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Abstract
K42 is an open-source research kernel targeted for 64-
bit cache-coherent multiprocessor systems. It was de-
signed to scale up to multiprocessor systems containing
hundreds or thousands of processors and to scale down
to perform well on 2- to 4-way multiprocessors. K42’s
goal was to re-design the core of an operating system,
but not an entire application environment. We wanted
to use a commonly available interface with a large es-
tablished code base. Because Linux is open source and
widely available, we chose to support its application en-
vironment by supporting the Linux API and ABI. There
were some interesting complications as well as advan-
tages that arose from K42’s structure because our im-
plementation of the Linux application environment was
done primarily in user space, had to interface with K42’s
object-oriented technology, and used fine-grained lock-
ing. Other research systems efforts directed at achieving
a high degree of scalability and maintainability exhibit
similar structural characteristics.

In this paper we present the motivation behind K42,
including its goals and overall structure, and describe its
system interface. We then focus on the required infras-
tructure and mechanisms needed to efficiently support a
Linux application environment. We examine the lessons
learned of what was advantageous and what was disad-
vantageous from K42 in implementing the Linux API
and ABI.

1 Introduction
The K42 project[6] is developing a new open-source op-
erating system kernel incorporating innovative mecha-
nisms and policies and modern programming technolo-
gies. Our goal is to start from a “clean slate” and ex-
amine the system structure needed to achieve excellent
performance in a scalable, maintainable, and extensible
system. Although we wanted to design from scratch,
we could not, nor did we want to, implement all aspects
of an operating system from scratch. Further, requiring
applications to use a new API would make experiment-

ing with the system unpalatable to potential users. We
therefore did not introduce a new personality, but instead
made K42 Linux API- and ABI-compatible. This paper
examines what we needed to do to achieve this compat-
ibility.

K42 has a set of design features that made imple-
menting this compatibility an interesting task. Specif-
ically, in keeping with the design strategy of K42, the
API was implemented mostly in user space, had to in-
terface with K42 object-oriented technology, could not
use any global locks, and could not hold a lock across
multiple object calls. As in many areas of system de-
sign, these features both simplified and complicated the
implementation. Other scalable and maintainable sys-
tems exhibit similar characteristics. Throughout the pa-
per we point out experiences where K42’s features im-
pacted (both positively and negatively) the implementa-
tion of the API.

To make this approach of supporting the Linux appli-
cation environment effective, K42 needs to fully support
the Linux API and ABI. There is no porting to K42.
Any application that runs on Linux just runs if using
K42’s ABI support and just needs to be re-compiled to
use K42’s API support. Most applications, including
significant benchmarks, run without recompilation. If
the application does not run, we fix K42 until it does.
We will describe K42 in more detail later, but currently
K42 can run significant Linux applications. For exam-
ple, we have run the SPEC SDET[2] benchmark suite,
an Apache web server, and the full ASCI Nuclear Trans-
port Code[21].

Our model for mapping a Linux environment onto
K42 is illustrated in Figure 1. A Linux Application Envi-
ronment, as defined by any of the popular distributions,
consists of several layers and modes of operation and
execution. As with most Unix-like operating systems,
Linux can be segmented into a user level and a kernel
level. The user level is the portion of Linux that interacts
directly with the user processes, employing the services
offered by the kernel level. The kernel level presents the
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Figure 1: Mapping a Linux environment on K42

image of a single system to each user as well as each ap-
plication run by that user. It is responsible for managing
all resources and securely sharing them.

In order to provide a complete Linux application en-
vironment, K42 must provide a set of interfaces that de-
liver all system services. These come in the form of li-
brary functions, system calls, user commands, special
or device files, and file formats. Though some of these
services do not require kernel support, many of them ex-
pose functionality exported by the kernel.

The focus of this paper is on how we provide a Linux
application environment on top of K42, a kernel de-
signed for scalability and extensibility. As noted, there
are many services that need to be provided in order to
present the user with a full application environment. In
this paper we examine the major categories of these ser-
vices and describe how we implement them. In particu-
lar, we describe how we emulate the Linux process tree;
emulate fork, exec, and clone; support glibc and
translate its system calls, provide file systems and sock-
ets, and implement dynamic linking via ld.so.

In addition to supporting a full user environment, we
wanted to be able to use the existing Linux-kernel code
base to provide the desired range of hardware drivers
in K42. Although this paper focuses on the user ap-
plication environment, we briefly outline our kernel
strategy here (more details can be found in Auslander
et. al.[8]). We use the Linux code base for hardware
driver support, for networking and file-system code, and
to provide a stable inter-operable environment. To be

able to use Linux device-driver, networking, and file-
system code we needed to provide a Linux-kernel en-
vironment (or Linux emulation environment, as in Goel
and Duchamp[14]). To do so, K42 presents itself as
a target hardware architecture for Linux (in the same
way as real hardware architectures such as Alpha, i386,
and PowerPC do). This requires implementing the ba-
sic functionality required of architecture-specific code
in Linux (e.g., assembly-level constructs, definition of
locking mechanisms) in an “emulation layer” that can
be linked with the individual Linux-kernel components
to be used in K42. For example, device-driver code uses
locks; these locks need to be mapped onto K42 locks
and thus the Linux device-driver code needs to be com-
piled to run in the K42 environment[8]. Further, K42
emulates the Linux-kernel services (e.g., kernel mem-
ory allocation) needed to support these components. As
seen in Figure 1, this means that K42 replaces the core
memory management, process management, and device
management code of Linux, but uses file systems, device
driver, and library (e.g., glibc) code from Linux.

