
created for that thread. That table will be used to store the cache
of local representatives for the VP. Once a VP for the thread is
resolved, the base pointer to the VP’s local translation table has to
be acquired and stored in per thread memory1. This value, and an
offset into the table are how a we produce a different representative
for each CO and VP.

Once START EVENT has ensured that these values are set up,
a simple dereference can take place. But START EVENT can be
further leveraged to provide more functionality! A pointer to the
current generation record can be established (if garbage collection
is active), allowing garbage collection information to be kept.

Once START EVENT has happened, DREF can be used just as
in K42; however, what actually happens in DREF is quite different.

1 We use the pthread key functionality of the pthread system to store thread
specific data.

if(pthread_getspecific(*getVpKey ()) == NULL){
VPNum *vp = assignVP ();
pthread_setspecific(*getVpKey (),(void*)vp);
unsigned long *offset =(unsigned long*) malloc(

sizeof (unsigned long));
*offset =(*vp * sizeof(LTransEntry)

* NUMBER_OF_CLUSTERED_OBJECTS)
/ sizeof(unsigned long);

pthread_setspecific(*getLTransKey (),
(void*) offset);

}
pthread_setspecific (*getGenRecKey (),

(void*) activate ());

Figure 4. The SCOPE START EVENT macro.

#define PTHREAD_DREF(ref) \\
(*(ref + *PTHREAD_LTRANS_OFFSET))

#define PTHREAD_LTRANS_OFFSET \\
((unsigned long*) pthread_getspecific(\\

*COSMgr :: getLTransKey ()))

Figure 5. The SCOPE DREF macro. A thread specific key is used
to get to the local table, then an offset (which is the reference passed
into DREF) is added to find the table entry.

In the K42 DREF, all that happened was a double dereference.
In SCOPE, the current VP’s offset must be used, in combination
with the CO’s reference to find the local translation table entry that
will redirect the call to the appropriate local representative. If no
representative is assigned, a miss handling object will delegate a
new or preexisting representative to the task. It is important to note
that the offset and ref are added together. Out of all the operations
possible, addition was used because it makes the DREF call type
safe.

Finally, END EVENT triggers any necessary cleanup. This en-
tails checking if any dynamic operations are needed like a migra-
tion or hot swap, and triggering any necessary garbage collection
statistics to be updated.

5. Preliminary Evaluation: Performance and
Benefits

One of the simplest examples used to evaluate other CO systems
and other concurrent systems has been an integer counter [10, 11].
An integer counter is a class with a single integer field. The class
has an interface which consists of three methods:

inc add one to the this counter
dec subtract one from this counter
value get the current value of this counter

One can imagine a class like this being used to count frequent
events. On systems with many processors there are more potential
processors to cause sharing. The machine that this test was run on
was a dual processor X86 based machine.

To test the SCOPE event mechanism we introduce 6 simple test
cases. These test cases will be run on a dual processor machine,
first on both CPUs, then on a single CPU.

Case 1 is a simple integer counter. This counter uses a primitive int
field to store its value. In this case we expect to see sharing, and
therefore the inherent penalty: reduced CPU utilization. This
is how a naive programmer who is not thinking about sharing
might implement the counter.

One Inte-
gerCounter

 Array integer
counter

Padded Array
Inte-
gerCounter

CO-style In-
tegerCounter

Shared Inte-
gerCounter
clustered ob-

Replicated In-
tegerCounter
clustered ob-

0

100

200

300

400

500

600

700

800

900

Baseline tests

Without Sharing

With Sharing

Case

A
v
e
ra

g
e
 C

y
c
le

s
 p

e
r

R
e

q
u

e
s
t

Figure 6. Average runtime results of the six integer counter test
cases respectively, each running on one (without sharing) and two
processors (with sharing).

Case 2 recognizes that sharing might occur, and breaks up the
primitive int field into an array. Inc calls will increment the cur-
rent processor’s element of the array. When the value method is
called, we must return the sum of the array elements. We expect
to see no real sharing in this case, but since the array elements
might be on the same cache line, we expect to see false sharing
in some cases, and therefore poor performance.

Case 3 takes cache line sharing into account, and adds buffer space
between elements of the array. We expect to see no sharing
in this case as there is no shared data, and therefore better
performance than the first two cases.

Case 4 is a modified CO that does not use the dereference mecha-
nism. This class is designed to help us find the overhead caused
by the dereference mechanism. We expect this case to perform
poorly as it will have the effects from sharing, and the virtual
dispatch.

