
Clustered Objects: Initial Design, Implementation and Evaluation

by

Jonathan Appavoo, B.Sc.

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

Copyright c© 1998 by Jonathan Appavoo, B.Sc.

Clustered Objects: Initial Design, Implementation and Evaluation

Jonathan Appavoo, B.Sc.

University of Toronto, 1998

Supervisor: Michael Stumm

To achieve high performance on shared memory multiprocessors, software must be designed to

take locality into account. The appropriate use of replication, partitioning and sharing of data

can lead to higher locality, thus reducing communication and synchronization overheads. Clustered

Objects is a partitioned object model exclusively targeted at expressing locality optimizations in a

consistent manner. Like other partitioned object models, Clustered Objects allow an object to be

decomposed into multiple representative objects while preserving a single unified external interface.

In this dissertation we develop and implement a model for Clustered Objects based on support

found in the Tornado Operating System. Although preliminary, our experimental work indicates

that developing software with this model benefits from the software engineering advantages of

object-oriented programming and yet is structured to exploit fine-grained locality optimizations.

ii

Acknowledgments

My deepest thanks and gratitude go to Professor Stumm for all his help, advice, and support. His

patience and judgment as a supervisor have made this thesis possible. I would also like to thank

Benjamin Gamsa. Clustered Objects along with Tornado would not exist without Ben’s creativity,

insight and ability. I am deeply indebted to him for suffering all my questions.

Finally my wife, Ariane Appavoo deserves considerable credit for this thesis and all my successes.

Her love and support was not only expressed in her never-ending belief in me but also in her tolerance

of my less than pleasant moods. The drafts of this thesis were only intelligible due to her patient

readings.

Jonathan Appavoo

University of Toronto

October 1998

iii

Contents

Abstract ii

Acknowledgments iii

Chapter 1 Introduction 1

1.1 SMPs . 2

1.2 SMP Operating Systems . 4

1.2.1 Hive and Hurricane . 6

1.2.2 Commercial OSes . 7

1.2.3 The Tornado Approach . 7

1.3 Partitioned Objects . 8

1.3.1 Clustered Objects . 9

1.4 Torando support for Clustered Objects . 9

1.4.1 Object Translation Facility . 9

1.4.2 KMA . 10

1.4.3 PPC . 10

Chapter 2 Background and Motivation 11

2.1 Background . 11

2.1.1 NUMAchine Architecture . 11

2.1.2 Software Issues . 13

2.2 Motivating Example . 15

2.2.1 Scenario . 15

2.2.2 Abstract Data Type . 16

2.2.3 Implementations . 16

iv

2.2.4 Summary . 22

Chapter 3 Clustered Objects 23

3.1 What they are . 23

3.2 The Clustered Object Model . 24

3.3 Tornado Support for Clustered Objects . 31

3.3.1 Object Translation System . 32

3.3.2 Requirements on the implementation of Clustered Objects 37

3.4 Class Representation . 38

3.4.1 ClusteredObject Hierarchy . 40

3.4.2 MissHandler Hierarchy . 41

3.4.3 Shared and Replicated Clustered Objects . 41

3.4.4 Examples . 43

3.4.5 Summary . 46

Chapter 4 Examples of Clustered Object implementations 48

4.1 Counters . 48

4.1.1 Explicit Representative Organization . 49

4.1.2 Representative Global Shared Data . 51

4.1.3 Function shipping . 55

4.1.4 Clustering Degree . 57

4.2 Software Set-Associative Cache . 58

4.2.1 Shared SSAC . 60

4.2.2 Replicated SSAC . 62

4.2.3 Partitioned SSAC . 65

4.2.4 Summary . 67

Chapter 5 Performance 68

5.1 General Experimental Setup . 68

5.1.1 SimOS and NUMAchine . 69

5.1.2 Simulated Machine . 69

5.2 Experiments . 70

5.2.1 Counters . 71

v

5.2.2 SSACs . 74

Chapter 6 Design Guidelines 80

6.1 Optimize Most Common Operations for Locality . 80

6.2 Provide Multiple Implementations . 81

6.3 Split Complex Clustered Objects into Multiple Clustered Objects 81

6.4 Maintain Inter-representative References . 82

6.5 Pad Representatives . 82

Chapter 7 A new Clustered Object Model 83

7.1 Limitation of initial Model . 83

7.2 New Model . 84

7.2.1 Factory Object . 85

7.2.2 Misshandling Object . 86

7.2.3 Global Data Object . 86

7.2.4 Initialization Parameters . 89

7.2.5 Representative Objects . 89

7.3 Summary . 91

Chapter 8 Summary 92

8.1 Future Work . 94

Bibliography 95

vi

Chapter 1

Introduction

The development of high-performance parallel systems software is a difficult task. The concurrency

and locality management needed for good performance can add considerable complexity. Clus-

tered Objects were developed as a model of partitioned objects to simplify the task of designing

high-performance shared memory multiprocessor (SMP) systems software. In the partitioned ob-

ject model, an externally visible object is composed of a set of distributed representative objects.

Each representative object locally services requests, possibly collaborating with one or more other

representatives. Cooperatively all the representatives implement the complete functionality of the

Clustered Object. The distributed nature of Clustered Objects make them ideally suited for the

design of multiprocessor system software, which often requires a high degree of modularity and

yet benefits from the sharing, replicating and partitioning of data on a per-resource (object) ba-

sis. Clustered Objects are similar to other partitioned object models, such as Fragmented Objects

[22, 5] and Distributed Shared Objects[38, 14], although the latter have focused on the requirements

of (loosely coupled) distributed environments; Clustered Objects are designed for (tightly coupled)

shared memory systems.

The work presented in this dissertation is an initial evaluation of Clustered Objects. We de-

veloped a model for Clustered Objects based on pre-existing support in Tornado and focused on

operating system implementations. In particular, we designed a generic C++ class representation

for Clustered Objects and implemented it on top of the Tornado operating system. This class

representation is used to build two sets of example Clustered Objects. The first set consists of four

different implementations of a simple integer counter. The second set consists of three different

implementations of a more complex SMP caching data structure for data lookup. We evaluated

1

2

the performance of the implementations using both simulations and hardware and show that the

Clustered Objects developed are able to realize performance optimizations on a shared memory

multiprocessor.

Based on our experience so far, Clustered Objects are able to exploit the advantages of object-

oriented technology and yet at the same time can support fine-grain SMP optimizations needed

for good performance. In our examples, Clustered Object implementations are able to achieve the

same performance advantages as hand-optimized implementations. We found that it is possible to

create a family of Clustered Objects consisting of different implementations, each with the same

external interface, but each tuned for a different access pattern. Thus it should be possible to

develop a standard foundation library of Clustered Objects that will allow a client programmer to

build high-performance SMP software by simply choosing the right implementations for the access

pattern expected.

The remainder of this chapter briefly describes SMP architectures and operating systems, as

well as the partitioned object model. The next chapter, Motivation and Background, defines lo-

cality management in the context of an SMP. The chapter also gives an example illustrating the

importance of locality to performance. Chapter 3 entitled Clustered Objects, describes the Clus-

tered Object model, Tornado support for Clustered Objects, and the class representation developed.

Chapter 4 presents the two sets of example Clustered Objects implemented. Chapter 5 presents the

results from the performance tests of the example Clustered Objects. Chapter 6 presents guidelines

for the development of Clustered Objects. Chapter 7 proposes a new Clustered Object Model we

have not yet implemented, which addresses shortcomings in the initial model.

1.1 SMPs

SMP architectures present the programmer with the familiar notion of a single address space within

which multiple processes exist, possibly running on different processors. Unlike a message-passing

architecture, an SMP does not require the programmer to use explicit primitives for the sharing of

data. Hardware-supported shared memory is used to share data between processes, even if running

on different processors. Many modern SMP systems provide hardware cache coherence to ensure

that the multiple copies of data in the caches of different processors (which arise from sharing) are

kept consistent.

Physical limits, cost efficiency and desire for scalability have lead to SMP architectures that are

3

formed by inter-connecting clusters of processors. Each cluster typically contains a set of processors

and one or more memory modules. The total physical memory of the system is distributed as

individual modules across the clusters, but each processor in the system is capable of accessing

any of these memory modules in a transparent way, although it may suffer increased latencies

when accessing memory located on remote clusters. SMPs with this type of physical memory

organization are called Non-Uniform Memory Access (NUMA) SMPs. Examples of such NUMA

SMP architectures include Stanford’s Dash [21] and Flash [17] architectures, University of Toronto’s

Hector [42] and NUMAchine [41] architectures, Sequent’s NUMA-Q [32] architecture and SGI’s Cray

Origin2000 [19]. NUMA SMPs that implement cache coherency in hardware are called CC-NUMA

SMPs. In contrast, multiprocessors based on a single bus have Uniform Memory Access times and

called UMA SMPs.

It can be difficult to realize the performance potential of a CC-NUMA SMP. The programmer

must not only develop algorithms that are parallel in nature, but must also be aware of the subtle

effects of sharing both in terms of correctness and in terms of performance. The coherence protocols

and distribution of physical memory add communication latencies, and explicit synchronization,

needed to ensure correctness of shared data, imposes additional computation and communication

overheads. Without careful layout in memory, false sharing can occur at cache line granularity.

False sharing happens when independently accessed data is co-located in the same cache line.

False sharing reduces the effectiveness of the hardware caches and results in the same high cache

coherence overhead as true sharing.

Memory latencies and cache consistency overheads can often be reduced substantially by de-

signing software that maximizes the locality of data accesses. Replication and partitioning of data

are primary techniques used to improve locality. Both techniques allow processes to access localized

instances of data in the common case. They decrease the need for remote memory accesses and

lead to local synchronization points that are less contended. In experimental results we present

later, we show that these techniques can lead to an improvement in performance of two orders of

magnitude in some cases.

Other more course-grain approaches for improving locality in general SMP software include

automated support for memory page placement, replication and migration [18, 23, 40] and cache

affinity aware process scheduling [39, 24, 13, 33, 9].

4

1.2 SMP Operating Systems

Poor performance of the operating system can have considerable impact on application performance.

For example, for parallel workloads studied by Torrellas et al., the operating system accounted for

as much as 32-47% of the non-idle execution time[36]. Similarly Xia and Torrellas showed that for

a different set of workloads, 42-54% of time was spent in the operating system [43], while Chapin et

al. found that 24% of total execution time was spent in the operating system[6] for their workload.

To avoid the operating system from limiting application performance, it must be highly con-

current. The traditional approach to developing SMP operating systems has been to start with a

uniprocessor operating system and to then successively tune it for concurrency. This is achieved

by adding locks to protect critical resources. Performance measurements are then used to identify

points of contention. As bottlenecks are identified, additional locks are introduced to increase con-

currency, leading to finer-grained locking. Several commercial SMP operating systems have been

developed as successive refinements of a uniprocessor code base. Denham et al. provides an excel-

lent account of one such development effort [8]. However, this approach is ad hoc in nature, leads

to complex systems, and provides little flexibility in that adding more processors to the system or

changing access patterns may require significant re-tuning.

The continual addition of locks can also lead to excessive locking overheads. In such cases,

it is often necessary to design new algorithms and data structures that do not depend so heavily

on synchronization. Examples include: Software Set Associative Cache architecture developed by

Peacock et al.[28] [29], kernel memory allocation facilities developed by McKenny et al.[25], fair

fast scalable reader-writer locks developed by Krieger et al.[16], performance measurement kernel

device driver developed by Anderson et al.[1] and the intra-node data structures used by Stets et

al.[35].

The traditional approach of adding locks and selectively redesigning also does not explicitly lead

to increased locality. Chapin et al. studied the memory system performance of a commercial Unix

system, parallelized to run efficiently on the 64 processor-large Stanford DASH multiprocessor[6].

They found that the time spent servicing operating system data misses was three times higher than

time spent executing operating system code. Of the time spent servicing operating system data

misses, 92% was due to remote misses. Kaeli et al. showed that careful tuning of their operating

system to improve locality allowed them to obtain linear speedups on their prototype CC-NUMA

system, running OLTP benchmarks[15].

5

1 2 4 8 12 16
Processors

80

1

10
Sl

ow
 D

ow
n

a)

sgi
convex
ibm
sun

1 2 4 8 12 16
Processors

80

1

10

Sl
ow

 D
ow

n

b)
1 2 4 8 12 16

Processors

80

1

10

Sl
ow

 D
ow

n

c)

1 2 4 8 12 16
Processors

5

1

Sl
ow

 D
ow

n

d)
1 2 4 8 12 16

Processors

5

1

e)
1 2 4 8 12 16

Processors

5

1

f)

Figure 1.1: Microbenchmarks across all tests and systems. The top row (a–c) depicts the multi-
threaded tests with n threads in one process. The bottom row (d–f) depicts the multiprogrammed
tests with n processes, each with one thread. The leftmost set (a,d) depicts the slowdown for in-core
page fault handling, the middle set (b,e) depicts the slowdown for file stat, and the rightmost set
depicts the slowdown for thread creation/destruction. The systems on which the tests were run
are: SGI Origin 2000 running IRIX 6.4, Convex SPP-1600 running SPP-UX 4.2, IBM 7012-G30
PowerPC 604 running AIX 4.2.0.0, Sun 450 UltraSparc II running Solaris 2.5.1.

Finally, figure 1.1 are results gathered by Gamsa et al.[12] of simple micro-benchmarks run

on a number of commercial SMP operating systems. The micro-benchmarks are of three separate

tests: in-core page faults, file stat and thread creation, each with n worker threads performing the

operation being tested:

Page Fault Each worker thread accessed a set of in-core unmapped pages in independent (separate

mmap) memory regions.

File Stat Each worker thread repeatedly fstated an independent file.

Thread Creation Each worker successively created and then joined with a child thread (the child

does nothing but exit).

Each test was run in two different ways; multi-threaded and multi-programmed. In the multi-

threaded case the test was run as described above. In the multi-programmed tests, n instances of

the test were started with one worker thread per instance. Although the commercial systems do

reasonably well on the multiprogrammed tests in general, they suffer considerable slow downs on

6

the multithreaded tests. This evidence implies that the existing techniques used by commercial

systems are insufficient in their ability to exploit the concurrency of these simple multithreaded

micro-benchmark applications.

As will be shown in chapter 3, Clustered Objects provide a framework for designing and imple-

menting SMP software which is both highly concurrent and supports replication and partitioning

of data so as to maximize locality.

1.2.1 Hive and Hurricane

The Stanford Hive operating system[7] and the University of Toronto’s Hurricane operating system[37]

were designed to address the locality issues in large-scale SMP operating systems. Hive focused on

locality, firstly as a means of providing fault containment and secondly as a means for improving

scalability. Hurricane focused on the scalability and performance aspects of increased locality. Both

systems are structured as a set of individual, small-scale SMP operating system instances, which

cooperatively manage the resources of the entire system.