The rest of this paper is organized as follows. Sec-
tion 2 starts by introducing K42, describing its motiva-
tion and structure, and presenting its system interface.
Although much of the API implementation is interre-
lated, we divided it into mechanisms external to the pro-
cess, presented in Section 3, and internal to the process,
presented in Section 4. Throughout these sections we
present the advantages gained from K42’s infrastructure
as well as the complications that arose. In Section 5 we
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describe the status of K42, provide a performance evalu-
ation of K42 and Linux running the SPEC SDET bench-
mark, and present work related to K42. Concluding re-
marks are presented in Section 6.

2 K42
In this section we provide background and motivation
for K42 and describe its structure and system inter-
face. One of the primary differences between K42’s
Linux API and Linux is that in K42 much of the stan-
dard kernel functionality has been implemented in user
space. Results from the Exokernel project[13] demon-
strated that user-level implementation of operating sys-
tem services can lead to significant performance gains.
We have found that there are also some performance
challenges (more details later, e.g., Section 3.2), espe-
cially when implementing a pre-determined model, e.g.,
fork. The Exokernel work showed that moving code
into the application’s own address space improves per-
formance. Micro-kernel designs did not show perfor-
mance improvements. K42 is more like the Exokernel.

Although performance was our primary motivation
for user-level implementation of kernel services, there
are other benefits. Code and data for services imple-
mented in user space do not tie up kernel resources.

User-space code can yield a cleaner programming model
because issues such as stack violations are easier to pro-
tect against. In user space, allocating virtual stacks,
versus pinned stacks in the kernel, allows quasi-infinite
stacks with red pages guarding the end. Moving code
into the application’s own address space does not intro-
duce protection issues. The application still only has ac-
cess to resources that the prior Linux permissions would
have allowed. Moving code into user-level servers intro-
duces a potential scheduling challenge that we address
by running the servers at a higher priority than applica-
tions.

K42 has addressed security in a first-class manner. All
IPC calls between applications, servers, and the kernel
contain a badge that securely identifies the caller and
is guaranteed by the kernel. For each object invoca-
tion on the callee side there is a series of matched rights
the badge is compared with to ensure the caller has the
proper authentication to make the call. The infrastruc-
ture in K42 allows for different security models between
different servers and different applications as desired.

In K42, all thread scheduling is done by a user-level
scheduler and requests that would normally block in the
kernel, e.g., page fault waiting for disk I/O, do not block
in the kernel but are instead returned, with control, to the



user-level scheduler. The user-level scheduler can then
block the thread and continue running another thread in
the same address space. This positively affects the han-
dling of signals, asynchronous I/O, sockets, and other
aspects of providing the API.

Other salient aspects of K42’s design impacting the
implementation of a Linux API are the pervasive use
of object-oriented technology and our locking strategy
of both avoiding global locks and of not holding locks
while accessing multiple objects. The former lock-
ing strategy implies a pervasive methodology for fine-
grained locking (i.e., no global kernel lock as in Linux).
The latter implies that locks may not be held for the
entire duration of performing a task, such as a fork-
chain collapse (reducing the length of the tree represent-
ing forked processes), implying that in-flight requests
must be algorithmically accounted for, i.e., if locks are
not held across object invocations then multiple requests
may occur simultaneously and need to be accounted for.

In the rest of this section we describe K42’s goals and
motivations, its overall structure, and the key technolo-
gies used in its design and implementation.

2.1 K42 motivation and goals
K42 focuses on achieving good performance and scal-
ability, providing a customizable and maintainable sys-
tem, and being accessible to a large community through
an open source development model. Supporting the
Linux API and ABI makes K42 available to a wide base
of application programmers, and our modular structure
makes the system accessible to the community of de-
velopers who wish to experiment with kernel innova-
tions. K42 is available under an LGPL license (see
http://www.research.ibm.com/K42).

The system is fully functional for 64-bit applications
and currently runs on PowerPC (SMP) platforms (hard-
ware and simulator) and is being ported to x86-64. It
runs codes ranging from scientific applications, such as
the Splash Benchmark Suite[23] and a full ASCI Nu-
clear Transport Code[21], to complex benchmarks like
SPEC SDET[2] to significant subsystems like Apache.

Providing a well-structured kernel is a primary goal
of the K42 project, but performance is also a central
concern. Some research operating system projects have
taken particular philosophies and have followed them
rigorously to extremes in order to fully examine their im-
plications. Although we follow a set of design philoso-
phies in K42, we are willing to make compromises for
the sake of performance. The principles that guide our
design include 1) structuring the system using modular,
object-oriented code, 2) designing the system to scale
to very large shared-memory multiprocessors, 3) lever-
aging performance advantages of 64-bit processors, 4)
avoiding centralized code paths, global data structures,

and global locks, 5) moving system functionality to ap-
plication libraries, and 6) moving system functionality
from the kernel to user-level server processes.

Goals of the K42 project include:
Performance: A) Scale up to run well on large
multiprocessors and support large-scale applica-
tions efficiently. B) Scale down to run well on small
multiprocessors. C) Support small-scale applica-
tions as efficiently on large multiprocessors as on
small multiprocessors.
Customizability: A) Allow applications to deter-
mine (by choosing from existing components or by
writing new ones) how the operating system man-
ages their resources. B) Autonomically have the
system adapt to changing workload characteristics.
ApplicabilityA) Effectively support a wide variety
of systems and problem domains. B) Make it easy
to modify the operating system to support new pro-
cessor and system architectures. C) Support sys-
tems ranging from embedded processors to high-
end enterprise servers.
Wide availability: A) Be available to a large open-
source and research community. B) Make it easy to
add specialized components for experimenting with
policies and implementation strategies. C) Open up
for experimentation parts of the system that are tra-
ditionally accessible only to experts.

2.2 K42 structure
K42 is structured around a client-server model (see Fig-
ure 2). The kernel is one of the core servers, currently
providing memory management, process management,
inter-process communication (IPC) infrastructure, base
scheduling, networking, device support, etc. (In the fu-
ture we plan to move networking and device support into
user-mode servers).