Case 5 is a CO that uses the dereference mechanism, but has no
data replication. We expect this to be the slowest of all the
counters, as it has the sharing effects and the overhead from
the SCOPE dereference.

Case 6 is a CO that uses the dereference mechanism, and uses
replication to control sharing. In this CO there is one rep per
processor. The int fields that we are incrementing are in these
reps. When an inc() operation takes place the int on the local
rep is incremented. When a value operation is requested the
CO’s root provides a linked list of all the replicas that we can
traverse to find the summation of each processor’s int values.
We expect the replicated counter to perform very well as there
is no sharing in the common case.

The results in Figure 6 show that the first three test cases per-
form as expected. The sharing and false sharing in Case 1 and 2
cause large slowdowns. Case 3 mitigates the sharing and hence
does not experience the same slowdowns. As expected, a restruc-
turing of the data can control sharing. Case 4 exhibits the sharing
seen in Case 1 and 2, but still is 15% faster than a CO using the
dereference mechanism (Case 5); however, Case 4 is 10% slower
than Case 1 where we used the simpler class. Case 5 exhibits the
same sharing as Case 1, 2 and 3, but also on top of the slowdown

caused by sharing, Case 5 is slowed further by the more complex
dereference mechanism of SCOPE. Case 6 exhibits no sharing, as
expected for a fully replicated CO. The performance is only slightly
worse (9%) than that of the padded array counter. The difference is
due to the different dereference system and differences in the im-
plementations.

The second set of tests shown in Figure 6 reveals only a small
difference between each of the methods of organizing the integer
counter when there was no sharing present (run on a single proces-
sor). The difference between the CO style counter and replicated
CO is relatively small, 20 cycles. We attribute this difference to our
SCOPE lookup mechanism.

In terms of performance, we believe this shows that a user-level
library can indeed increase the scalability by controlling sharing
in this simple counter example. But, can SCOPE provide the same
programming benefits as previous implementations?

Previous work has demonstrated the numerous benefits of COs
from many perspectives [1,3,4], and this list includes many benefits
from the realm of software engineering, including reducing the
need for ad hoc data access mechanisms, introducing evolution
points to deal with changes in workloads and extending type safety
to COs. The COs model inherently reduces the need for ad hoc
systems like data structures that are indexed on a per processor
basis, by imposing a flexible structuring of data that inherently
helps the programmer control sharing. Although the interfaces of
a CO do not change, the backing implementation can easily be
changed (even dynamically) from a simple implementation for
a small workload, to a more complex implementation that can
deal with a heavy workload and still maintain throughput. Finally,
a very desirable property of language extensions is type safety.
Without any compiler modification, COs (most importantly the
DREF macro) are type safe.

It is important to point out that it is precisely through leveraging
this model of portability events that these desirable properties were
maintained in SCOPE, just at they were in previous implementa-
tions of COs.

6. Continuing and Future Work
SCOPE still lacks many of the features that are present in K42’s
COs facility. Most of these features were motivated by K42’s prag-
matic approach to systems design. One such feature is what they
call garbage collection. This is not garbage collection in the tra-
ditional sense of an automatic reclamation of unused objects, but
rather a semi automatic cleanup of objects that have been manually
signaled for destruction. K42’s garbage collection is what allows
them to make an existence guarantee on COs. Any reference to a
CO is guaranteed to point to an active CO. Even after the destruc-
tion of a CO is signaled, that CO is kept active until all threads in
the system are no longer able to access it.

In the context of garbage collection, SCOPE has to deal with
one further fundamental difference between K42 and other envi-
ronments: the longevity of threads. To make the existence guaran-
tee, K42 uses a technique similar to Read Copy Update (RCU).
RCU makes its guarantees about writing data with quiescent peri-
ods: it waits until all threads in the system are no longer able to
use their current reference. In K42, they have a policy of having no
long living threads. This means that all threads should terminate in
a reasonable amount of time. Since operating systems are request
driven, this plays out as a single short lived thread per-request. So,
after a CO’s destruction is signaled, the system just waits until all
the requests that were active at the time finish, then destroys the
CO. Because COs are always guaranteed to exist, they have the
desirable property of not needing existence locking. This is consid-
ered one of the nicer benefits of COs.

We hope portability events will be a useful tool when imple-
menting garbage collection; the expectation of user-level programs
not having any long living threads is not reasonable for some pro-
grams. So, the techniques used in SCOPE will have to vary from
those used in K42.