In both approaches, the resources of the physical system are partitioned into fixed clusters

containing a set number of processors and associated main memory. The resources of each cluster

are managed by a separate instance of a small-scale SMP operating system. Explicit use of shared

memory is only allowed within a cluster. Any co-ordination/sharing between clusters occurs using

a more expensive message passing facility. It was hoped that any given request by an application

could in the common case be serviced on the cluster on which the request was made with little or

no interaction with other clusters.

The fixed clustering approach limits the number of concurrent processes that can contend on

any given lock to the number of processors in a cluster. Similarly, it limits the number of per-

processor caches that need to be kept coherent. Finally, it also ensures that each data structure is

replicated into the local memory of each cluster.

One of the key observations made by the Hurricane group was that fixed cluster sizes were

too restrictive. Although an attempt was made to determine the optimal configuration, it was

realized that each service and its data structures required different degrees of clustering. Some data

structures (i.e. Page Descriptor Index) are best shared across the entire system, while other data

structures (i.e. Ready Queues) have better performance if they were replicated on a per-processor

basis. This implied that greater flexibility with respect to the cluster sizes was required than was

offered by the fixed clustering of Hurricane and Hive. It was concluded from the experiences with

7

Hurricane that the locality attributes of data structures need to be expressed and managed on a

per-data structure basis, something that is addressed with Clustered Objects.

1.2.2 Commercial OSes

Many commercial vendors offer either separate SMP operating systems products or SMP versions

of their uniprocessor operating systems. These include: Cellular Irix and Irix from SGI, AIX from

IBM, Solaris from SUN, DYNIX/ptx from Sequent, Digital Unix from COMPAQ Digital products

and HP-UX from HP. All these systems need to face the challenges of increased memory latencies

with respect to CPU cycle times and as such need to optimize cache performance. Many of the

vendors list scalability as an important goal in satisfying customer’s need for incremental growth

and protection of investments.

1.2.3 The Tornado Approach

In Tornado, all operating system components were developed from scratch specifically for multi-

processors. The system components were designed with the primary overriding design principle

of mapping any locality and independence that might exist in OS requests from applications to

locality and independence in the servicing of these requests in the operating systems and system

servers. It was found that this principle could be applied by using a small number of relatively

simple techniques in a systematic fashion. As a result, Tornado has a simpler structure than other

multiprocessor operating systems, and hence can be more easily maintained and optimized.

More specifically, the design of Tornado is based on the observation that: (i) operating systems

are driven by the request of applications on virtual resources, (ii) to achieve good performance on

multiprocessors, requests to different resources should be handled independently, that is, without

accessing any common data structures and without acquiring any common locks, and (iii) the

requests should, in the common case, be serviced on the same processor they are issued on. This

is achieved in Tornado by adopting an object-oriented approach where each virtual and physical

resource in the system is represented by an independent object so that accesses on different proces-

sors to different objects do not interfere with each other. Details of the Tornado operating system

can be found in [12, 11].

The natural outgrowth of the Hurricane experience was to build an operating system in which

each data structure could specify its own clustering size. Tornado serves as the operating system

for the NUMAchine multiprocessor [41]. In Tornado, unlike Hurricane, there is only one operating

8

system instance, but clustering is provided for on a per-object basis. Clustered Objects are used

for this purpose. Tornado is implemented in C++ using an object oriented structure.

At this point, the majority of the system’s objects are naive Clustered Objects using just

a single representative. The majority of work performed to date has been on developing the

underlying infrastructure and basic functionality needed for Clustered Objects. Tornado is now

at the point where the Clustered Object model can be more formally developed and the current

system Clustered Object implementations replaced with more advanced implementations tuned for

performance.

1.3 Partitioned Objects

In a partitioned object model, a single partitioned object with a well-defined external interface can

be decomposed into multiple, more elementary objects, called representatives. Each representa-

tive acts on behalf of the entire partitioned object, servicing the requests from a restricted local

access domain. A local access domain is a subset of the physical resources of the system from

which the partitioned object can be accessed. For example, in a distributed environment, local

access domains would be individual machines on the network and in a more tightly coupled envi-

ronment, local access domains would be individual processors. The representatives of a partitioned

object can interact and cooperate internally, if necessary, using the communication facilities of the

environment. Distributed Shared Objects [38, 14] and Fragmented Objects [22, 5] are the only

partitioned object models other than Clustered Objects, that we are aware of. Both are designed

for distributed environments.

Distributed Shared Objects are designed as a framework for developing wide-area distributed

applications. The state of a Distributed Shared Object can be, at the same time, physically

distributed across multiple machines. The distributed nature of a Distributed Shared Object is

hidden from clients behind its interface. Communication between the representatives of a Dis-

tributed Shared Object are implemented on top of standard wide area network protocols. The

most important design issue addressed by Distributed Shared Objects is scalability in the context

of the World Wide Web [38].

The Fragmented Objects framework also targets the development of distributed applications.

However, Fragmented Objects are aimed at local area networks. Similar to Distributed Shared

Objects, a Fragmented Object appears to its clients as a single entity defined by its external

9

interface. Internally, a Fragmented Object encapsulates a set of cooperating representatives that

use standard network protocols for communication between representatives.

Both models are aimed at coarse-grained performance optimizations and at managing the com-

plexity of networked environments. In contrast, Clustered Objects target SMP’s, where the per-

formance tradeoffs are considerably different than in a distributed environment.

1.3.1 Clustered Objects

A Clustered Object is identified by an address space unique identifier. The identifier locates a

per-processor representative object for the Clustered Object. All accesses to a Clustered Object

on a processor are directed to a specific representative. To allow for more efficient use of resources,

the representatives of a Clustered Object can be instantiated on first use. All the representatives

of a Clustered Object are managed via a special per-Clustered Object management object. The

management object is responsible for instantiation, deletion and assignment of representatives to

processors. A Clustered Object can have a single shared representative that is assigned to all

processors, a representative per-processor or any a configuration in between. Chapter 3 gives a

detailed description of Clustered Objects.

1.4 Torando support for Clustered Objects

An operating system infrastructure is needed to implement Clustered Objects efficiently. In Tornado

this includes:

• Object Translation Facility

• Kernel Memory Allocation Facility (KMA)

• Protected Procedure Call Facility (PPC)

1.4.1 Object Translation Facility

The Object Translation Facility of Tornado is used to locate the processor-specific representative

object when a Clustered Object is accessed on a given processor. It is implemented with two sets

of tables per address space, a global table of pointers to per-Clustered Object management objects,

and per-processor tables of pointers to representatives. The identifier for a Clustered Object is a

common offset into the tables. If no representative exist for a given processor the global table is

10

consulted to locate the Clustered Object’s management object that manages all the representatives

of the Clustered Object. Details of the Object Translation Facility is provided in Chapter 3.

1.4.2 KMA

The Kernel Memory Allocation facility manages the free pool of global and per-processor memory.

It is capable of allocating memory from pages that are local to a target processor. By overloading

the default new operator with a version that calls the localized memory allocation routines of the

Kernel Memory Allocation facility, Tornado ensures that default object instantiation occurs with

processor local memory. Hence, representatives and the data they allocate, automatically reside on

the processors on which they are instantiated. This helps to reduce false sharing across clusters.

1.4.3 PPC

The Protected Procedure Call facility of Tornado supports interprocess communication. Protected

Procedure calls allow one process within an address space to invoke the methods of an Object in

another address space. A Protected Procedure Call is implemented as a light-weight protection

domain crossing, executed on the same processor from which they are called. The Protected

Procedure Call facility also provides the ability for a process executing on one processor, to invoke

a procedure to be executed on another processor within the same address space, although at

higher cost. This form of cross-processor Protected Procedure Calls will be referred to as Remote

Procedure Calls. Clustered Objects can use Remote Procedure Calls to implement function shipping

as another form of cooperation between representatives.

Chapter 2

Background and Motivation

2.1 Background

In this dissertation, we are specifically interested in the attributes of NUMA architectures. As a

case in point, we present an overview of the NUMAchine hardware architecture in section 2.1.1.

Section 2.1.2 then discusses the software issues of NUMA SMP architectures.

2.1.1 NUMAchine Architecture

NUMAchine is a NUMA shared memory multiprocessor, consisting of interconnected stations, each

composed of several processors, memory modules, and I/O capabilities1. The physical memory

is thus distributed across the stations. A flat physical addressing scheme is used, with a specific

address range assigned to each station. All processors access all memory locations in the same

manner. The time needed by a processor to access a given memory location depends upon the

distance between the processor and the memory.

NUMAchine uses a ring-based hierarchical interconnection network. At the lowest level of the

hierarchy, stations contain several processors connected by a bus as shown in the bottom portion

of figure 2.1. A processor module contains a processor with on-chip, level 1 data and instruction

caches, and an external level 2 secondary cache. The stations are interconnected by bit-parallel

rings, as shown in the top portion of figure 2.1. For simplicity, the figure shows only two levels of

rings — local rings connected by a central ring. Our planned hardware prototype machine will have

4 processors in each station; 4 stations per local ring and 4 local rings connected by a central ring.
1See Vranesic et al. for a detailed presentation of the NUMAchine architecture [41].

11

12

Central Ring

Local Ring Local Ring

Stations

Station

Memory

l2

R4400

dl1il1

Processor Module

l2

R4400

dl1il1

Processor Module

l2

R4400

dl1il1

Processor Module

l2

R4400

dl1il1

Processor Module

Ring
Interface

Network
Cache

I/O

Station
Bus

NUMAchine Ring Hierarchy

Station Organization

dl1 - Level 1 Data Cache
iL1 - Level 1 Instruction Cache
l2 - Level 2 Unified Cache

Figure 2.1: NUMAchine Architecture.

13

The largest configuration we consider in this study is a 16-processor system, composed of one local

ring, with 4 stations each containing 4 processors.

The NUMAchine memory hierarchy consists of four levels. Each processor has a level 1 cache

on-chip and an external secondary cache. The next level consists of the memory located in the

same station. This includes the memory module(s) for the physical address range assigned to the

station, and the station’s network cache, which is used as a cache for data whose home memory is

in a remote station. The final level in the memory hierarchy consists of all memory modules that

are in remote stations.

NUMAchine includes a hardware-supported cache coherence protocol that is efficient and inex-

pensive to implement [41]. The coherence protocol takes advantage of the ordering property of the

NUMAchine hierarchy to optimize performance. In particular, a single message suffices to perform

multiple invalidations and no acknowledgments are required.

To help generalize the results of this study our performance study also includes results from

simulations that do not take advantage of any of NUMAchine’s unique features such as the network

caches or its optimized cache coherence protocol.

2.1.2 Software Issues

To fully utilize multi-processor architectures, three issues require special attention:

Concurrency: Software must exploit concurrency to fully utilize the processing resources of

an SMP. Concurrent processes then use shared memory to cooperate. However, concurrent

updates to shared data must be controlled to ensure serialization. The addition of synchro-

nization in the form of locks and other atomic primitives can be used to control concurrency.

Deciding where to add synchronization and what type of synchronization to use can be non-

trivial. Too coarse a strategy can lead to highly contended locks and limited concurrency. On

the other hand, too fine a strategy can lead to excessive overheads due to having to acquire

and release many locks. Often, a complete redesign of an algorithm and its data structures

can significantly reduce the amount of shared data and hence the need for synchronization.

Cache Misses: Efficient use of caches is critical to good performance for two reasons. Firstly,

a low cache miss rate ensures that processors do not spend large amounts of time stalling

on memory accesses. Secondly, it reduces the traffic on shared system busses. With per-

processor caches, processors accessing data on the same cache line, either because the data

14

is being shared directly or because it is being shared falsely2, causes the line to be replicated

into multiple caches. Sharing of cache lines causes an increase in consistency overhead and

cache misses3. Avoiding shared data and carefully laying out data in memory to avoid false

sharing can reduce cache line sharing and the associated increase in overheads substantially.

Remote Memory Access: to achieve good performance, the extra costs of remote memory

accesses must be avoided. Caches can help to reduce the cost of remote accesses, but do

not eliminate the costs completely. The first access to a remote data element must pay the

extra costs. Additionally, true and false read/write sharing can force invalidation of locally

cached copies of remote data. Avoiding of shared data and carefully placing data in the

memory modules closest to the processors that access the data can reduce the number of

remote memory accesses.

The term locality management refers to the combination of increasing concurrency, reducing

cache misses and reducing remote memory accesses. Gamsa et al. have outlined a set of design

principles for developing software that manages locality [10], the main points of which are:

• Concurrency

– Replicate read locks and implement write locks as a union of the read locks. This increases

concurrency by making the locks finer grained.

• Cache Misses

– Segregate read-mostly data from frequently modified data to reduce misses due to false sharing.

– Segregate independently accessed data to eliminate false sharing.

– Replicate write-mostly data to reduce sharing.

– Use per-processor data wherever possible to avoid sharing.

– Segregate contended locks from their associated, frequently modified data. This avoids lock

contenders interfering with the lock holder.

– Co-locate un-contended locks with their associated data to better utilize spatial locality and

reduce the number of cache misses.

• Remote Memory Accesses
2False sharing is the accessing of different data elements that happen to reside on the same cache line.
3To be more precise, invalidation-based cache coherence protocols require that a processor writing to a line obtain

ownership of the line if it does not already own it (upgrade miss). This results in the invalidation of all copies of the
line in other processors’ caches. Thus all other processors will suffer a miss (sharing miss) on a subsequent access to
the line.

15

– Ensure read-mostly data is replicated into per-processor memory.

– Migrate read/write data between per-processor memory if accessed primarily by one processor.

– Replicate write-mostly data where possible and ensure replicas are in per-processor memory.

• Algorithmic

– Use Approximate local information rather than exact global information.

– Avoid Barriers

Replication, partitioning, migration and data placement are the key techniques advocated to

implement these principles. Replication refers to the creation of local copies of data that can

be locked and accessed locally. Partitioning is similar to replication but splits data into local

components rather than making copies. Migration allows data to be moved to a location that

provides greatest locality. Data placement refers to the use of padding and custom allocation

routines to control where data is placed on cache lines and in the system’s memory modules.

Applying these techniques to existing software can be non-trivial and substantially increase the

complexity of the software.

2.2 Motivating Example

This section will present a simple example to illustrate why locality management at the individual

data object level is important. The implementation of a simple integer counter on the NUMAchine

hardware will serve as a running example. The following subsections describe the scenario in which

the counter will be used, an abstract data type for the counter, and four different implementations.

The performance of the four implementations will be presented to motivate the advantages of

locality management.

2.2.1 Scenario

We will assume that there is a pair of high frequency events, A and B, which we desire to count.