Above the kernel are applications and system servers,
including the NFS file server, name space server, socket
server, pty server, and pipe server. For flexibility, and to
avoid IPC overhead, we implement as much functional-
ity as possible in application-level libraries. For exam-
ple, all thread scheduling is done by a user-level sched-
uler linked into each process.

All layers of K42, the kernel, system servers, and
user-level libraries, make extensive use of object-
oriented technology. All IPC is between objects in the
client and server address spaces. We use a stub com-
piler with decorations (additional keywords) on the C++
class declarations to automatically generate IPC calls
from a client to a server. The kernel provides the basic
IPC transport and attaches sufficient information for the
server to provide authentication on those calls, including
specific identification of the client being granted access.
We have optimized the IPC path as described in Gamsa



et. al. [12] and obtained good performance via efficient
IPCs similar to L4[20].

From an application’s perspective, K42 supports the
Linux API and ABI. This is accomplished by an emula-
tion layer that implements Linux system calls by method
invocations on K42 objects. When writing an applica-
tion to run on K42, it is possible to program to the Linux
API or directly to the native K42 interfaces. All applica-
tions, including servers, are free to reach past the Linux
interfaces and call the K42 interfaces directly. Program-
ming against the native interfaces allows the application
to take advantage of K42 optimizations.

The translation of standard Linux system calls is done
by intercepting glibc system calls and directing them to
their K42 implementation, as described in Section 4.1.
Although Linux is the first and currently only person-
ality we support, the base facilities of K42 were de-
signed to be personality-independent. As mentioned in
the introduction K42 also supports a Linux-kernel inter-
nal personality allowing us to use the large code base of
drivers, networking, and file-system code.

2.3 K42 key technologies
To achieve the above mentioned goals, we have incor-
porated many technologies into K42. We have written
several white papers (available on our web site) describ-
ing these technologies in greater detail. This section pro-
vides an overview of the key technologies used in K42.
At the beginning of this section we highlighted the ones
impacting our Linux API implementation.

Object-oriented technology has been applied to the
entire system. This has been used to achieve good
performance through customization, to achieve
good MP performance by increasing locality, to in-
crease maintainability by isolating modifications,
and to perform autonomic functions by allowing
components to be hot swapped[24].
Much traditional kernel functionality is imple-
mented in libraries in the application’s own address
space, providing a large degree of customizabil-
ity and reducing overhead by avoiding crossing ad-
dress space boundaries to invoke system services.
A structure that permits machine specific features
such as the PowerPC inverted page table and the
MIPS software-controlled TLB to be exploited in
an isolated manner without compromising portabil-
ity.
System functionality implemented in user-level
servers with good performance maintained via ef-
ficient IPCs similar to L4[20].
The use of processor-specific memory (the same
virtual address on different processors maps to dif-
ferent physical addresses) to achieve good scalable
NUMA performance. This technology, combined

with avoiding global data, global code paths, and
global locks, allows K42’s design to scale to thou-
sands of processors.
A K42 specific object-oriented structure, clustered
objects[12], which provide an infrastructure to im-
plement scalable services with the degree of dis-
tribution transparent to the client. This also fa-
cilitates autonomic multiprocessor computing[4] as
K42 can dynamically swap between uniprocessor
and multiprocessor clustered objects.
K42 is designed to run on 64-bit architectures and
we have taken advantage of 64 bits to make perfor-
mance gains by, for example, using large virtually
sparse arrays rather than hash tables.
K42 is fully preemptable and most of the kernel
data is pageable.
K42 is designed to support a simultaneous mix
of time-shared, real-time, and fine-grained gang-
scheduled applications.
K42 has developed deferred object deletion [12]
similar to RCU [22] allowing objects to release
their locks before calling other objects. This ef-
ficient programming model is crucial for multi-
processor performance and is similar to type-safe
memory [16].

3 Linux process external environment
The next two sections describe K42’s implementation of
the Linux API. Much of the code and therefore descrip-
tion is interrelated. This section presents the infrastruc-
ture and code mostly external to a Linux process.

3.1 The Linux process tree
In order to implement a Linux environment the Linux
process tree must be supported. In K42 this functionality
is provided by the ProcessLinuxServer. This server was
implemented primarily by using Linux data structures,
such as the task struct, with only minor changes
to track Linux processes in K42.

Linux processes are backed by native K42 processes
and contain a pointer to the underlying K42 process. In
addition to backing Linux processes, K42 processes are
used to implement core facilities. Linux processes are
used for user applications and many of K42’s servers,
such as the filesystem. Should additional personalities
be added to K42, they would add additional types of pro-
cesses.

The ProcessLinuxServer keeps track of the relation-
ship between different Linux processes. It tracks the
parent-child relationship when a process is created via
fork (we only intend to support forking of Linux pro-
cesses). When a parent process finishes or is terminated,
the ProcessLinuxServer re-assigns the child to init.
In addition to the process tree, the ProcessLinuxServer



keeps track of two other trees or sets. It tracks the ses-
sions used to associate processes that are related by their
starting tty. It allows any process to get access to the ses-
sion tty even though the parent has not passed the child
an open fd for it. In addition to sessions, the ProcessLin-
uxServer keeps track of the set of process groups. As
in Linux, every process knows what process group and
what session it belongs to.

In addition to maintaining the three structures men-
tioned above, the ProcessLinuxServer manages Unix
credentials, and as in Linux, matches process to process
groups where appropriate. The ProcessLinuxServer is
also responsible for the delivery of signals (discussed in
more detail later). The Linux process tree, combined
with session and process groups, forms the core tracking
infrastructure for many of the services described in the
rest of the paper.