We also hope to show how the portability events will allow
SCOPE to work in other systems. The SCOPE current implemen-
tation works at Linux user-level, using pthreads. It could prove in-
teresting to try moving SCOPE to the Microsoft Windows platform
or into a JVM, and then revalidate the performance and portability
characteristics of SCOPE.

The use of COs in K42 is not completely transparent for the
programmers of K42. The DREF must be used to access a CO. In
the systems domain, this is considered a good calling convention
because the extra overhead caused by the DREF macro is made
explicit. The virtual dispatch used in object oriented programming
has a similar per call overhead; however, its use is transparent to the
caller. The transparent virtual dispatch has been accepted in many
user-level applications, so it seems reasonable that if there were a
transparent CO dereference mechanism, it may be accepted at user-
level as well.

Aspect-Oriented Programming (AOP) provides mechanisms for
concretely implementing cross-cutting concerns in a modular fash-
ion. One of the controversial properties of AOP which may be use-
ful to us is obliviousness. That is, when an aspect acts on some
part of the system, the original code is not affected. One drawback
of COs is that without compiler support, a CO access has to be
surrounded in the DREF macro. AOP could be used to make this
more transparent by applying the DREF macro automatically to CO
calls, therefore making them appear like regular object accesses to
the programmer. Making COs even easier to call could help them
become more pervasive in programs, which is one of the original
goals of COs and this work.

Automatically applying the DREF macro may have even more
advantages, in that the added DREF calls could be customized for
the calling CO. If, for example, there was a long lived CO like the
K42 system manager which will never need to be garbage collected,
or if a CO didn’t use a RCU facility, the necessary tracking infor-
mation could not be collected. This may have the effect of creating
faster access times for COs that opt out of advanced features.

One problem with this (and AOP in general) is that the client
program would have to first be compiled with an AOP compiler
before being regularly compiled; however, it may be possible to
prepackage an AOP compiler that is setup to just process the CO
aspects like a simple preprocessor.

These are just a few of the directions which could be explored
further to help improve SCOPE’s language mechanisms.

References
[1] J. Appavoo, “Clustered Objects,” Ph.D. dissertation, University of

Toronto, 2005.

[2] J. Appavoo, M. Auslander, D. DaSilva, D. Edelsohn, O. Krieger,
M. Ostrowski, B. Rosenburg, R. W. Wisniewski, and J. Xenidis, “K42
overview,” IBM TJ Watson Research, Tech. Rep., 2002.

[3] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm, “Tornado: maxi-
mizing locality and concurrency in a shared memory multiprocessor
operating system,” in OSDI ’99: Proceedings of the third symposium
on Operating systems design and implementation. Berkeley, CA,
USA: USENIX Association, 1999, pp. 87–100.

[4] E. Parsons, B. Gamsa, O. Krieger, and M. Stumm, “(de-)clustering
objects for multiprocessor system software,” in Fourth Interna-
tional Workshop on Object Orientation in Operating Systems 95
(IWOOO’95), 1995, pp. 72–81.

[5] R. Bryant, J. Hawkes, and J. Steiner, “Scaling Linux to the extreme:
from 64 to 512 processors,” in Ottawa Linux Symposium, 2004.

[6] P. E. McKenney, J. Slingwine, and P. Krueger, “Experience with
an efficient parallel kernel memory allocator,” Softw. Pract. Exper.,
vol. 31, no. 3, pp. 235–257, 2001.

[7] T. E. Anderson, E. D. Lazowska, and H. M. Levy, “The performance
implications of thread management alternatives for shared-memory
multiprocessors,” in SIGMETRICS ’89: Proceedings of the 1989
ACM SIGMETRICS international conference on Measurement and
modeling of computer systems. New York, NY, USA: ACM Press,
1989, pp. 49–60.

[8] S. L. Gaede, “Perspectives on the SPEC SDET benchmarks,” January
1999.

[9] J. Appavoo, “Personal communications with Jonathan Appavoo,”
September-December 2005.

[10] ——, “Clustered Objects: Initial design, implementation and
evaluation,” Master’s thesis, University of Toronto, 1998.

[11] N. Shavit and D. Touitou, “Software Transactional Memory,” in
Symposium on Principles of Distributed Computing, 1995, pp. 204–
213.

Acknowledgments
This work was partially supported by DARPA under contract
NBCH30390004.