When A occurs we would like to increment the counter and when B occurs we would like to

decrement the counter. Both events occur independently on all processors of the system. The

value of the counter will be read infrequently compared to the frequency of the events: only 1% of

all accesses to the counter will be to read its value. Moreover, it is unnecessary for the counter to

return an exact value on reads, as an approximate value suffices. Such a counter might be used to

gather performance statistics on the average queue length for a system resource.

16

Type:
Counter

operations:
value() : return current integer value of counter
increment() : adds 1 to the current value of the counter
decrement() : subtracts 1 from the current value of the counter

constraints:
Given: Counter c
Initially c.value()=0
(c.increment()).value = c.value() + 1
(c.decrement()).value = c.value() - 1

Figure 2.2: Definition of the Counter Abstract Data Type

class integerCounter {
public:

virtual void value(int &val)=0;
virtual void increment() =0;
virtual void decrement() =0;

};

Figure 2.3: C++ interface definition for the Counter ADT.

2.2.2 Abstract Data Type

Figure 2.2 presents a trivial abstract data type Counter. Increment and decrement operations

modify or write the counter the value operation reads the counter.

Following good C++ practice, an abstract base class, integerCounter, is used to specify the

interface for all integer counters and is presented in figure 2.3. This ensures that all the integer

counter implementations will be interchangeable.

2.2.3 Implementations

We consider four implementations of integerCounter : SharedCounter, CounterArray, CounterAr-

rayPadded, and CounterLocalized, each refining the implementation of the previous.

Shared Counter

The simplest implementation for the counter is to use a single shared integer variable as illustrated

in figure 2.4. The increment and decrement methods use atomic update primitives to ensure proper

synchronization.

The left-most bar of each set of bars of figure 2.5 illustrates the performance of the Shared-

Counter. The performance illustrated is from a simple test in which a total of 4096 requests are

made to the counter with 1% being invocations of the value method, and the remaining 99% being

17

class SharedCounter : public integerCounter {
int _count;

public:
SharedCounter() { _count=0; }
virtual void value(int &val) { val=_count; }
virtual void increment() { FetchAndAdd(&_count,1); }
virtual void decrement() { FetchAndAdd(&_count,-1); }

};

Figure 2.4: C++ Shared Counter implementation.

1 2 4 8 16
Processors

0

10000

20000

30000

C
yc
le
s

dStallRemote
dStallLocal
scNakStall
excStall
iStall
Other

Within each group the bars are ordered:
SharedCounter
CounterArray

CounterArrayPadded
CounterLocalized

Figure 2.5: Performance results for integer Counter implementations.

evenly divided between invocations of increment and decrement. The graph shows the performance

on 1, 2, 4, 8, and 16 processors with the y-axis plotting the average number of cycles required per

request. The total number of requests are divided evenly across the number of processors in the

test. Chapter 5 provides more details into the experimental setup.

The cycles per request increases more than linearly as more processors are used. The increases

are primarily due to the increase in coherence overhead and cache misses as more processors par-

ticipate. With one processor participating, the counter remains in the cache, but with multiple

processors participating, each modification at one processor, causes the cached value to be inval-

idated at each other processor, causing subsequent cache misses. This performance behaviour is

clearly undesirable. It costs two orders of magnitude more per request on 8 and 16 processors than

on one processor.

18

class CounterArray : public integerCounter {
int *_count;

public:
CounterArray() {

_count=new int[NUMPROC];
for (int i=0;i<NUMPROC;i++)

_count[i]=0;
}

~CounterArray() { delete[] _count; }
virtual void value(int &val) {

val=0;
for (int i=0;i<NUMPROC;i++)

val+=_count[i];
}

~CounterArray() { delete[] _count; }
virtual void increment() { FetchAndAdd(&(_count[MYVP]),1); }
virtual void decrement() { FetchAndAdd(&(_count[MYVP]),-1); }

};

Figure 2.6: C++ Code for CounterArray class. The MYVP macro expands to a unique index that
can be used to identify the processor on which the code is executing.

Counter Array

To try and improve on the performance of the SharedCounter implementation, the CounterArray

implementation (illustrated in figure 2.6) partitions the counter into an array of counters. Each

processor is given its own counter within the array. This should allow each processor to modify its

own local counter without interfering with other processors.

When the CounterArray is instantiated, its constructor allocates an array of counters, one per

processor in the system. The increment and decrement methods now only modify the counter of the

processor on which the operations are invoked. The value sums the value of all the local counters

to yield the total value.

The value method of CounterArray is not atomic with respect to the updates. As a result,

while the value method sums each per-processor counter, the values may be changing, and thus the

value returned does not necessarily correspond to the value of the counter at time of invocation. A

more synchronous approach would be possible by adding a lock to each per-processor counter and

acquiring and releasing it for modifications. The value method could then globally lock the counter

by first acquiring all the per-processor locks. However, the scenario presented in 2.2.1 only requires

an approximate value of the counter, so the CounterArray implementation with no locks is more

efficient.

The second bar in Figure 2.5 illustrates the performance of CounterArray. Note that the

19

class CounterArrayPadded : public integerCounter {
struct counter {

int val;
char pad[SCACHELINESIZE - sizeof(int)];

} *_count;
public:

CounterArrayPadded() {
_count=new struct counter[NUMPROC];
for (int i=0;i<NUMPROC;i++)

_count[i].val=0;
}

~CounterArrayPadded() { delete[] _count; }
virtual void value(int &val) {

val=0;
for (int i=0;i<NUMPROC;i++)

val+=_count[i].val;
}

virtual void increment() { FetchAndAdd(&(_count[MYVP].val),1); }
virtual void decrement() { FetchAndAdd(&(_count[MYVP].val),-1); }

};

Figure 2.7: C++ code that implements CounterArrayPadded class.

performance is no better than that of the SharedCounter. Although CounterArray partitions the

counter and avoids the data sharing present in the SharedCounter implementation, it does not avoid

false sharing. Since each integer value is 4 bytes and a secondary cache line of the machine is 128

bytes, 16 counters easily fit on one cache line. This means that each time a counter is updated, the

updating processor will still interfere with all other processors, as was the case with SharedCounter.

Counter Array Padded

The addition of padding to the per-processor counters can eliminate the false sharing in Counter-

Array. Figure 2.7 illustrates such an implementation.

The performance of CounterArrayPadded has a marked improvement over SharedCounter and

CounterArray, as illustrated in figure 2.5. The elimination of true and false sharing means that

modifications to the counters on each processor can occur concurrently and without cache interfer-

ence. This results in an improvement of two orders of magnitude on 8 and 16 processors.

Counter Localized

Although CounterArrayPadded eliminates all sharing, it does not ensure that the per-processor

counters are located in the memory modules closest to the processors accessing them. Figure 2.8

presents an implementation that ensures that each per-processor counter is located in the memory

20

class CounterLocalized : public integerCounter {
struct counter {

int val;
char pad[SCACHELINESIZE - sizeof(int)];

} **_count;
public:

CounterLocalized() {
StubXAppl appl(myAppl->getOH());
_count=new struct counter *[NUMPROC];
for (int i=0;i<NUMPROC;i++) {

if (i != MYVP)
{

appl.setVP(i);
appl.createProcess1AndWait(

(tstatusfunc)doremoteinit,
(reg_t)this);

} else
init();

}
}

virtual void init() {
_count[MYVP]=new struct counter;
_count[MYVP]->val=0;

}

~CounterLocalized() {
for (int i=0;i<NUMPROC;i++)

delete _count[i];
}

virtual void value(int &val) {
val=0;
for (int i=0;i<NUMPROC;i++)

val+=_count[i]->val;
}

virtual void increment() { FetchAndAdd(&(_count[MYVP]->val),1); }
virtual void decrement() { FetchAndAdd(&(_count[MYVP]->val),-1); }

};

void doremoteinit(reg_t obj)
{

((CounterLocalized *)obj)->init();
}

Figure 2.8: C++ code that implements CounterLocalized class.

21

1 2 4 8 16
Processors

0

500

1000

1500

C
yc
le
s

dStallRemote
dStallLocal
scNakStall
excStall
iStall
Other

Within each group the bars are ordered:
CounterArrayPadded

CounterLocalized

Figure 2.9: Performance Results for the CounterArrayPadded and CounterLocalized Implementa-
tions.

module closest to the processor accessing it.

Tornado’s memory allocator ensures that memory allocations made on a processor are satisfied

by memory pages from the station the processor belongs to. The CounterLocalized exploits this fea-

ture to locate each per-processor counter correctly. Rather than maintaining an array of counters,

the CounterLocalized implementation keeps an array of pointers to counters. When CounterLocal-

ized is instantiated, its constructor uses a remote procedure facility to invoke the init method on

each processor of the system. The init method allocates a per-processor counter and records a

reference to it in the array of pointers. The increment and decrement methods dereference the

appropriate pointer within the array to yield the right per-processor counter. The value method

similarly dereferences each pointer within the array to yield the actual counters.

Figure 2.5 illustrates that the performance of CounterLocalized is similar to that of Counter-

ArrayPadded. Figure 2.9 compares the performance of the CounterArrayPadded and the Counter-

Localized implementations alone. It shows that CounterLocalized performs slightly better; there is

a drop in time spent stalling on remote data. It is not possible to eliminate all remote memory

accesses, as 1% of all requests are invocations of the value method, which requires remote mem-

ory accesses by definition. While the difference in performance between CounterArrayPadded and

CounterLocalized is not large, one should keep in mind that the multiprocessor on which the ex-

periments were performed is relatively small; the difference will be larger on larger systems or on

22

systems where the cost of remote memory accesses is larger relative to the cost of local accesses4.

2.2.4 Summary

The performance of the different integer counter implementations show how careful locality man-

agement can yield a significant performance improvement. As will be shown in the next chapter,

Clustered Objects are designed to make it easier to implement locality management on a per-object

basis.

4A remote uncached and uncontended memory access is approximately 3.5 times that of a local memory access

Chapter 3

Clustered Objects

3.1 What they are

Clustered Objects extend traditional objects so that it is possible to provide multiprocessor opti-

mizations while maintaining a common object-oriented interface and were first described by Parsons

et al. in [27]. While Object Oriented technology provides for clear separation between interface

and implementation through encapsulation and information hiding — it is easy to replace one

implementation with another, without affecting the clients of a given object — traditional Object

Oriented approaches do not provide any standard means for implementing multiprocessor optimiza-

tions behind a fixed interface. Clustered Objects provide exactly that.

A Clustered Object appears externally as a regular (C++ like) object to its clients. Internally,

however, it is constructed out of one or more representative objects, each associated with a specific

subset of processors. Clustered Objects share three important aspects in common with standard

objects:

1. a single, well-defined interface;

2. a unique reference for identifying each instance; and

3. an internal structure that is completely hidden from clients.

The unique features of Clustered objects are:

1. Internally, the representative objects that implement a Clustered Object cooperate to repli-

cate, partition and/or migrate the data with the goal of increasing locality.

23

24

Figure 3.1: Abstract view of traditional object-oriented system.

2. Client accesses to the Clustered Object are transparently directed to a local point of access,

namely the internal representative object associated with the processor on which the access

is being made.

The internal representatives objects are standard C++ objects and are typically instantiated

on first use1. Together, the representatives of a Clustered Object implement the functionality of

the Clustered Object. Representatives are free to share and cooperate by any means available,

including the use of shared memory and remote procedure calls. It is up to the implementor to

maximize locality and minimize global interaction whenever possible.

The next section outlines the details of the Clustered Object model. It is followed by a section

which details the internal system mechanisms of Tornado that support Clustered Objects. The last

section describes the class representation that was implemented for the development of Clustered

Objects.

3.2 The Clustered Object Model

This section describes the general Clustered Object model, which was based on the Tornado oper-

ating system’s support for partitioning objects within an address space.

The Clustered Object model is a partitioned object model for shared memory multiprocessors.

In a traditional, object-oriented model, a software system is designed as a set of well-defined

independent objects. Encapsulation, information hiding and separation between interface and

implementation are key features in this model. Every object exports an “external” interface to the
1It is also possible to instantiate all reps when the CO is instantiated.

25

Figure 3.2: Abstract view of a Clustered Object system.

other objects in the system, completely hiding their internal structures. Figure 3.1 illustrates an

abstract view of a system composed of three objects. Each object has an external interface which

is represented by the shaded portion. The external interface is composed of individual methods

that can be invoked by other objects in the system and are represented as the partitions in the

shaded portion. At the core of each object is its internal data, represented by the unshaded part

at the center of each object. The methods of an individual object can access its internal data, but

methods of other objects cannot.

The Clustered Object model also adheres to this object-oriented view, but adds an extra level of

structure to accommodate locality issues that arise in SMPs. Traditional object-oriented program-

ming does not guide the internal structuring of objects in any way. In contrast, Clustered Object

programming, suggests structuring the internal data as a collection of representative objects. Fig-

ure 3.2 illustrates this view. Each representative is assigned to handle the requests from a subset of

processors in the system. The model advocates that representatives be implemented to handle all

invocations of the Clustered Object’s externally visible methods. Requests should be handled lo-

cally by the representative whenever possible, and global interaction between representatives should

be used only when necessary and done transparently to the clients. This encourages implementing

the internal structures of Clustered Objects in a distributed manner, stressing locality.

Figure 3.3 illustrates this internal view. Note that the representatives are illustrated as data

instances which are associated with a given cluster of processors, and that all representatives are

accessed via an interface composed of methods as defined by the Clustered Object.

A number of potential organizations and policies for the structuring of representatives within

a Clustered Object exist. The next few paragraphs highlight some of the options available and

26

Representative

Clusters of two Processors

Invocation

Common Clustered Object Interface

Data Instances

Processors

Figure 3.3: Internal abstract view of a Clustered Object. Each dash-lined box represents a cluster
of processors. The filled circles represent processors. Unfilled circles are the individual represen-
tatives assigned to each cluster. All representatives share a common interface. Invocations of a
method of the Clustered Object on a processor indirectly invokes the corresponding method of the
representative.

27

identify which ones we focus on.

The model makes no restrictions in assigning representatives to processors; as such, a range

of potential organizations are possible from one representative per Clustered Object to one repre-

sentative per processor. The maximum number of processors assigned to any one representative

is called the clustering factor or degree of clustering (see figure 3.4). While it is possible to define

Clustered Objects with representatives being assigned different numbers of processor this work will

focus only on clustered objects with fixed degrees of clustering.

The model does not require that representatives be instances of the same class, although they

usually are. The only restriction is that all representatives export the external interface of the

Clustered Object. We will only consider the case in which all representatives are of the same class.

A natural aspect of the model is the notion of management policies for the data of the Clustered

Object. Four obvious policies are: Share, Replicate, Partition and Migrate, as illustrated in figure

3.5. This work will focus on sharing, replication and partitioning. Many of the locality management

optimizations involve the application of these policies. For example, replication and partitioning

can be used to increase concurrency, reduce cache line sharing, localize data and segregate data.