3.2 Fork
Unlike many implementations of Unix, K42 executes
much of the fork code in the client, both in the parent and
in the forked child, and does not grab a global tree-lock
thereby improving concurrency. Concretely, the parent
sets up the memory state of the child. It has a record of
all the memory mappings (regions) associated with it-
self, much the same as the Linux kernel keeps track of
all regions associated with a process. After setting up
the memory of the child, it passes the rest of the state
to the child. In Linux, execution normally starts in the
child at the instruction of the fork system call. How-
ever, in K42, a significant amount of code is executed
in the child before branching to the instruction follow-
ing the fork. This code is similar to what would have
been executed in the kernel, such as setting up the file
descriptor table, etc.

The K42 model of removing this code from the kernel
has several advantages. It reduces the amount of code in
the kernel. Any errors that occur in it do not crash the
system, but only bring down the process involved in the
fork. Perhaps most importantly, it yields an easier pro-
gramming model as the code does not have to be written
assuming fixed sized stacks or written to use a limited
amount of pinned memory.

Although implementing the code in user space simpli-
fies programming, the K42 requirement of not holding a
global lock throughout such an operation requires care-
ful coding to avoid potential race conditions. Another
performance advantage, but programming difficulty, is
that when performing a fork-chain collapse (reducing
the length of the tree representing forked processes), we
do not hold a lock across all the operations but rather
lock each individual node independently. Thus, the algo-
rithm must allow for the possibility of multiple in-flight
requests (remove and insert). This is discussed in greater

detail below.
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Figure 3: The fd table in Linux and equivalent structure
in K42

The object-oriented nature of K42 has serious impli-
cations when replicating structures such as the file de-
scriptor (fd) table. In Linux, a fd is a pointer into a ta-
ble (see Figure 3) with associated file reference counts
that are incremented when a fork occurs. However, in
Linux, the fd table takes kernel memory for each pro-
cess because it is stored in the kernel’s data structure for
the process image. In K42, the fd array, which is main-
tained in user space, points to a series of client file object
instances that are in each process’s address space (see
Figure 3, more information on file descriptor manipula-
tion in K42 is presented in Section 4.5). There is a little
more memory that must be replicated on a fork for the
fd table in K42.

Although K42’s approach avoids explicit replication
of the fd array, it introduces post-fork authentication
issues. Each of the object instances contains authentica-
tion information providing a particular client the right to
access a given file. The authentication information con-
tains a PID and thus, although valid for the parent, does
not provide the child with permission to access that same



file. A call on each file object must be made for the child
to obtain permission. This could be an expensive oper-
ation if the parent had a large number of open files. It
is especially unfortunate because it is unlikely the child
will access many of those files as its mostly likely action
is to exec. We avoid this potential performance bottle-
neck by lazily granting access to the child on first access
to the file server.

As is frequently the case in programming large sys-
tems, the tradeoffs are not clear, and although some as-
pects of K42’s implementation of fork simplified pro-
gramming or improved performance, other aspects made
it more complicated or hurt performance. For K42 na-
tive processes (that do not support fork) the model of
performing much of the process creation code in user
space has been a win. Unfortunately, fork has diffi-
cult performance issues. The overhead of implement-
ing fork and exec in user level comes from (1) the
cost of passing state from parent to child, rather than
just copying in kernel, (2) the extra fault overhead to
map in data structures the parent passed to child copy-
on-write, (3) the cost of initializing (on exec) and re-
initialing (on fork) the system function implemented
in user level (e.g., the fd array, memory allocation, etc),
and (4) the overhead from our end-to-end authentication
scheme (for each file being passed to the child, the server
needs to be involved to provide access). Although we
bought back most of the fork performance lost due to
these issues by lazy (re)initialization, there is still some
performance loss and work is underway to reclaim it.
Fortunately the performance of fork for most server
applications (some benchmarks notwithstanding) is not
critical.

3.3 Reproducing the memory image on a
fork

After a fork, the memory image of the parent must be
reproduced in the child. Any private mappings for a file
cause a snapshot of that file at the time of the fork to
be produced in the child. Any shared mappings cause a
shared mapping to be created in the child with modifi-
cations made by the parent to be replicated in the child,
with the possible caveat of files mapped in read-only but
modified by the debugger through the use of ptrace.

Traditionally the operation of reproducing these map-
pings is done in the kernel. However, in K42, before
starting the child, the parent reproduces these mappings
with the help of a few underlying K42 kernel services.
K42 provides the ability to create a new non-executing
process, the ability to make memory mappings in it, and
the ability for a region and associated objects to be fork
copied. In K42, a contiguous piece of memory is repre-
sented by a region, which in turn is backed by a File
Cache Manager (FCM) that caches the in-core pages,

Region Region

FCM

FCM FCMFR

Region

FCMFR

before

FR

FR

after

Figure 4: Example of Region, FCM, and FR objects af-
ter a fork copy

and a File Representative (FR) that maps all the pages
associated with a file. Figure 4 illustrates a standard fork
copy. Prior to the fork (before), the three kernel struc-
tures (FR, FCM, Region) represent a contiguous portion
of the memory in the parent. After the fork (after), the
upper-left three kernel structures still represent the por-
tion of memory in the parent, and the upper-right three
structures represent the same portion of memory in the
child. All the frames backing the region are immediately
transferred to an internal FCM (the root FCM in this fig-
ure) and lazily copied back to the parent and child as
faults occur.

As additional forks occur, a binary fork-tree is pro-
duced. When nodes on the tree are removed because
the process for which they are representing memory fin-
ishes or is terminated, it is important to “collapse” the
tree, otherwise inefficiencies result because page-fault
processing needs to traverse the unnecessarily long chain
of nodes. The standard way to address this is to acquire a
lock and walk the tree performing the collapse. Because
K42 is programmed with independent object instances
representing each of the regions, and with a program-
ming model not allowing the acquisition of a single lock
across multiple object instances, we acquire and release
a fine-grain lock for each node in the tree. The FCM
objects therefore need to be able to handle in-flight page
fault requests occurring during the collapse operation.
Although this does make the programming more com-
plicated, fine-grain locking schemes provide better scal-
ability.

The collapse algorithm begins when a node in the tree
needs to be removed. That node removes itself and it
tells its sibling to combine with their parent. If the sib-
ling is not a leaf node then all frames are transferred to
the parent and the sibling node removes itself. If the
sibling is a leaf node then no action is taken. To pre-
vent a chain from forming in this case, on the next fork
copy, the new child is made a child of the existing parent
(no new parent is created). For this algorithm to work,
frames are not copied to an internal child node (except in
one case for optimization purpose only), instead they are
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Figure 5: Standard scenarios in fork-chain collapse

copied to the leaf node requesting the page. As exam-
ples, two standard scenarios are illustrated in Figure 5.
In the first, node 4 is being deleted. This results in a col-
lapse with node 5 becoming the parent of nodes 1 and
2. In the second, node 2 is being deleted. As above,
because it is a leaf node, its removal does not induce a
collapse.

In the normal fork/exec case we do not perform
any collapse. The algorithm is in place to allow K42 to
continue to perform acceptably in scenarios that would
generate long fork-tree chains. This algorithm provides
efficient collapsing of fork trees and does not require a
global lock.

3.4 Reproducing the fd and signal state on
a fork

In addition to reproducing the memory in the forked
child, the filesystem state and signal state must also be
copied. Most of this state is replicated during the repro-
duction of the memory state. A mechanism is needed to
indicate the child is now using the files referenced by the
open fds and to receive the signals set up by the handlers.

In Unix, after a fork, the kernel indicates the child is
using the files by traversing the fd list and incrementing
the usage count on each of the files pointed to by that
fd list. As mentioned above, in K42 there is an individ-
ual object instance that manages each file. User-space
FileLinuxFile objects have permission to talk to the un-
derlying file through the objectRef they hold to that file.
The vast majority of calls to fork are followed by calls
to exec in the forked child. In K42, we lazily provide

permission to each of the files in the child. In the com-
mon case of a succeeding exec, we therefore avoid the
work altogether. In Unix, this would be equivalent to not
actually updating the reference count until an access is
made (but also being careful to not decrement the count
if no reference is made). In K42 we accomplish this by
creating an object in the kernel to represent the client
file being reproduced in the child. In a fork intensive
workload, where many files are not accessed after fork,
we pay the same overhead as a kernel implementation
like Linux (because the parent pushes this information
to the kernel), but, when files start being used, the K42
kernel interacts with the server to perform a proper setup
(the child lazily initializes the structures), and from then
on we get the advantages of our user-level implementa-
tion.

The signal state of the parent is copied to the child en-
tirely by the memory reproduction. Thus, all signal han-
dlers installed in the parent are reproduced in the child.
The disposition of pending signals due to, for example
asynchronous I/O, is undefined. In K42 the signal will
be delivered only to the old object that was originally
waiting for it.

3.5 Signals

Signal delivery in K42’s Linux application environment
differs from most implementations in that most oper-
ations can be carried out without kernel involvement.
State information such as signal masks, sigaction
specifications (ignore, default action, or handler to call
when signal arrives), and set of pending signals, is kept
in the application’s address space. Operations such as
sigsuspend and pause simply block in the client
without any interaction with the kernel.

Inter-process signal delivery goes through the Pro-
cessLinuxServer. The target K42 process is identified,
and in the general case, the server delivers the signal to
the client through an IPC. For signals that can not be
ignored (SIGKILL, SIGSTOP), the server contacts the
kernel.

Intra-process signal delivery is carried out entirely
in the client space. This results in significant perfor-
mance advantages for the current implementation of
Linux Threads[19], which uses signals to implement
synchronization among threads. In the upcoming Linux
threads package(NPTL)[10], synchronization is imple-
mented using the futex (fast light-weight user-space
semaphores) kernel synchronization service. Although
futexes are more lightweight than the current implemen-
tation, they still involve kernel interaction. With the new
threading model, we still expect to be able to implement
the synchronization at user level.



4 Linux process internal environment
4.1 Linux system calls and glibc
The largest component of the Linux API/ABI that must
be supported is the set of system call interfaces. For true
ABI compatibility this must be supported by performing
system call trap reflections from the code making the
Linux system call to the implementation of the system
call. In K42, the functions that implement system calls
reside within exec.so, a pre-loaded library within the
process described in Section 4.2.

Support for the trap reflection mechanism is intended
for strict compatibility. We have designed but not yet
implemented this mechanism. In general, we expect ap-
plications running on K42 to use a version of the GNU
C Library (glibc) targeted for K42 to obtain access to the
Linux system call interface without using trap reflection.
Most applications gain access to Linux system call inter-
faces via glibc wrapper functions that present a C inter-
face thereby hiding the architecture specific details of
making a system call. Glibc provides a mechanism that
allows different architecture targets to define how these
wrapper functions work. This is accomplished by pro-
viding the assembly-level mechanisms for making sys-
tem calls. Except for this low-level assembly system call
interface level, K42 reuses all of glibc. We have devel-
oped a glibc targeted for K42 that efficiently accesses the
implementations of system calls within a process. We
use the system call number as an index into a system-
call transfer-table. This table is at a well-known loca-
tion and contains the address of the function that imple-
ments a particular system call. In effect, we short-circuit
the normal trap-reflection and simply jump to the correct
function.

The system-call transfer-table permits us to handle
Linux system calls within an application, but at the same
time avoids the need for us to explicitly link applica-
tions against K42 code. As a result, dynamically linked
PowerPC64 Linux binaries that use glibc wrappers to
make system calls run without modification. Applica-
tions linked against a static non-K42 glibc still require
trap reflection.