The Clustered Object model introduces new aspects for a programmer to consider. The pro-

grammer not only has to implement the functionality of the object as defined by its external

interface, but must also manage the representatives themselves, including representative creation,

keeping the representative data consistent, the mapping of representatives to processors and rep-

resentative destruction.

Typically, it is not known how many representatives will be needed when a Clustered Object is

instantiated. It would be wasteful, for example, to instantiate a representative for each processor in

the system when the application will only run on four processors. For this reason, representatives

are typically instantiated on demand, when they are first needed.

In our implementation, each Clustered Object contains a management object that centralizes

the management of the representative. Using a separate object allows the use of inheritance to

simplify the programmer’s task, and a class hierarchy of standard management policies could be

provided. In Tornado’s Object Translation System, the management object is called the Miss-

Handling Object for reasons that will become clear in the next section. Figures 3.6 and Figure

3.7 illustrate Clustered Objects that include a Miss-handler. In both figures, the object with the

lighter-shaded external interface represents the Miss-Handling object. Figure 3.6 shows that the

Miss-Handling object is internal to the Clustered Object but is separate from the representatives.

28

Data Process

Clustersize=5

Clustersize=4

Clustersize=3

De-Clustered

Clustered

Clustersize=1

Clustersize=2

Figure 3.4: Clustering/De-Clustering Spectrum

29

Share

MigratePartition

Replicate

Data Process

Figure 3.5: Four different Data Management Policies

Misshandler

Figure 3.6: Abstract view of a Clustered Object with a MissHandler

30

Invocation Objects

Misshandler

Clusters of two Processors

Common Clustered Object Interface

Representative

Processors

Figure 3.7: Internal Abstract view with MissHandler

31

Regions

Program

Processes

Address Space

Figure 3.8: A View of a Program in Tornado

Figure 3.7 illustrates that the Miss-Handler is global to the representatives and each representative

is associated with the Miss-Handler.

3.3 Tornado Support for Clustered Objects

Within Tornado, there exists a number of facilities that allow for the efficient implementation of

Clustered Objects. These are:

1. a global identification mechanism for Clustered Objects.

2. a facility for associating a representative of a Clustered Object to a processor.

3. a facility for mapping a global Clustered Object identifier to the appropriate local represen-

tative, given a specific processor.

4. facilities for allocating resources local to a specific processor.

5. a facility for sharing and communicating between representatives.

In Tornado, the Object Translation System, provides for the first three facilities and are discussed

in the following subsections. The fourth is provided for by the basic Kernel Memory Allocation

facilities (KMA) of Tornado. The Protected Procedure Call facilities (PPCs) of Tornado provides

explicit cross processor communications beyond the basic shared memory provided by the hardware.

32

Representative

P1 PnP2

Object Reference = i

. . .
Object Translation Table Object Translation Table Object Translation Table

ii

RepresentativeRepresentative

i

Figure 3.9: Object Translation Table organization, with one representative per processor.

3.3.1 Object Translation System

It is useful to first highlight some of Toranado’s basic components. The main unit of organization

is a program. A program has associated with it an address space and processes. Processes are the

basic units of execution. All the processes of a program share the same address space. An address

space can be broken into arbitrary regions. Each region can have its own memory management

policy. Figure 3.8 illustrates these components and how they are related.

The Object Translation System provides support for implementing Clustered Objects composed

of local representative objects within an address space. Each representative satisfies method invo-

cations from processes running on a given sub-set of processors. To understand how this is achieved,

we will first look at how a Clustered Object method invocation is translated to the invocation of a

specific representative method on one processor.

The basic technique used, extends the standard C++ model of an object with an extra level of

indirection. A Clustered Object is identified by a pointer to a pointer of a given object type, and

thus accesses to the methods of a Clustered Object require two dereferences. The first dereference

abstractly identifies a specific instance of a Clustered Object; in our implementation a Clustered

Object Identifier points into a table of pointers, and each pointer in the table identifies a specific

representative. The table of pointers is called an Object Translation Table. Each processor has its

own Object Translation Table, so the pointers therein point to processor-specific representatives

for the Clustered Objects. Method invocation is carried out after dereferencing a pointer in this

table. Thus, a Clustered Object method invocation effectively invokes the corresponding method

of the identified representative.

33

. . .
P1

Object Translation Table
Object Translation Table Object Translation TableObject Translation Table

. . .
Pn

Object Translation Table Object Translation Table

Object Reference = i

P2

ii

RepresentativeRepresentative

i

Figure 3.10: Object Translation Table organization, with one representative for every two proces-
sors.

To allow Clustered Object invocations on each processor in exactly the same way, the virtual

memory capabilities of Tornado are exploited. Per-processor aliased virtual memory regions are

used within the address space to give each processor its own unique copy of the Object Translation

Table in an aliased memory region that is located at the same virtual address for each processor.

This allows the Object Translation Table to identify the local representatives for all Clustered

Objects on a given processor, and each processor can dereference the table in exactly the same

way. Figure 3.9 illustrates the Object Translation Table organization with one representative per

processor, and figure 3.10 shows an example in which two processors share a representative.

When a Clustered Object is created, the Object Translation System must be consulted to

allocate a new Clustered Object Identifier. The Object Translation System controls the assignments

of Clustered Object Identifiers to ensure that their allocation is unique across all processors. For

example, if a new Clustered Object is created on one processor, the Clustered Object Identifier

assigned to it must be considered allocated on all other processors to avoid conflicts. To achieve

this, each processor is assigned a unique portion of the entire range of Clustered Object Identifiers.

Clustered Objects created on a given processor are assigned identifiers from the processor’s unique

range, ensuring that the assigned identifier will not conflict with allocations on other processors.

This approach avoids the need to explicitly coordinate allocations across processors.

The locality of an access is a key aspect of this design. The approach used to locate repre-

sentatives avoids accesses to non-local memory in the common case, so a Clustered Object can be

accessed without introducing any sharing. As a result, any locality provided by a Clustered Object

is not impacted (i.e. negated) by inherent sharing in the Object Translation System.

34

i i

Representative Representative Representative

i

Object Translation Table

i

Misshandling
Object

Object Reference = i

Object Translation Table
Object Translation Table

MissHandling Object Table

. . .

Figure 3.11: Object Translation Table and Misshandling Object Table organization

As stated earlier, the pointer to an entry in the Object Translation Table is called a Clustered

Object Identifier. A simple macro performs the dereferences necessary to yield a pointer to the local

representative from the Clustered Object Identifier. Clients of a Clustered Object must use the

macro on every access to the Clustered Object. The potential for dynamic allocation, deallocation,

and migration of representatives, makes it problematic for clients to store direct references to

representatives themselves2.

To avoid excessive resource usage and limit initialization costs, the instantiation of representa-

tives and their assignment to Object Translation Table entries is done lazily in Tornado, in that

they are instantiated on first use. To support this, the organization in figure 3.9 is extended with

an additional global table called the Misshandling Object Table; see Figure 3.11. Unlike the Object

Translation Table, the Misshandling Object Table is global and shared by all processors. For every

Clustered Object there is a corresponding entry in the Misshandling Object Table, containing a

pointer to the Miss-Handling Object of the corresponding Clustered Object. When a Clustered

Object is instantiated, the Miss-Handler of that Clustered Object (which is a regular C++ object)

is instantiated, and a pointer to it is installed in the Misshandling Object Table entry for the

Clustered Object.
2With proper compiler support, the need for an explicit macro to access a Clustered Object could be avoided.

35

Global
Local

Default Object

Local
Global
Local

Global

Representative

i

Misshandling

MissHandling Object Table

Object

a: Misshandling Object is installed when

 Object which invokes the handleMiss

 the instantiation of a new representative.

 invokes a method of the Default

 method of the i Clustered Object’s

Clustered Object i is instantiated
c: The default object’s method loads
 the pointer to the new representative

 MissHandling Object. This causes

 Object i on this processor. The call
b: A reference is made to the Clustered

 on this processor.
 location of the Object Translation Table
 returned by handleMiss into the i’th

Object Translation Table

MissHandling Object Table

Default Object

i

Object

i

Object Translation Table

Misshandling

i

Object Translation Table

Default Object

i

Representative

i

Misshandling

MissHandling Object Table

Object

Figure 3.12: Miss-handling process as seen on one processor

36

The Object Translation System initializes all Object Translation Table entries to point to a

default miss handling object, called the default object. The default object acts as a trampoline. It

directs the first method invocations of a Clustered Object on a processor to the handleMiss method

of the target Clustered Object’s Misshandler by consulting the Misshandling Object Table. The

handleMiss method then instantiates a new representative if necessary and returning a pointer to

the representative responsible for servicing Clustered Object requests on that processor back to the

default object. The default object then replaces the reference to itself in the Object Translation

Table entry with the pointer returned by the Misshandling Object. The method call to the Clustered

Object is then restarted and proceeds as if the representative were previously installed. Figures 3.12

(a-c) illustrate the miss-handling process. It should be noted, however, that for the miss-handling

redirection to work, it is necessary that all externally visible methods of a Clustered Object be

implemented as C++ virtual methods by the representatives of the Clustered Object.

The number of Clustered Objects that can exist in an address space is limited by the size of

the Object Translation Tables. The goal of Tornado is to support very large Object Translation

Tables so that a large number of Clustered Objects may exist. However, large Object Translation

Tables can consume considerable real memory. To address this problem, Tornado treats the Object

Translation Tables as caches for the current representatives of a processor. The physical pages that

store the Object Translation Table entries can be reclaimed when needed. Rather than consuming

paging system resources, Tornado expects the Clustered Objects’ Misshandling objects to maintain

the primary record of which representatives are assigned to which processor.

Consider what happens when an access is made to a Clustered Object whose object translation

entry has been reclaimed (i.e. the physical memory on which it should be located is not present).

The absence of a physical page, when the corresponding virtual page is accessed, results in a page

fault. The page fault handler will subsequently allocate a new physical page. The page is then

initialized to contain Object Translation Table entries that point to the default object. The default

object will, as before, redirect any call to the MissHandler for the specific Clustered Object. It

is the MissHandler’s responsibility to recognize, if appropriate, that a representative has already

been assigned for this processor and return a reference to it. This is really just a special case of

the miss-handling process described earlier. Rather than instantiating a new representative, the

MissHandler simply returns a pointer to a previously assigned representative.

As stated earlier, a Clustered Object must obtain a new Clustered Object Identifier for itself

when it is created. Similarly, the Clustered Object must destroy itself properly. The de-assignment

37

function indicates that the Object Translation Table entry can be reused. The Object Translation

System requires that every Clustered Object implement a destroy method, which is invoked by a

client when it wants to indicate that the Clustered Object is no longer needed. The destroy method

invokes a de-assignment function of the Object Translation System and does nothing more. The

de-assignment function sets the Object Translation Entries for the target Clustered Object on all

processors to a default error object. All methods of the error object return an error status to the

invoker. This ensures that any process attempting to access a Clustered Object after it has been

de-assigned will receive an error on all method invocations.

Representatives, however, are not deallocated until all processes that may have a temporary

reference to the Clustered Object have terminated. When this occurs, the Object Translation

system calls a predefined method of the Misshandling Object, called cleanup, which deallocates all

the representatives.

3.3.2 Requirements on the implementation of Clustered Objects

Tornado’s Object Translation System places a number of requirements on the implementation and

use of Clustered Objects:

• The external interface of a Clustered Object must be implemented as C++ virtual methods

by all representatives.

• Every Clustered Object must provide a Misshandling object that implements:

– A handleMiss method, that is invoked when a miss occurs on a specific processor. This

method must return a pointer to the representative that is to be installed in the Object

Translation Table entry on the target processor.

– The instantiation of representatives implementing the clustering strategy chosen for the

target Clustered Object.

– A record of which representatives have been assigned to which processors.

– A cleanup method that is invoked by the Object Translation System to relinquish all

resources allocated to the Clustered Object, including those associated with each repre-

sentative.

• The Clustered Object when created must first instantiate its Misshandling object and return

its Clustered Object Identifier to the client. A unique Clustered Object Identifier must be

38

obtained from the Object Translation system by invoking the Object Translation Table entry

assignment function.

• The external interface must include a destroy method that is invoked by clients to indicate

that the Clustered Object is no longer required. This method should invoke the appropriate

de-assignment function of the Object Translation System.

• All accesses to a Clustered Object must be made using the given Macro and the Clustered

Object Identifier.

Additionally, to maximize locality, the classes should minimize sharing of data.

3.4 Class Representation

This section describes the class representation that was implemented to facilitate the development

of Clustered Objects. The class representation serves as a base for the development of Clustered

Objects according to the model presented in section 3.2. As stated, the Clustered Object model

is based on the Object Translation facilities of Tornado described in the previous section, and the

class representation developed is essentially a high-level interface to Tornado’s Object Translation

System, hiding the Object Translation Systems details.

The Clustered Object model presented in figures 3.6 and 3.7 identifies three separate compo-

nents:

1. An External Interface.

2. Representatives that implement the External Interface.

3. A Misshandling Object that manages the Representatives and is global to all the Represen-

tatives (but internal to the Clustered Object).

These components can be implemented with two C++ classes. One class can be used to define

the representatives with the external interface, while the other defines the Misshandling Object.

This leads to two class hierarchies from which the two objects of a new Clustered Object can be

derived from. Figure 3.13 illustrates the hierarchies that have been implemented. The classes of the

two hierarchies provide common default implementations of the methods required by the Clustered

Object System. For example, the ClusteredObject hierarchy ensures that a destroy method is part

39

_ref
_repmask

repmask()

handleMiss()
cleanup()

MissHandler

cleanup()

ClusteredObject

destroy()

setRef()

_ref

_thevp

MHShared

nextRep()

MHReplicate

_therep createFirstRep()
createRep()
lockReps()
unlockReps()

findRepOn()

_clustersize
_replist

Miss-Handling Class Hierarchy

Clustered Object Class Hierarchy

Figure 3.13: Class Hierarchies.

40

of the external interface for all Clustered Objects. The MissHandling hierarchy defines default

handleMiss and cleanup methods for all MissHandling objects.

The next two subsections discuss the ClusteredObject and MissHandler hierarchies in more

detail. Section 3.4.3 presents the two main representative policies, Shared and Replicated, that

are currently supported by the hierarchies. Section 3.4.4 gives two example Clustered Object

implementations of an integer counter.

3.4.1 ClusteredObject Hierarchy

The ClusteredObject class serves two main purposes:

1. To provide the common external interface definitions for all Clustered Objects.

2. To provide the common methods required by all representatives.

When implementing a new Clustered Object, a programmer is expected to define a new class that

inherits from ClusteredObject or one of its subclasses. We will call this class the representative class.

Instances of the representative class are the representatives for the Clustered Object. All external

interface methods are defined as public virtual methods of the representative class. Generally,

clients of the Clustered Object do not directly instantiate instances of the representative class; the

Misshandling object is expected to create, manage and delete all instances of the representative

class. In order to standardize Clustered Object instantiation, a programming convention has been

adopted, whereby the programmer defines a static create method as part of the representative class.

This method is responsible for ensuring that an instance of the Misshandling object is created and

that the Clustered Object Identifier is passed back to the client.

It is expected that subclasses of ClusteredObject will serve as definitions for generic Clustered

Object external interfaces and representatives. For example, one might create a subclass called

CounterCO that defines a generic external interface for counter type Clustered Objects. Similarly,

one might create a subclass of ClusteredObjects called BroadCastReps that implements a generic

form of broadcast communication between representatives.

The dual nature of the ClusteredObject class hierarchy and the lack of multiple inheritance

support in Tornado, makes it difficult to provide arbitrarily combinable, generic external interfaces

and generic representative implementations. For example, multiple inheritance would be required

to define a Clustered Object that supports both the generic counter interface defined by CounterCO

and the generic broadcast communications capabilities defined by BroadCastReps. An alternative

41

approach might be to create a new class that explicitly implements both the external interface of

CounterCO and the behaviour of BroadCastReps. This method however, requires re-implementing

the code of at least one of the pre-existing classes within the new class. This leads to added

complexity in the class hierarchy and potential for errors.

3.4.2 MissHandler Hierarchy

The classes of the MissHandler hierarchy are the base classes from which the Misshandling object

of a Clustered Object is derived. These classes serve two purposes:

1. They define and implement the methods that the Object Translation System requires of the

MissHandler.

2. They define and implement the representative management policies for a Clustered Object.

When implementing a new Clustered Object, the programmer must ensure that a Misshandling

object is instantiated to manage its representatives. The subclasses of the MissHandler class imple-

ment different representative management policies. Shared and replicated representative policies

are implemented by the MHShared and MHReplicated classes, respectively (these polices are de-

scribed in the following subsection). A programmer is free to add additional policies or to provide

specializations of the current ones through standard inheritance.

3.4.3 Shared and Replicated Clustered Objects

The three data management policies that we will focus on are sharing, replication and partitioning.

To support these policies, the class representation must be able to support two distributions of

representatives; shared and replicated.

In the shared case, only one shared representative is needed. The single representative contains

the one and only copy of the data for the entire Clustered Object. Any processor that attempts

to access the Clustered Object, is always directed to this one representative. The miss-handling

behaviour used to implement a shared representative Clustered Object is simple: after instantiating

the shared representative, the Misshandling object simply needs to return a pointer to it on every

translation miss. The MHShared class implements this behaviour. The MHShared class can be

directly instantiated to produce a MissHandling object for any shared representative Clustered

Object. This allows an implementor to define a shared representative Clustered Object without

having to explicitly define a new Misshandling class.

42

A Clustered Object that uses MHShared, displays the same behaviour as a standard C++

object. Although this seems like a trivial use of the Clustered Object Model, it is important in that

the shared data policy is often required to efficiently implement frequently read and written shared

data, and in that it becomes trivial to turn any standard C++ class into a shared representative

Clustered Object. This helps encourage incremental design and optimization of Clustered Object

based systems. An implementor can first use a naive shared implementation of a data structure and

then later return and selectively replace such implementations with optimized versions as needed.

The replicated and partitioned data policies require multiple representatives. A given instance

of the representative class can either store a replica or a partition of the Clustered Object’s data.

How the instance is used is completely dependent on the methods of the representatives. For

example, in the case of a partitioned counter, each representative might have an integer value that

is treated as only a portion of the total value. On the other hand, in the case of a replicated

identifier, each representative’s integer value could be treated as a local replica of the identifier’s

value.

MHReplicate implements the necessary miss-handling behaviour to support multiple represen-

tatives. It also supports arbitrary fixed clustering degrees. Unlike the MHShared class, members of

the MHReplicate class cannot be instantiated directly. It is first necessary to define a subclass of

MHReplicate that meets the needs of the Clustered Object. In particular, it must implement the

createFirstRep and createRep methods, which together define a Clustered Object’s representative

instantiation behaviour. CreateFirstRep defines the instantiation of the first representative, while

createRep defines the instantiation of all other representatives.

The MHReplicate class automatically records references to all representatives and the processors

to which they have been assigned. It ensures that createFirstRep or createRep is invoked only once

per cluster. The clustering degree can be passed as an initialization argument to a subclass of

MHReplicate. The MHReplicate class also ensures correct destruction of the representatives. The

Miss Handling class MHReplicate provides the following convenience functions that will be referred

to as the Miss-Handling representative management functions: lockReps, unlockReps, nextRep, and

FindRepOn. These functions allow access to the set of representatives maintained by the Miss-

Handling object. A representative can use these functions to lock, unlock and iterate over the set

of representatives that currently compose the Clustered object3. The FindRepOn method returns a

pointer to the current representatives associated with a specified processor. It returns a null value
3Locking the set of representatives ensures that no changes, additions or deletions, to the set will occur.

43

class integerCounter : public ClusteredObject {
public:

virtual void value(int &val)=0;
virtual void increment() =0;
virtual void decrement() =0;
virtual ~integerCounter(){}

};

typedef integerCounter **integerCounterRef;

class SharedCounterCO : public integerCounter {
int _count;
MHShared _mh;
SharedCounterCO() : _mh(this) { _count=0; }
integerCounterRef ref() { return (integerCounterRef)_ref; }

public:
static integerCounterRef create() {

return (integerCounterRef)((new SharedCounterCO()->ref()));
}
virtual void value(int &val) { val=_count; return; }
virtual void increment() { FetchAndAdd(&_count,1); }
virtual void decrement() { FetchAndAdd(&_count,-1); }

};

Figure 3.14: C++ Code that implements the Shared Counter as a Clustered Object

if no representative is currently assigned.

3.4.4 Examples

This subsection presents two Clustered Object implementations of the integer counter: Shared-

CounterCO and CounterLocalizedCO, using a shared representative and multiple representatives,

respectively.

Shared Representative Example

Figure 3.14 shows an example of how to implement the shared counter as a Clustered Object. The

following list summarizes the differences between the Clustered Object version in figure 3.14 to the

non-Clustered Object version presented in figure 2.4 on page 17:

• The integerCounter class is now inherited from the ClusteredObject class. All classes which

now implement the integerCounter interface will be Clustered Object representative classes.

• The SharedCounterCO has been given a member of MHShared (mh) that serves to define a

MissHandler for the Clustered Object.

44

• The constructor of SharedCounterCO has been made private and an initializer for mh has

been added to the constructor.

• A static create method has been added to SharedCounterCO that creates a new instance of

the Clustered Object and returns the Clustered Object Identifier to the instantiator.

By inheriting from the ClusteredObject class, the SharedCounterCO class inherits the default

destroy and cleanup methods to facilitate correct Clustered Object destruction. The ClusteredObject

class also ensures that the representative has a copy of the Clustered Object Identifier for the

Clustered Object it belongs to.

The instantiation of the representative will also ensure the instantiation of the Misshandling

object, as it is embedded in the representative.

To avoid client code from trying to directly instantiate instances of the SharedCounterCO class,

the constructor for the class has been made private. C++ access rules will then restrict the

instantiation of the SharedCounterCO class to the member methods of the class itself. Instead, a

static create method has been added to allow clients to create instances of the Clustered Object.

This method creates an instance of the SharedCounterCO class. It instantiates both the sole

representative and the MissHandling object embedded in it. The create method also passes the

Clustered Object Identifier back to the creator.

The use of a static create method and the privatization of the default constructor, are pro-

gramming conventions for Clustered Objects that the Programmer needs to be aware of. Such

conventions could be avoided if explicit compiler support for Clustered Objects were available.

Replicated Representative Example

Figure 3.15 shows the implementation of a clustered counter using a local representative on each

processor that maintains a local count value on the processor it is assigned to. This example is

similar to the non-Clustered Object example presented in figure 2.8 on page 20.

Perhaps the most noticeable feature of the code in figure 3.15 is the addition of a separate

class definition for the MissHandling Object. The CounterLocalizedCOMH class is a subclass of

MHReplicate and defines how representatives are to be instantiated. This done by providing im-

plementations for the createFirstRep and createRep methods. CreateFirstRep and createRep are

essentially the same (figure 3.15) since all representatives must be instantiated identically. This

would not be the case, for example, if one required the ability to specify the starting value of the

45

class CounterLocalizedCO : public integerCounter {
class CounterLocalizedCOMH : public MHReplicate {
public:

virtual ClusteredObject * createFirstRep() {
return (ClusteredObject *)new CounterLocalizedCO;

}
virtual ClusteredObject * createRep() {

return (ClusteredObject *)new CounterLocalizedCO;
}

};
friend class CounterLocalizedCO::CounterLocalizedCOMH;
struct counter {

int val;
char pad[SCACHELINESIZE - sizeof(int)];

} _count;
CounterLocalizedCO() { _count.val=0; }

public:
static integerCounterRef create() {

return (integerCounterRef)((new CounterLocalizedCOMH())->ref());
}
virtual void value(int &val) {

MHReplicate *mymh=(MHReplicate *)MYMHO;
CounterLocalizedCO *rep=0;
val=0;
mymh->lockReps();
for (void *curr=mymh->nextRep(0,(ClusteredObject *&)rep);

curr; curr=mymh->nextRep(curr,(ClusteredObject *&)rep))
val+=rep->_count.val;

mymh->unlockReps();
}
virtual void increment() { FetchAndAdd(&(_count.val),1); }
virtual void decrement() { FetchAndAdd(&(_count.val),-1); }

};

Figure 3.15: C++ Code for the LocalizedCounter Clustered Object

46

counter.

In the case of a Clustered Object with multiple representatives, the MissHandling Object cannot

be directly embedded into the representatives. The MissHandling Object must be created at the

time the Clustered Object is created. As a result the static create method of CounterLocalizedCO

creates only an instance of the CounterLocalizedCOMH. The miss-handling behaviour it implements

will ensure that representatives are created as needed.

It is interesting to compare the methods of the Clustered Object CounterLocalizedCO class

with the methods of the non-Clustered Object CounterLocalized class. In the non-Clustered Object

variant, each method must explicitly locate the local value within the array of all local values,

while the Clustered Object variant does not need to identify local data values, since the data

members of the representatives are the local values. The non-Clustered Object variant also needed

to construct all the local counter values at initialization time by remotely invoking an initialization

procedure on every processor. In contrast, the Clustered Object variant avoids this complexity, and

representatives are instantiated on first use. The Clustered Object variant dynamically adjusts to

the number of processors that access it.

The value method of the non-Clustered Object version uses the global array of local count values

to calculate the total value of the counter. The Clustered Object version makes use of the Miss-

Handler representative management functions to identify the representatives so that the total value

can be calculated. The MYMHO utility macro provided by the ClusteredObject class is used by

the representative to locate its MissHandling Object. Since the Clustered Object model allows for

dynamic instantiation of representatives, it is necessary to lock and unlock the list of representatives

prior to and after traversal of the list. Once the lock is obtained, an initial call to nextRep returns

the first representative in the list. Additional calls return the successive representatives.

3.4.5 Summary

The class representation we developed, provides a base for implementing Clustered Objects accord-

ing to the Clustered Object model supported by Tornado’s Object Translation system. The two

main types of objects that compose a Clustered Object are (i) representatives and (ii) Misshandling

objects. There is one Misshandling object per Clustered Object and the Misshandling object is

responsible for managing one or more representatives.

The representatives define and implement the external interface for the Clustered Object. The

representatives of a Clustered Object are built by implementing a subclass of the ClusteredObject

47

class. By convention, an implementor of a Clustered Object must provide a static C++ create

method that creates instances of the Clustered Object.

We have implemented two separate types of MissHandling objects: MHShared and MHRepli-

cate. MHShared can be used to create Clustered Objects that only support a shared representative

policy, where all requests to a Clustered Object are directed to a single shared representative. The

MHReplicate class is a base to build more general misshandling objects that support replicated

representative Clustered Objects. Subclasses of MHReplicate instantiate multiple local representa-

tives. The local representatives can be implemented to support replication or partitioning of the

Clustered Object’s data. The MHReplicate class supports fixed clustering degrees by ensuring that

only one representative is instantiated per cluster of processors. The number of processors in a

cluster can be specified as an initialization parameter to the MissHandling object.

Chapter 4

Examples of Clustered Object

implementations

Clustered Objects facilitate the implementation of traditional objects as a collection of represen-

tatives on an SMP. When implementing a given object there are many options as to where and

how data can be located, managed and accessed. Some data can be local to a representative, while

other data can be global across all representatives. Similarly, some data can be accessed via shared

memory, while other data are accessed via remote procedure calls.

This chapter attempts to illustrate some of these options through example Clustered Object

implementations. The first section will present additional Clustered Object implementations of the

Counter data structure discussed in the previous chapters. The next section will present a more

complex SMP data structure from the literature and three Clustered Object implementations of it.

4.1 Counters

The CounterLocalizedCO Clustered Object in figure 3.15 (page 45) uses the Miss-Handling rep-

resentative management functions to implement its value method. Although the MissHandler

representative management functions are convenient to use, they are not optimized for any specific

Clustered Object type. Hence, an implementor may choose to implement and coordinate shar-

ing between representatives by other, more efficient means. These can include: providing explicit

representative organizations, use of representative global data, and use of function shipping. The

following three subsections present examples that illustrate these methods.

48

49

4.1.1 Explicit Representative Organization

By using specific knowledge about the object being implemented and its use, the implementor

can explicitly organize the representatives to better support global operations. For example, the

representatives of the counter Clustered Object could be linked together to form a circular chain.

This allows the global summation function to be naturally implemented as a traversal of the chain.

Although this appears similar to the use of the Miss-Handling representative management function

nextRep, it differs in how the chain is implemented. In the case of the Miss Handler representative

management functions, the chain is implemented as a separate linked list maintained by the Miss

Handler, with each node containing a pointer to a specific representative. Explicitly organizing the

representatives into a chain avoids the need to access the Miss Handler.

To implement the counter as a chain, each representative must maintain a pointer to the next

representative. It is necessary to ensure that modifications (insertions and deletions) to the list and

the global sum operation (which traverses the list) are properly synchronized. Traditionally this is

achieved with proper locking. In this particular case, however, locking can be avoided by observing

that:

1. Deletions from the representative chain do not conflict with summation operations because

representatives, once created, exist for the remaining life-time of the Clustered Object.