As previously noted, in K42 we have moved kernel
functionality into the application’s address space. This
includes some of the processing for system calls. Mov-
ing this code into the application’s address space does
not sacrifice security. The portion of the system call that
is handled in the user’s address space is the part that is al-
lowed by the Linux credentials the user had. The model
enforces calling privileged servers to perform requests
where the user credentials are insufficient. Under either
model, users can cause incorrect behavior (e.g., if an ap-
plication has read/write access to a file one thread may
remove the file another thread is attempting to write).

This model does introduce additional places where the
user may ”shoot themselves in the foot”, but it does not
sacrifice security.

When a thread makes a Linux system call, a wrapper
object in our Linux emulation layer is invoked. At this
point, the thread is marked as being in a system call.
This code is re-entrant allowing additional calls from
within the process. If a signal is delivered to a thread
in this state, it is deferred until the return from the out-
ermost level of system call. The thread will not block
when it is in this state, but instead will return out of the
system call layer and then block[7].

4.2 Loading

K42 provides a library called exec.so. This library pro-
vides the OS functionality that K42 expects to be imple-
mented within a process. It also provides the system-
call transfer-table and the functions it points to. Exec.so
maintains data such as stateful I/O interfaces that imple-
ment select and poll, and must be initialized before any
Linux code executes. This early initialization needs to
occur so that we can provide support for system calls
made by the dynamic linker and glibc.

A K42 process can be created using native K42 fa-
cilities (not fork/exec). This creation occurs by con-
structing the objects that represent that new process in
the parent. During this construction, the parent loads
exec.so into this new or child process. It also loads
information containing what executable that child pro-
cess should run. The new child process starts running
in exec.so and loads the appropriate Linux executable,
and if necessary, the dynamic linker. As part of its ini-
tialization, exec.so creates and initializes the system-call
transfer-table, and then jumps to the appropriate entry
point of the Linux application. The Linux application is
now able to make system calls that are handled by the
code in exec.so via the system-call transfer-table, or by
trap-reflection, which also uses the table. This mech-
anism is established without any symbol dependencies
between the Linux application and exec.so.

We must also provide a mechanism to allow appli-
cations to access K42 library interfaces directly. How-
ever, we cannot simply allow the dynamic linker to load
a new image of exec.so because the existing K42 code
in exec.so contains important state information. Instead,
the library image that the dynamic linker loads contains
specially modified ELF headers that direct the dynamic
linker to look for K42 library code, data, and symbol in-
formation in the location where exec.so has been already
loaded. In a 64-bit address space it is easy to always
load exec.so at the same location allowing us to avoid
the need to relocate exec.so at run-time.



4.3 Exec
The exec system call conceptually creates a new pro-
cess based on a set of predefined specifications. The
memory image of the new process is clean, files not
marked close on exec are maintained open in the new
process, and signals not set to ignore are reset to de-
fault.

Like other services in K42, exec is implemented pri-
marily in user space. Given the above model for load-
ing, a K42 process may be considered an exec.so image
that loads or overlays Linux executables when asked to
exec. With this model, the same K42 process contain-
ing exec.so, can, when asked to perform an exec, un-
load the Linux executable and any shared libraries it has
loaded, re-initialize the appropriate aspects of the Linux
personality, and load the new Linux executable. In the
common case, exec can be performed entirely in user
space.

It is not possible to use the overlay model if the exec
is for a setuid program (or for clone or native K42
processes). Because the old program could have stored
permissions not granted to the new process anywhere in
its memory image, we have a privileged server create a
clean process, and copy the necessary state. This server
uses the underlying K42 mechanisms used by fork.

The overlay strategy for implementing exec permits
us to efficiently handle most Linux applications and per-
form the exec in user space. For the cases where we
can not use the overlay strategy, most operations are still
performed in user space.

4.4 Clone
The clone system call creates a new process like fork
does, but it offers more control of which elements in
the execution context (memory space, table of file de-
scriptors, table of signal handlers, file system informa-
tion, process id, etc) are intended to be shared between
the child and parent processes. The main use of clone
is to implement LinuxThreads[19], which are multiple
threads of control in a program that run concurrently in
a shared memory space.

The implementation of clone is carried out com-
pletely in the application address space, i.e, no interac-
tions with the kernel or servers are necessary. clone
builds on K42’s user-level thread model[7]. Even though
the kernel does not allocate these thread PIDs we still
need a mechanism to guarantee unique PIDs across the
system. We do this by reserving a bit range in the PID
space for cline PIDs. PIDs are 32 bit in Linux. K42 uses
20 bits to identify the target K42 process and 12 bits to
identify the clone within the process. This allows clone
PIDs to be assigned locally by each process and still en-
sure that clone PIDs are globally unique.

4.5 Files, file descriptors, and name space
Usual implementations of UNIX APIs store client (ap-
plication) specific state information regarding IO/IPC
(files, sockets, pipes, etc) elements in the kernel. For ex-
ample, for files, the kernel not only manages attributes
such as ownership and file length, but also is responsible
for keeping state information (e.g. file position) for each
client. File descriptors fds (offsets in a per-process table
kept by the kernel) are provided as an argument by the
clients to identify the target of the operation. Most op-
erations on such elements may need to block. If so, the
blocking is also carried out in the kernel.

K42 takes a different approach. The client-specific in-
formation for open files, sockets, and pipes resides in the
application’s address space. K42 stores information for
stateful interfaces in the object implementing that inter-
face, which is placed in the application’s address space.
When blocking is necessary, the thread will block un-
til notified by the server that the operation can proceed.
As a consequence, kernel resources (kernel thread stack,
process state, register state, etc.) are not tied up. This
avoids the difficulties encountered in m on n scheduling
models. In some scenarios, the operations can execute
entirely in the application space, thereby achieving sig-
nificant performance gains.