2. Inserting a representative during a summation does not affect the accuracy of the sum. As

already observed, the value method is not atomic with respect to updates and as such its

result is approximate. If a representative is inserted during a summation, its value may or

may not be included in the sum. This is no different than increments or decrements that occur

during the summation operation. Insertions thus need not be made atomic with respect to

the summation.

3. To maintain the consistency of the pointers that form the chain, it is possible to carefully

order the sequence in which pointers in the chain are modified and thus prevent dereferencing

of dangling pointers.

Figure 4.1 presents a Clustered Object that is implemented as a chain of representatives. Each rep-

resentative has a pointer to the next representative in the chain. The createFirstRep and createRep

methods maintain the chain of representatives by correctly linking in new representatives when

they are created. Finally, the value method now simply sums the values from each representative

50

class CounterLinkedCO : public integerCounter {
class CounterLinkedCOMH : public MHReplicate {

CounterLinkedCO *_first,*_last;
public:

virtual ClusteredObject * createFirstRep() {
_first=_last=new CounterLinkedCO;
_last->_next=_first;
return _last;

}
virtual ClusteredObject * createRep() {

CounterLinkedCO *tmp=new CounterLinkedCO();
tmp->_next=_first; _last->_next=tmp; _last=tmp;
return _last;

}
};
friend class CounterLinkedCO::CounterLinkedCOMH;

int _count;
CounterLinkedCO *_next;
char pad[SCACHELINESIZE - sizeof(int) - sizeof(CounterLinkedCO *)];

CounterLinkedCO() { _count=0; _next=0; }
public:

static integerCounterRef create() {
return (integerCounterRef)((new CounterLinkedCOMH())->ref());

}
virtual void value(int &val) {

val=_count;
for (CounterLinkedCO *p=_next;

p!=this; p=p->_next)
val+=p->_count;

}
virtual void increment() { FetchAndAdd(&_count,1); }
virtual void decrement() { FetchAndAdd(&_count,-1); }

};

Figure 4.1: C++ CounterLinkedCO implementation.

51

as it traverses the chain.

Many other organizations such as single linked lists, doubly linked lists and trees may be useful,

depending on the type of Clustered Object being implemented.

4.1.2 Representative Global Shared Data

By making use of shared memory, an implementor is free to allocate data that can be accessed

globally by all the representatives of a Clustered Object. For example, rather than adding links to

each representative, as in the previous example, a shared array of representative pointers could be

used. A pointer to each representative would be recorded in the array and the summation procedure

would make use of the array to visit each representative. The implementor must correctly manage

and maintain the global data. She must make sure the global data is allocated and deallocated

correctly, that each representative is given access to it and that its consistency is maintained.

When implementing a counter that makes use of a shared array of representative pointers it

seems natural to have the Miss Handler allocate and deallocate the array when the Clustered Object

is allocated and deallocated, respectively. It can ensure that each representative has access to the

array by passing the array pointer to each representative when it is constructed.

The array must be large enough to hold a pointer to each representative that might be instan-

tiated. This can be achieved by allocating an array with one element per processor, so that it can

be safely indexed by processor number. Assigning each processor its own element within the array

avoids the need for synchronization when recording a representative in the array. Remembering the

scenario presented in Chapter 2, we expect that the counter will be accessed on every processor,

thus the array will be completely utilized.

Similar to the example in the previous subsection, the approximate nature of the counter makes

it unnecessary to ensure that updates to the array are atomic with respect to traversal of the array

by the value method. However, it is necessary to ensure that the value method does not attempt

to access a representative that does not exist. This is easily ensured by having all elements of the

array initialized to null and having the value method check the validity of each element prior to

dereferencing it.

Figure 4.2 presents an implementation using a shared array. The Miss Handler’s createFirstRep

method creates the shared array and passes to the first representative a reference to this array.

The createRep method passes the reference to this array to all other representatives as they are

instantiated. Each representative records a reference to itself in the array when it is instantiated.

52

class CounterArrayCO : public integerCounter {
class CounterArrayCOMH : public MHReplicate {

CounterArrayCO **reparray;
public:

virtual ClusteredObject * createFirstRep() {
reparray=new CounterArrayCO *[NUMPROC];
for (int i=0;i<NUMPROC;i++) reparray[i]=0;
return new CounterArrayCO(reparray);

}
virtual ClusteredObject * createRep() {

return new CounterArrayCO(reparray);
}
virtual ~CounterArrayCOMH() {

delete[] reparray;
}

};
friend class CounterArrayCO::CounterArrayCOMH;

int _count;
char pad[SCACHELINESIZE - sizeof(int)];
CounterArrayCO **_reps;

CounterArrayCO(CounterArrayCO **reparray)
{

_count=0;
_reps=reparray;
reparray[MYVP]=this;

}

public:
static integerCounterRef create() {

return (integerCounterRef)((new CounterArrayCOMH())->ref());
}
virtual void value(int &val) {

val=0;
for (int i=0;i<NUMPROC;i++)

if (_reps[i]) val+=_reps[i]->_count;
}
virtual void increment() { FetchAndAdd(&_count,1); }
virtual void decrement() { FetchAndAdd(&_count,-1); }

};

Figure 4.2: CounterArrayCO implementation.

53

class ArrayofRepPointers;
typedef ArrayofRepPointers **ArrayofRepPointersRef;

class ArrayofRepPointers : public ClusteredObject {
int _size;
ClusteredObject **_reps;
MHShared _mh;

ArrayofRepPointers(int &size) : _mh(this) {
_size=size;
_reps=new ClusteredObject *[_size];
for (int i=0;i<_size;i++) _reps[i]=0;

}
ArrayofRepPointersRef ref() { return (ArrayofRepPointersRef) _ref; }

public:
static ArrayofRepPointersRef create(int &size) {

return (new ArrayofRepPointers(size))->ref();
}
virtual void getValueAt(int &index, ClusteredObject* &value) {

if (index>_size) value=0;
else value=_reps[index];

}
virtual void setValueAt(int &index, ClusteredObject* &value) {

if (index<_size) _reps[index]=value;
}

};

Figure 4.3: A Clustered Object that implements a shared Array of representative pointers.

The Miss Handler also has a destructor that deallocates the array when the Clustered Object

is destroyed. The value method iterates across the array, accessing the count values of all the

representatives.

A natural extension to the above example is to use a Clustered Object to implement the global

array. Figures 4.4 and 4.3 shows how this might be done. The Miss Handler for the counter

instantiates an instance of the new array Clustered Object and passes to each representative of the

counter, as it is instantiated, a reference to the array Clustered Object.

While, the shared memory of a SMP provides an easy way to implement representative global

data within a Clustered Object, using a separate Clustered Object to implement global data can

provide the implementor with greater flexibility. For instance, the shared array in the above

example might later be replaced with a partitioned array, without affecting the implementation

of the CounterArrayCOCO in any way. This allows an implementor to customize the counter for

different access patterns by simply replacing one standard component with another more suited one.

However, there is a space and time overhead associated with the use of a new Clustered Object.

54

class CounterArrayCOCO : public integerCounter {
class CounterArrayCOCOMH : public MHReplicate {

ArrayofRepPointersRef _reparray;
public:

virtual ClusteredObject * createFirstRep() {
int procs=NUMPROC;
_reparray=ArrayofRepPointers::create(procs);
return new CounterArrayCOCO(_reparray);

}
virtual ClusteredObject * createRep() {

return new CounterArrayCOCO(_reparray);
}
virtual ~CounterArrayCOCOMH() {

DREF(_reparray)->destroy();
}

};
friend class CounterArrayCOCO::CounterArrayCOCOMH;

int _count;
char pad[SCACHELINESIZE - sizeof(int)];
ArrayofRepPointersRef _reps;

CounterArrayCOCO(ArrayofRepPointersRef reparray)
{

_count=0;
_reps=reparray;
ClusteredObject *me=this;
DREF(_reps)->setValueAt(MYVP,me);

}
public:

static integerCounterRef create() {
return (integerCounterRef)((new CounterArrayCOCOMH())->ref());

}
virtual void value(int &val) {

ClusteredObject *rep;
val=0;
for (int i=0;i<NUMPROC;i++)
{

DREF(_reps)->getValueAt(i,rep);
if (rep) val+=((CounterArrayCOCO *)rep)->_count;

}
}
virtual void increment() { FetchAndAdd(&_count,1); }
virtual void decrement() { FetchAndAdd(&_count,-1); }

};

Figure 4.4: C++ CounterArrayCO implementation.

55

Using a separate Clustered Object means using additional Object Translation System resources

and per-Clustered Object memory overhead1. Accesses to the array will also suffer a slight increase

in overhead due to the double de-reference required to access the Clustered Object2.

4.1.3 Function shipping

So far, all the examples have used shared memory to access the individual counters of the repre-

sentative when calculating the global sum. All the data is thus brought to the processor on which

the global sum is calculated. This model of computation is often referred to as data shipping.

Function shipping, instead, moves the computation to the processors on which the data resides.

For example, the value method of a counter can be implemented using remote procedure calls. The

global value of the counter could be obtained by remotely invoking a local sum method on each

processor successively. The local sum method would take a value as an argument and add to it its

current local count value, returning the sum.

Remote procedure calls are not likely to make performance sense for the implementation of a

Counter, but we describe it here nevertheless for example purposes. In some cases, function shipping

can be cost effective. For example, function shipping can often eliminate the need for locking, as

data accesses can be forced to occur on one processor only. Also, function shipping can reduce

false sharing and coherency traffic in general, as multiple cached copies of data are avoided. On the

other hand, remote procedure calls can be expensive. They are often implemented using the cross-

processor interrupt facility, with both a direct overhead for the interrupt handling and indirect

overhead due to instruction cache disturbance on the remote processor. The implementor must

decide if function shipping is appropriate based on the expected overheads. If remote operation

is complex and invoked relatively infrequently, then its overhead, when amortized over the total

number of accesses to the Clustered Object, may prove to be smaller than the overhead of data

shipping. Of course, a Clustered Object is also free to mix the use of data and function shipping.

Figure 4.5 shows a counter implementation using function shipping. A sum method has been

added to the representatives, which adds the representatives’ current count value to the value passed

in. The value method makes use of Tornado’s remote procedure call facilities to successively invoke

the sum method on each processor. The value method need not be concerned with the possibility

that a representative does not exist on a given processor, as the Clustered Object system will ensure
1In our implementation, the memory costs for a Clustered Object that uses an MHReplicate Misshandler are: 2

primary cache lines for the Misshandler and 1 primary cache line per representative, where each cache line is 32 bytes.
2On a modern processor, this cost is negligible if the pointers’ values are cached.

56

class CounterRemoteCO : public integerCounter {
class CounterRemoteCOMH : public MHReplicate {
public:

virtual ClusteredObject * createFirstRep() {
return (ClusteredObject *)new CounterRemoteCO;

}
virtual ClusteredObject * createRep() {

return (ClusteredObject *)new CounterRemoteCO;
}

};
friend class CounterRemoteCO::CounterRemoteCOMH;
struct counter {

int val;
char pad[SCACHELINESIZE - sizeof(int)];

} _count;
CounterRemoteCO() { _count.val=0; }

virtual TornStatus sum(int *val) { *val+=_count.val; return 0; }

public:

static integerCounterRef create() {
return (integerCounterRef)((new CounterRemoteCOMH())->ref());

}
virtual void value(int &val) {

int *res=new int;
*res=_count.val;
for (int i=0;i<NUMPROC;i++)

if (i!=MYVP) {
RFUNC1(i,(CounterRemoteCO **)_ref,

CounterRemoteCO::sum,res);

}
val=*res;
delete res;

}
virtual void increment() { FetchAndAdd(&(_count.val),1); }
virtual void decrement() { FetchAndAdd(&(_count.val),-1); }

};

Figure 4.5: CounterRemoteCO implementation

57

creation of a representative to satisfy the request if one does not already exist. This does not impose

any extra overhead based on the scenario of chapter 2 for which the counter is to be used, as it is

expected that all the processors will eventually have its own representative. In general, however,

a different implementation may query the Miss Handler representative management functions to

determine which processors to direct the remote procedure invocations to.

4.1.4 Clustering Degree

The previous subsections focused on how to implement the global behaviour of a Clustered Object.

This section will consider the clustering degree of an object. In the previous examples, it was

assumed that each processor would have its own representative, and hence the clustering degree

was assumed to be 1. This need not be the case, as a representative can be shared between some

subset of processors. For example, a Counter Clustered Object might be defined to have a clustering

degree of 4, in which case clusters of four processors would share a representative.

To simplify the specification of arbitrary clustering degrees, support has been put into the

MHReplicated Miss Handling class. When constructing a Miss Handler of type MHReplicate, a

clustering degree can be specified as an argument. The class will ensure that createRep will be

invoked only when a new representative is necessary; if a miss occurs on a processor that belongs to

a cluster for which a representative already exists, then the handlemiss function of the MHReplicate

class will install a pointer to the existing representative into the Object Translation Table rather

than instantiating a new representative.

It is up to the implementor to ensure that the implementation can support various degrees of

clustering. For example, CounterLinkedCO would function correctly at different clustering degrees

without modification, whereas the CounterRemoteCO of the previous subsection would not, as it,

by invoking the sum function on each processor, would sum each representatives’ value 4 times (if

the clustering degree is 4).

The CounterArrayCO and CounterArrayCOCO clustered objects would also function properly

without modification for different degrees of clustering. However, in both cases, if the clustering

degree is 4 then 3/4 of the array would be unused, since the array of representative pointers is

allocated to be equal to the number of processors. This could be solved by modifying the allocation

of the array to be 1/4 the size and to ensure that all indexing into the array is modified to use a

cluster number rather than processor number.

The clustering degree that is appropriate for a given instance of a clustered object depends on

58

its usage and will typically need to be experimentally determined. Thus, a Clustered Object should

be designed to function at arbitrary clustering degrees, so the implementor may wish to make the

clustering degree an instantiation parameter.

4.2 Software Set-Associative Cache

This section examines how a more sophisticated object can be implemented as a clustered object.

The object being considered is a software set-associative cache that has been of use in multiprocessor

operating systems. Peacock et al. developed Software Set-Associative Caches (SSAC) as a general

software cache architecture to address contention problems that occur with the naive software

caches often being used [28],[29].

This section will focus on a straight-forward SSAC architecture, as is described in [29] and

[28]. The structure of SSAC is similar to that of a hardware cache. Specifically, the simple SSAC

implements a write back cache with fixed set-associativity and a least recently used replacement

policy within a set. Unlike a typical hardware cache, however, the SSAC is designed to be shared

by multiple processors.

Figure 4.6 illustrates the basic shared SSAC structure and how it is used to cache objects. Every

cache object (data item) to be cached by the SSAC must have a unique Cache Object Identifier

(COID). The complete range of COIDs form the COID space, represented by the rectangular array

at the top of the figure. Processors, represented by circles, wishing to make a request for data

associated with a given COID, must apply a Hash Function (HF) to the COID. The Hash Function

maps a COID onto a unique hash queue via a Queue Index (QI). The shared array of hash queues,

located in the middle of the diagram, forms the main body of the SSAC. Each hash queue is

implemented as a fixed size array of hash entries (the size of this array is the associativity of the

SSAC). For clarity, only one of the hash entry arrays is illustrated on the left-most hash queue.

Each hash entry is capable of storing one cached object along with some state flags associated with

the data. A blow-up of one of the hash entries is shown in the bottom center of the figure.

Each hash queue has a lock that protects all the entries on that queue. To allow for a least

recently used eviction policy, a counter within each hash queue and last-used values within each

hash entry are maintained. On each access to a hash queue, the hash queue’s counter is updated.

This counter serves as a global access count for the given hash queue. On each access to a hash

entry, the value of the counter of the hash queue to which the entry belongs is recorded in the

59

. . .
COID Space

COID

HF:COID −> QI HF:COID −> QI HF:COID −> QI

Cache Object Id (COID)
Queue Index (QI)
Processor Id (PI)
Hash Function (HF)
Counter (C)

lock locklock lock lock lock lock lock lock lock lock lock

busy

C

id
flags (BUSY,DIRTY)
lastused
data

Processor

Figure 4.6: Simple Shared SSAC

60

last-used field of the entry. The entry with the smallest last-used value, is the least recently used

entry with respect to the other entries in the same queue.

The two main operations on an SSAC are get and put . The get operation takes a COID as

input and returns a pointer to a hash entry that contains the corresponding data. Abstractly, it

accomplishes this by using the COID to index into the hash table. If the target cache object is

found, then a pointer to the appropriate hash entry is returned. If it was not found, then the least

recently used hash entry on the hash queue is identified. If that entry is dirty, it is written back to

a backing store, and the target cache object is loaded from the backing store into the least recently

used hash entry, before a pointer to it is returned.

A hash entry can be marked as busy by setting a flag appropriately. In figure 4.6, the middle

entry of the array of hash entries pointed to by the left-most hash queue is marked busy. Get will

spin until its target entry is no longer busy, allowing synchronized access to the data. For this

study, we extended the get operation to implement a multiple readers/single writer policy3 and

thus differentiate between get for read and get for write. In the case of a get for read, the entry

will not be marked busy. However, in the case of get for write, the entry will be marked busy. In

either case, if an entry is identified as the target of the get and it is marked busy, then both get

operations will spin on the busy flag of the target entry until it is unset. The busy flag is unset as

a side-effect when the put operation completes.

The SSAC described above will be referred to as the Simple Array SSAC. The following three

subsections will explore three different implementations of the Simple Array SSAC Architecture in

the clustered object framework:

1. Shared SSAC

2. Replicated SSAC

3. Partitioned SSAC

4.2.1 Shared SSAC

Perhaps the most straight-forward SSAC realization as a clustered object would be to directly im-

plement the Simple Array SSAC with one shared representative object and two visible operations:

get and put . The get for read and get for write operations can be implemented as one get operation
3In our implementation a writer is free to proceed regardless of readers. It is assumed that a reader makes a copy

of the data and that they will verify the validity of the data prior to using it.

61

that takes a parameter indicating read or write. By extending code fragments presented in [29]

and applying standard object-oriented techniques, one can arrive at a straight-forward set of C++

classes that implement the Simple Array SSAC. The Simple Array SSAC is implemented as two

classes: SSAC is an abstract class that defines the interface of the SSAC classes, and SSACSim-

pleSharedArray inherits and implements the SSAC interface. By separating the interface from the

implementation, it is easier to provide different implementations at a later point without needing

to modify client code.

The SSACSimpleSharedArray class implements the structures of figure 4.6. It contains an array

of hash queue structures and each hash queue structure contains a lock, a counter and a pointer

to an array of cache entries. Each cache entry contains a COID, a flags field and a last-used field.

Initially, the pointers to the array of cache entries in the hash queue array elements are set to null.

The space required for a given array of entries is allocated on first access to the given hash queue.

The SSACSimpleSharedArray is parameterized so that the number of hash queues and the number

of elements in the hash queues can be set at creation time.

The standard C++ SSACSimpleSharedArray class, as described so far, can be converted into a

shared clustered object with little programming effort. The following are the steps required:

1. Make the SSAC class a sub class of ClusteredObject

2. Add a MHShared member to the SSACSimpleSharedArray class and a corresponding initial-

izer to SSACSimpleSharedArray ’s constructor initialization list.

3. Add a public static create method to the SSACSimpleSharedArray class and hide its current

constructor by making it private.

The clustered object framework requires that all externally visible methods of the clustered object

are virtual, but in this case since the interface for SSACSimpleSharedArray has already been defined

as a set of virtual functions in the abstract base class, the requirement of having all external methods

virtual is already met. In total, the conversion amounts to the modification of 3 lines of code and

the addition of 6 new lines of code to define the create method.

A user of the SSACSimpleSharedArray would call the static create method to instantiate a

new instance of the SSACSimpleSharedArray Clustered Object. The Clustered Object reference

returned by the create method is used to access the instance. This Clustered Object SSAC im-

plementation will share one representative for all processors and will be referred to as the Shared

SSAC implementation.

62

Replicated

. . .
COID Space

lock locklock lock lock lock lock lock lock lock lock lock lock locklock lock lock lock lock lock lock lock lock lock lock locklock lock lock lock lock lock lock lock lock lock

COID

HF:COID −> QI HF:COID −> QI HF:COID −> QI

busy

busy

busy

C C C

lock locklock lock lock locklock lock lock locklock lock

Directory

Figure 4.7: Replicated SSAC

In the Simple Shared SSAC, all processors compete for access to the same shared hash table.

The Simple Shared SSAC structure has already been tuned for concurrency, as it was found by

Peacock et al. that having individual locks on each hash queue leads to minimal lock contention

[29]. However, the Simple Shared SSAC does nothing to improve cache or data locality.

4.2.2 Replicated SSAC

This subsection explores an implementation of the SSAC architecture that uses multiple represen-

tatives to replicate the Simple Array SSAC. We refer to this implementation as the Replicated

SSAC. Figure 4.7 illustrates such an organization. It replicates the Shared SSAC structure on a

per-processor basis. Consistency between the replicas is maintained using a directory-based write-

update cache protocol [34, 20]. It was felt that better performance may actually be achieved by

using an invalidate protocol but that the added complexity of the update protocol would better

explore the expressiveness of the Clustered Object approach. From the clients’ perspective, the

Replicated SSAC and the Shared SSAC should appear to be identical and thus provide the same

interface and functionality, even if the performance of the two may differ depending on the access

63

pattern.

Although the interface remains the same, the implementation of get and put must be modified

substantially to maintain coherency between the replicas. Analogous to hardware caches, it is

unnecessary to keep the replicas identical in what they contain. However, if copies of the same

element exist in two replicas then the copies need to be kept coherent. A directory can be used to

keep track of the number and location of the copies.

A get operation is always directed to a local representative of the SSAC. If the requested object

is not found in the local replica, then the directory is consulted to see if the object exists in any of

the other replicas. If it does, the data is copied to the local replica and the directory is updated to

reflect the new copy. If the value does not exist in any of the replicas, then the object must be loaded

from backing store, as in the Shared SSAC case, and the directory must be updated accordingly.

To synchronize data access, get for write must now ensure that the busy bits on all of the copies

are set, and put must update all copies and unset their busy bits. With the Replicated SSAC,

get for read that hits in its local representative is handled identically to that of the Shared SSAC.

However, on any miss or get for write and put pair, additional work must be done to maintain the

directory and the consistency of any copies that exist.

The Clustered Object classes makes it easy to replicate the Simple Shared Array SSAC into

multiple representatives using the MHReplicate Miss Handling class. Most effort is needed to

implement the coherence actions between the representatives. In particular, it is necessary to add

the global directory and to extend the get and put operations to make use of the directory.

In one implementation of the counter (section 4.1.2), a shared array was used to maintain

pointers to the representatives. The array was relatively small and instantiated on the processor

on which the first representative was created. Additionally, accesses to the array did not need any

explicit synchronization, since after being filled, the array was accessed read only. As such, accesses

to it were efficient, as each processor would locally cache the array in the processor cache. This is not

as simple in the case of the directory, for the directory can be of considerable size considering that

it needs to track every cache entry. Access to the directory will require explicit synchronization to

ensure its correctness, and it may often require updates. Allocating the directory on one processor

will imbalance the per processor memory usage of the Simple Replicated Cache and will also lead

to higher contention on the memory module in which it resides.

By partitioning the directory across the representatives, its memory usage can be equally dis-

tributed. Each representative would thus contain a portion of the directory. By also dividing the

64

id
flags (BUSY,MODIFIED)
vpmask

lock locklock lock

busy

C

lock

lock

lock locklock lock

busy

C

lock

lock

Figure 4.8: Replicated SSAC composed of two representatives.

number of hash queues by the number of representatives, it is possible to assign each hash queue to

a particular directory partition. The directory partitions can either be directly embedded into each

representative, or the entire directory can be implemented as a separate clustered object. Access

to the directory can be implemented either through shared memory or remote procedure invoca-

tion. The example implementation of figure 4.8 directly embeds the directory partitions into the

representatives of the Replicated SSAC and uses shared memory to access and update the portions.

The example makes use of the convenience method FindRepOn of the MHReplicate misshandler

when the representative associated with a specific processor must be located. Alternatively, it

could have been written to use a global array of representative pointers as in the CounterArrayCO

example of the previous section. However, it was felt that additional optimizations should not

be used so as to allow a comparison favoring the Shared implementation. Figure 4.8 illustrates a

Replicated SSAC that is composed of two representatives. Each representative maintains its own

65

hash table as well as a portion of the directory.

It is clear that the performance of the Replicated SSAC will depend on the amount of coherency

traffic required by the given access pattern. The more copies that exist of an element and the larger

the number of write requests, the more time will be spent doing coherency maintenance. Moreover,

maintaining coherence requires remote memory accesses, further adding to the costs. On the

other hand, if the access pattern is dominated by get for read requests or if the processors access

independent COIDs, then the costs associated with replication will pay off due to increased data

and cache locality.

4.2.3 Partitioned SSAC

Another way to organize the SSAC into multiple representatives is to partition the hash table,

where each representative is given responsibility for some exclusive portion of the COID space and

corresponding portion of the hash table. All COIDs are said to be owned by a specific representative

and hence the processor it is associated with. The owning representative is responsible for caching

and maintaining all state associated with its COIDs. Figure 4.9 illustrates such an organization.

The hash function now maps a COID to a Processor Index and a Queue Index. The Processor

Index is used to identify the target representative. The Queue Index determines the target hash

queue within the owning representative. With this organization, only one copy of a cache object

exists at any one time, so no additional directory or coherency is required.

Local get and put operations function identically to the Shared SSAC operations. Remote oper-

ations can use either shared memory or remote procedure invocations. The example implementation

uses shared memory.

Similar to the shared memory counter examples of the previous section, a shared memory

implementation requires that one representative be capable of accessing the data of another rep-

resentative. The use of a shared array of representative pointers or the Miss Handling classes

convenience function FindRepOn seem most appropriate for locating the remote representative.

The example implementation uses the FindRepOn operation. The get and put operations can then

be seen as simple extensions to the Simple Shared Array SSAC operations. Both operations simple

apply the hash function to obtain both the Processor Index and the Queue Index. The Processor

Index is used with the FindRepOn method to locate the appropriate representative. The operations

then proceeds as before with respect to the identified representative’s data. Since it is possible that

a representative may not exist for a given processor, it is necessary to check the validity of the

66

. . .
COID Space

COID

HF:COID −> PI,QI

lock locklock lock lock locklock lock lock locklock lock

Partitioned

busy

Figure 4.9: Partitioned SSAC

67

pointer in the shared array. If it is not valid, a request on the remote processor must be made to

create a representative.

With a remote procedure call approach, remote procedure calls are used to direct the call

appropriately after having determined that the request should be made to a remote processor.

From an implementation point of view, the remote procedure call approach is simpler than the

shared memory approach.

The performance of the Simple Partitioned Array SSAC will depend on the locality of the

requests, as will be seen in Chapter 5.

4.2.4 Summary

The SSAC architecture was designed to have good lock performance. However, it was not optimized

for data or cache locality. In the above subsections, three different Clustered Object implemen-

tations of the SSAC architecture were presented. The first Clustered Object implementation is a

straight-forward shared version. It illustrates that a Clustered Object implementation need not

impose any additional complication per se. The next two implementations show that locality opti-

mizations can be expressed within the Clustered Object framework. Using Clustered Objects, one

can extend the standard implementation to use multiple representatives in order to increase data

and cache locality. Chapter 5 will compare their performance characteristics.

Chapter 5

Performance

Clustered Objects are designed so that locality management optimizations can be implemented in

a standard and reusable manner. There are two main performance goals for Clustered Objects

in general. First, a Clustered Object implementation should be able to achieve the same perfor-

mance as the corresponding non-Clustered Object implementation. Secondly, if a useful library

of Clustered Objects is to be developed, then Clustered Objects must be able to provide different

performance tradeoffs for different access pattern while maintaining a common interface.

A definitive evaluation of whether Clustered Objects can achieve these two performance goals

is beyond the scope of this dissertation. However, as an initial step, two series of experiments were

carried out on the Clustered Object implementations presented earlier. The first set of experiments

compares the performance of the non-Clustered Object implementations of the counter to the

corresponding Clustered Object implementations for one specific access pattern. The second set of

experiments compares the three Clustered Object implementations of the SSAC architecture using

three different access patterns. Our results indicate that there is promise in Clustered Objects

being able to meet the stated performance goals.

5.1 General Experimental Setup

The Tornado kernel provides the software base for all of our experiments. The Tornado software base

runs on both the NUMAchine hardware platform and the Stanford SimOS software platform [41, 31,

30]. The Clustered Object class library was implemented on top of Tornado’s Object Translation

System. Each experiment was implemented as a custom kernel that set up and performed a specific

test. Kernels were used, rather than user level applications, to reduce costs when run as simulations.

68

69

Each kernel was run on a range of one to sixteen processors.

5.1.1 SimOS and NUMAchine

The Stanford SimOS simulator, developed by Rosenblum et al. [31, 30], is a complete, machine

level, multi-processor simulator. It models the processors, caches, memory system and I/O devices

of a multiprocessor system. The Tornado project uses SimOS as a platform for both development

and performance analysis. SimOS is able to simulate the hardware components with sufficient

detail such that it can be used to execute the same binary versions of the Tornado kernel that

execute on the NUMAchine hardware. SimOS makes it possible to attribute execution costs to

hardware events without the addition of instrumentation into the code being tested.