Operations such as socket(), pipe(), creat(), and
open() create a new IO/IPC element, returning a file
descriptor for it. K42’s implementation of these sys-
tem calls does the following: (1) the client contacts the
name-space server (or MountPointServer) to discover
the appropriate server for that resource, (2) the client
initiates an interaction with the appropriate server. The
server identifies the server object representing the re-
source (creating one, if necessary), checks credentials,
and returns to the client a handle for the server ob-
ject. This handle includes capabilities indicating that the
client is allowed to invoke the server object directly, and
(3) the client creates an object to represent the client side
of the open file, socket, or pipe, storing in it the object
handle to the server object. A file descriptor is associated
with the newly created client object, and this mapping is
stored in a file descriptor array kept by the application.

Subsequent operations on the file descriptor will be
delegated to the client object. The client object imple-
mentation usually invokes the corresponding operation
on the server object representing the resource, and up-
dates its own local information. In some cases, the client
object is able to carry out the operation completely. For
example, for a small file with a single client, file posi-
tion, file data, and all stat information (including file
length), can be managed in the client. The information
is propagated to the server when the file is closed, be-
comes too large to be reasonably cached in the client, or
is accessed by additional clients.



K42’s synchronous I/O model is similar to other asyn-
chronous models in the sense that threads do not block
in the kernel or servers. To illustrate how blocking and
unblocking occurs in the application space even for syn-
chronous requests, we describe our implementation of
sockets. All socket interfaces in K42 are similar to
Unix ones, except there is an extra parameter to pass
back to the client information about the state of the ob-
ject (for example, whether it is readable, writable, or
if there is any exceptional condition on it). The client
uses this state information to decide if it should block.
The server makes an asynchronous upcall to notify the
client of state changes (e.g. data becomes available).
This scheme allows us to implement select and or
poll purely in user space. Also, asynchronous noti-
fications are piggybacked on synchronous responses to
client invocations. Our implementation is also able to
detect when a client is ignoring notifications (for exam-
ple, a forked child that inherited the file descriptor but is
not interested in the socket), and to stop sending them.

Many interfaces such as signals, select and poll, and
cursor management in files, require synchronization.
Linux provides this synchronization in the kernel. K42
either provides this in the application space (if that ap-
plication is the only user of the resource), or in the server
object managing that resource. In fact, we have an inter-
esting example of the hot-swapping mechanism[24] that
is used to switch between these two implementations
when the requests for a given resource change from com-
ing from a single application to originating from multi-
ple applications.

K42’s support for namespace traversal involved
in pathname-based operations (similar to Welch and
Ousterhout[25]) has performance and scalability advan-
tages over the usual pathname lookup schemes due to
its fine-grained locking and ability to resolve in the ap-
plication address space the parts of the pathname that
identify mount points. A MountPointServer stores the
association between parts of the name space and spe-
cific file-system servers. The information available in
this server is cached in the application’s address space
during its initialization phase. The MountPointServer
publishes the version number for its up-to-date informa-
tion. An application can use these version numbers to
check efficiently if it has out-of-date information.

In the uncommon case that the information is not up-
to-date, the application requests the current information
from the MountPointServer. Once the mounting infor-
mation is used to resolve part of the pathname and iden-
tify the corresponding file-system server, the client con-
tacts the file-system server and passes arguments of the
operation to be performed and the unresolved part of the
pathname.

The file-system independent layer in K42 implements

caching of directory and file entries recently resolved.
Each file-system instance has its own caching data struc-
ture. Fine-grained locking is used when manipulating
this data structure, avoiding well-known scalability bot-
tlenecks in name resolution.

5 Status, Performance, and Related Work
In this section we describe the status of K42, describe
work related to K42, and finish with a performance
evaluation of K42 and Linux running the SPEC SDET
benchmark[2].

K42 is available under an LGPL license and a CVS
(Concurrent Version System) source tree is available.
Directions on how to obtain it at are available at
http://www.research.ibm.com/K42. An early version of
a complete environment including build infrastructure,
debug tools, a simulator, and source is available as of
March 2003.

The modular structure of the system makes it a good
teaching, research, and prototyping vehicle. Policies and
implementations studied in this framework have been
transferred into Linux. For example, a kernel scalable
queue lock originally designed in K42 was transferred
to Linux, RCU[22] is similar to the safe memory and
garbage collection in K42, and lockless scalable trac-
ing technology has been integrated into LTT[26]. K42’s
framework will allow continuing technology transfer.

K42 currently runs on PowerPC (SMP) hardware and
simulators (SimOS and Mambo), and is being ported to
x86-64. As stated, K42 is fully functional for 64-bit ap-
plications, and can run codes ranging from scientific ap-
plications to complex benchmarks like SDET to signif-
icant subsystems like Apache. Currently, K42 can di-
rectly execute 64-bit binaries compiled for Linux, and
soon will be able to do the same for 32-bit binaries.

There are still some missing holes in K42’s full Linux
compatibility. There are system calls with unimple-
mented (less common) cases. For example, mmap pro-
tection only works on common cases. We have not yet
implemented /proc (except for ps, this is primarily an
impediment only to running administration tools). Our
approach has been to add additional Linux functionality
as applications require it. In some sense, K42 will never
be fully one hundred percent compatible. We do not in-
tend to be bug compatible, in fact, stack overflows and
other such error conditions should they occur would be
at different places in K42 than in Linux.

Although Linux is currently the only personality K42
supports, the base K42 mechanisms would allow support
of other interfaces as well. Other flavors of Unix such as
AIX and BSD would be fairly easy to support. Most
of the challenging technical work is already in place.
There would still be considerable detailed work to be
done in ensuring structures get correctly translated. For



example, getting the exact semantics and contents of the
stat structure correct on such systems can be difficult
because the structure is different under each of the Unix
systems mentioned above. Other potential challenges in-
volve providing dynamic linking for systems like AIX
that use XCOFF instead of ELF. Supporting a signifi-
cantly different interface, e.g., Windows, while doable,
would be considerably more work. K42 is not much fur-
ther along being able to support a Windows API than
Linux is. The original intent in K42 was to allow multi-
ple personalities to be efficiently supported, but we have
not pursued this avenue of research. Other work[18] has
examined supporting multiple personalities on a micro-
kernel-like architecture.

Other operating systems emulate Linux, for example,
all the BSD Unix systems do. They do so by reflecting
traps to a vector with minor translation from Linux to
native system calls. That is one part of our solution, the
more straightforward part. The more difficult part for
K42 is that it is not a real Unix system under the covers.
Thus, one of the key challenges relate to the different
abstractions the base system supports. Mach is another
operating system with an implementation of Linux. The
MkLinux Linux Server [1] has the entire Linux function-
ality in one single Mach task (instead of smaller special-
ized tasks communicating through Mach RPCs) in order
to maximize reuse of the existing monolithic kernel.

K42 has similarities to a micro-kernel such as
Mach[3] but more closely resembles the Exokernel[11].
The kernel, filesystem, etc., servers do not provide all
the operating services, rather part of this functionality is
integrated into the application’s own address space. For
the Linux API, a large majority of the conversion oc-
curs in each application’s address space. This approach
is unique to K42.

There are other operating system projects that have
aspects similar to K42. The ability to perform efficient
IPCs as in L4[20] is important to K42’s structure of em-
ploying user-level servers. K42’s strategy for fault toler-
ance is similar to Disco[15] in that the plan is to run mul-
tiple simultaneous instances of K42 across varying sized
machines. Other operating systems such as Spring[17]
and Choices[9] have similar object-oriented goals but
were motivated more by distributed system concerns.
Our approach is best summarized by what was stated
earlier, namely that performance was a central concern
and although we follow a set of design philosophies in
K42, we are willing to make compromises for the sake
of performance.

5.1 Performance
K42 has been designed to achieve scalable performance.
To date, this has been our primary focus. More recently,
we have started to tune uniprocessor performance. The

goal of our K42 design is to achieve near perfect scala-
bility while still maintaining uniprocessor performance
very close to that of other operating systems. More-
over, as Linux makes additions for multiprocessor per-
formance, K42 should be able to match or better Linux’s
uniprocessor performance through our use of specializa-
tion and hot-swapping[5][24].

In this section we describe the SPEC SDET
benchmark[2] and its performance on both K42 and
Linux. The experiment shows that Linux out-performs
K42 on a uniprocessor (we continue to work to reduce
this gap), but that K42 significantly outperforms Linux
on a medium size (24-way) multiprocessor.

The Standard Performance Evaluation Corporation
(SPEC) Software Development Environment Through-
put (SDET) benchmark consists of a script that exe-
cutes a series common Unix commands and programs
including ls, nroff, gcc, grep, etc. Due to missing infras-
tructure, for our experiemnts (both K42 and Linux), the
SDET benchmark was modified by removing the system
utilities ps and df. Each of the commands in the script
are run in sequence. To examine scalability we ran one
script per processor. We ran the same script on both K42
and Linux 2.4.19 as distributed by SuSE with the O(1)
scheduler patch. All the user programs (bash, gcc, ls,
etc.) are the exact same binary. The same version of
glibc 2.2.5 was used, but modified on K42 to intercept
and direct the system calls to the K42 implementations.
The experiments were run on an S85 Enterprise Server
IBM RS/6000 PowerPC bus-based cache-coherent mul-
tiprocessors with 24 600MHZ RS64-IV processors and
16GB of main memory.
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Figure 6: Results of running SDET on K42 and Linux
on a 24-way multiprocessor

Figure 6 shows the results from the experiment. The
script is timed and results are reported in thousands of



scripts per hour. On a uniprocessor, Linux achieves
1905.2 scripts/hour and K42 runs 1575.0. K42 suf-
fers about a twenty percent performance degradation on
a uniprocessor. Linux reaches a peak of 18749.0 at
16 processors and by 24 processors executes at a rate
of 12710.7 scripts/hour. K42’s performance surpasses
Linux by 10 processors, at which point K42 executes
14912.6 scripts/hour while Linux executes 14856.0
scripts/hour. K42 continues to scale well through 24
processors where its peak of 33808.1 scripts/hour is
achieved yielding an efficiency of 89.4 percent. These
results demonstrate the effectiveness of K42’s scaling.

We continue to work on our scaling to increase our ef-
ficiency to 100 percent. There is also continuing work to
help Linux to scale better, and 2.6 is expected to demon-
strate better scalable performance. Concurrently, we are
working on K42’s uniprocessor performance.

One of the advantages of K42 is the object-oriented
model and the resulting well-modularized structure al-
lowing well-contained coding experiments to be imple-
mented. We hope to see an increase in interest in using
K42 for a rapid prototyping tool as well as a platform
to pursue scalable and first-class customization research.
Recently, there has been an increase in interest from aca-
demic collaborators looking to use K42 as a base to pur-
sue research, and we look forward to continuing to sup-
port increased activity with K42.

6 Conclusions
K42 is a new open-source research operating system
kernel designed from the ground up for scalable cache-
coherent 64-bit multiprocessor systems. To provide ac-
cess to a wide community and code base, we imple-
mented mechanisms to support a Linux API and ABI.
The desire to have a high performance, scalable, and
maintainable operating system has resulted in several in-
teresting features impacting our implementation of the
Linux application environment on top of K42. These
features include the implementation of kernel services
in user space, object-oriented technology, avoidance of
global locks, and avoidance of locking across calls to
multiple objects. These characteristics in whole or in
part will be representative of future systems that are de-
signed to be scalable and maintainable. We described
our experiences and lessons learned where these features
impacted the implementation of the Linux API.

K42 is under active development at IBM T.
J. Watson, and collaborating Universities. In-
terested parties may check out the project at:
http://www.research.ibm.com/K42.
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