At the time of this work, the NUMAchine platform was in its last stages of development. There

was opportunity to run a limited number of the experiments on a sixteen processor system. These

experiments were used to provide a degree of validate to some degree the results obtained with the

SimOS simulator.

5.1.2 Simulated Machine

The experiments use a configuration of the SimOS simulator that models a general cache-coherent

NUMA multiprocessor. While the simulated machine architecture is based on the NUMAchine

platform it does not implement any of NUMAchine’s specific optimizations, such as its network

caches or its novel coherency protocol [41].

The simulated machine is composed of 16 64-bit R4400 MIPS processors[26], organized into 4

processor stations, connected by a ring network. Each processor has separate 16KB primary data

and instruction caches1 and a 1MB 2-way set associative unified secondary cache. The primary

cache line size is 32 bytes and the secondary cache line size is 128 bytes. Each station is configured

with 64MB of memory. The memory on each station is transparently accessible by all processors

in the system. Accesses to off-station memory, however, exhibit longer latencies. The minimum

uncached off-station memory access is approximately 3.5 times longer than an on-station memory

access2.
1Both Primary caches were configured as one way set associative for the Counter tests and as 2 way set associative

for the SSAC tests.
2This value does not take into account any delays due to contention.

70

5.2 Experiments

The goal of our experiments is to gain insight into the performance of the Clustered Objects

described in Chapter 4 under synthetic workloads. Synthetic workloads make it easier to identify

and control the parameters of the workload and understand their effect on performance. The

experiments thus do not attempt to realistically model or characterize “real” workloads.

Each experiment is composed of a series of runs, where each run:

1. instantiates the Clustered Object under examination;

2. makes an initial request to the Clustered Object on each processor, ensuring initialization of

the translation entries;

3. starts a worker process on each processor; and

4. runs all workers concurrently, making a fixed number of requests to the Clustered Object on

each processor.

We measure the number of cycles spent executing the workers in step 4. The sum of the cycles is

considered to be the total cost for the fixed number of requests to the Clustered Object. Dividing

the total cost by the total number of requests yields a per request cost, expressed in processor

cycles. Initialization and termination cost are not included. To ensure that no worker unfairly

benefits from warm hardware caches, all hardware caches are cleared prior to starting the workers.

As a result, the costs for the initial cold cache misses will be included in the results.

Ideally the number of cycles per request would be the same regardless of the number of processors

concurrently accessing the Clustered Object. However, synchronization, sharing and algorithmic

costs can all grow as the number of processors is increased, causing increases in the cost per request.

An implementation is considered more scalable if the costs associated with an increase in processors

are smaller. However, it should be noted that scalability of an implementation will vary with the

access pattern of the workload.

Using the features of SimOS, the number of cycles required per request are broken down as

follows:

• Cycles spent stalling on accessing data:

dStallRemote: Cycles spent waiting for off-station data accesses to complete.

dStallLocal: Cycles spent waiting for local data accesses to complete.

71

1 2 4 8 16
Processors

0

10000

20000

30000

C
yc
le
s

dStallRemote
dStallLocal
scNakStall
excStall
iStall
Other

Within each group the bars are ordered:
SharedCounter
CounterArray

CounterArrayPadded
CounterLocalized

Figure 5.1: Non-Clustered Object Counter: performance results obtained with SimOS.

scNackStall: Cycles spent waiting for Store Conditional to be acknowledged.

excStall: Cycles spent waiting to gain exclusive access to a cache line.

• Cycles spent stalling on Instruction accesses:

iStall: Cycles spent waiting for instruction accesses to complete.

• Cycles spent executing Instructions:

Execute: This represents the cost of executing the actual instructions that compose the

Worker processes. Cycles spent spinning on locks are included in this amount.

5.2.1 Counters

This subsection first revisits the results presented in the Background and Motivation chapter. By

running the tests of the non-Clustered Object counter implementations on both SimOS and the

NUMAchine hardware a degree of validation for the results SimOS is obtained. Then using SimOS

the performance of the Clustered Object implementations of the counter are compared to the

performance of the non-Clustered Object implementations.

72

1 2 4 8 16
Processors

0

5000

10000

15000

C
yc
le
s

Cycles

Within each group the bars are ordered:
Shared

CounterArray
CounterArrayPadded

CounterLocalized

Figure 5.2: Non-Clustered Object Counter: performance results obtained with NUMAchine.

SimOS vs NUMAchine results

The Background and Motivation chapter presented a Counter data structure that was used to

illustrate locality optimizations. Four non-Clustered Object implementations were presented along

with their performance under a specific access pattern. The SharedCounter implementation used

a single shared atomically updated integer value. The CounterArray used an array of atomically

updated integer values with one value per-processor. The CounterArrayPadded was identical to

the CounterArray but padded each integer value to a secondary cache line boundary, eliminating

false sharing. Finally CounterLocalized also used per-processor integer values but ensured that each

processor’s value was located in its local memory. Each implementation was tested with a constant

number of requests; 1% of all requests were to obtain the total value of the counter and all other

requests were either increments or decrements. The results obtained with SimOS are summarized

in figure 5.1. These same tests were also run on the NUMAchine hardware, the results of which

are presented in figure 5.2. On NUMAchine the timing was obtained by adding instrumentation

prior to the start and end of each worker. From the statistics obtained, a cycles per request cost

was calculated.

The figures show that although the absolute values of the SimOS and NUMAchine runs (figures

5.1 and 5.2) differ by a factor of two, the general trends are similar; the CounterPaddedArray and

CounterLocalized implementations outperform the other implementations in both figures in similar

73

1 2 4 8 16
Processors

0

500

1000

1500

C
yc
le
s

dStallRemote
dStallLocal
scNakStall
excStall
iStall
Other

Within each group the bars are ordered:
CounterArrayPadded

CounterLocalized

Figure 5.3: Comparision of CounterArrayPadded and CounterLocalized.

proportions. This confirms that a relative performance difference illustrated by the simulator is

likely to be experienced on a real hardware platform. The remainder of this chapter will focus on

the results obtained from SimOS.

Figure 5.3 shows the difference between the CounterArrayPadded and CounterLocalized in more

detail. The CounterLocalized implementation performs slightly better, primarily due to slightly

lower remote data stall time. This behaviour is to be expected: placing the local counters in the

memory of the stations closest to the processors accessing it, reduces the number of initial remote

misses. The remaining remote misses are caused by the 1% of requests for the global counter value.

The performance results of the non-Clustered Object CounterLocalized will be used as a reference

point for comparing to the Clustered Object versions.

Clustered Object Alternatives

The Examples chapter presented a number of Clustered Object implementation of the Counter data

structure. Figure 5.4 presents the results for each implementation. The left-most bar in each group

is the performance of the non-Clustered Object CounterLocalized implementation, the most efficient

of the non-Clustered Object implementations. The performance for the CounterRemoteCO is not

shown in the graph, as Tornado currently does not support the large number of remote procedure

calls required. Moreover, as stated in chapter 4, we do not expect CounterRemoteCO to perform

well in any case, as the cost of each remote procedure call will make the global value method

74

1 2 4 8 16
Processors

0

500

1000

1500

2000

C
yc
le
s

dStallRemote
dStallLocal
scNakStall
excStall
iStall
Other

Within each group the bars are ordered:
left bar: CounterLocalized

mid-left bar: CounterLocalizedCO
middle bar: CounterLinkedCO
mid-right bar: CounterArrayCO
right bar: CounterArrayCOCO

Figure 5.4: Non-Clustered Object Counter Performance results obtained with NUMAchine.

extremely expensive.

All the Clustered Object versions, with the exception of CounterLocalizedCO , perform as well

as the non-Clustered Object implementation. The CounterLocalizedCO is implemented using the

MHReplicated Miss Handling convenience functions. As stated earlier, these functions are not

optimized for representative use at this time and hence suffer a considerable performance penalty

when used by the representatives.

These results do not indicate, and are not meant to show, that Clustered Object implementa-

tions inherently outperform non-Clustered Object implementations. To the contrary, a developer

is certainly capable of directly implementing any optimization that Clustered Object might make.

The key advantage of using Clustered Objects, however, is that it provides the programmer with

a standard way of implementing the optimizations in a reusable manner. From the results, it

is evident that Clustered Objects can achieve performance as good as any non-Clustered Object

implementation.

5.2.2 SSACs

In Chapter 4 we presented three Clustered Object implementations of the SSAC data structure.

The goal of the experiments in this section is to show that the different Clustered Object imple-

mentations can provide different performance tradeoffs. This work does not attempt to provide a

75

complete characterization of realistic SSAC workloads. Similarly, it does not attempt to provide

a detailed performance analysis of each of the three implementations. Instead, the experiments

intend to show that a given accepted multiprocessor data structure, which has already been tuned

to provide low contention, can still benefit from the locality optimizations that are supported by

Clustered Objects. No one implementation is able to perform well under all access patterns. Thus,

having multiple implementations supporting an identical interface, however, allows a developer to

choose the right implementations for the access pattern expected.

In all of the SSAC experiments, a fixed number of requests are generated as part of the initial-

ization of the experiment. Each request is either a read request or a write request for a specific

Cache Object. The proportion of read to write requests and the generation of COIDs to identify

the requested Cache Objects are specified as parameters of the experiments:

Fraction write: fraction of total requests that are write requests.

Fraction local: fraction of requests for COIDs that map to those assigned to the local processor.

(described in more detail below).

The fraction local parameter controls the degree of locality in the request pattern. By assigning

each processor a specific sub-range of COIDs, it becomes possible to control the number of requests

to the sub-range specific to the requesting processor. If fraction local is set to 0 then all requests

are randomly chosen from the entire range of COIDs and hence there is no explicit locality in the

requests. However, if fraction local is set to 1 then all requests on a given processor will be to COIDs

that are in the sub-range assigned to the processor on which the request was made. For example,

assume the total range of COIDs is 0-127 and the number of processors in the experiment is 4

and the range is divided into 4 equal non-overlapping sub-ranges; 0-31, 32-63, 64-95, and 96-127.

If fraction local is set to 0 then all request on all processors are chosen randomly over the entire

range of 0-127. On the other hand if fraction local is set to 1 then all the requests on each of the

processors is chosen from the sub-range assigned to the processor, eg. all requests on processor 0

would be in the range of 0-31, all requests on processor 1 would be in the range of 32-63 and so on.

We consider three scenarios with the fraction write and fraction local set as follows:

Case 1 Fraction write is 0 and fraction local is 0.

Case 2 Fraction write is 0.05 and fraction local is 1.

Case 3 Fraction write is 0.05 and fraction local is 0.

76

1 2 4 8 16
Processors

0

20000

40000

60000

C
yc
le
s

dStallRemote
dStallLocal
scNakStall
excStall
iStall
Other

Within each group the bars are ordered:
Shared

Replicated
Partitioned

Figure 5.5: Case 1: Random read requests.

Additionally, in order to ensure no cold misses occur, the SSACs are pre-initialized with the

appropriate Cache Objects whose COIDs span the range of COIDs. In cases 1 and 3, the SSACs are

initialized so that the entire range of COIDs have been requested at least once by each processor.

In case 2, the SSAC is initialized so that each processor has requested its local range of COIDs

once. In all cases the SSAC is large enough to hold all elements. The results of these experiments

thus represent what one would expect of the SSAC implementations once a steady state has been

reached.3

Figures 5.5, 5.6 and 5.7 show the results for the three separate access patterns, respectively.

Each graph shows how the three SSAC implementations compare with each other for one of the

specific cases.

In figure 5.5, the Replicated SSAC clearly outperforms the other two implementations. Since

there are no write requests and no misses, the Replicated SSAC need not perform any coherency.

In this case, the cost of replication is well worth it. Each Cache Object that was replicated during

initialization can be reused. The random nature of the requests does not have any negative effects

for the Replicated SSAC. However, the Shared SSAC suffers from an increase in data misses due to

the real and false sharing induced by the random accesses. The Partitioned SSAC not only suffers

from an increase in data misses due to the random access, but also from the additional costs of
3Removing misses from the access patterns was done for simplicity, as performance tradeoffs can be observed

without the introduction of misses.

77

1 2 4 8 16
Processors

0

2000

4000

6000

8000

10000

C
yc
le
s

dStallRemote
dStallLocal
scNakStall
excStall
iStall
Other

Within each group the bars are ordered:
Shared

Replicated
Partitioned

Figure 5.6: Case 2: Local requests with 5% being writes.

1 2 4 8 16
Processors

0

50000

100000

C
yc
le
s

dStallRemote
dStallLocal
scNakStall
excStall
iStall
Other

Within each group the bars are ordered:
Shared

Replicated
Partitioned

Figure 5.7: Case 3: Random requests with 5% being writes.

78

identifying and locating remote COIDs. This is reflected in the increase of cycles attributed to

’Execute’.

For Case 2, where all requests are local and five percent are writes, the Shared and Partitioned

SSACs are able to exploit the high degree of locality in the access pattern without suffering ad-

ditional costs for the write requests (figure 5.6). The performance of the Shared and Partitioned

SSACs are similar up to eight processors. At sixteen processors, the Shared SSAC displays an

increase in cycles spent stalling on data accesses due to false sharing. The sizes and alignment of

the data elements of the Shared SSAC do not cause false sharing with fewer than 16 processors;

the false sharing is avoided by the Partitioned SSAC, as the individual portions of the underlying

array of hash queues are physically separated in the address space.

The Replicated SSAC performs poorly with respect to the other two implementations. For each

write request, considerable coherency overhead is necessary while replication provides little benefit.

The Replicated SSAC must first locate the representative that contains the directory entry for the

COID. Since the MHReplicated::FindRepOn method is used to locate representatives, off-station

accesses to the processor on which the Miss Handler exists will typically be required. Furthermore,

since the directory is evenly distributed across all the representatives, there is no guarantee that

the entry for the target COID will be local to the processor, leading to additional remote accesses.

Finally, since each processor accesses its own Cached Objects, the directory will always indicate

that there is only one copy of the Cache Object, namely on the processor (on which the write

request was issued).

Clearly, optimizations could have been used to reduce these costs. For example, the use of an

exclusive flag along with a write-invalidate protocol would have suffered lower coherency overheads,

as each write request would then occur exclusively. Another optimization would be to eliminate

the use of MHReplicate::FindRepON , as was done in some of the Counter Clustered Object imple-

mentations. It is important to note that although optimizations may reduce some of the overheads,

they cannot eliminate the fact that the Replicated SSAC requires extra overheads to maintain

coherency, while the Shared and Partitioned SSACs do not. Additionally, a given optimization

may only be relevant for some access patterns and as such may be better served by a separate

Clustered Object implementation. For example, the fact that the write-invalidate protocol does

not perform well under case 2 does not mean that it is categorically inappropriate. Stenström

showed that under some access patterns, write-update protocols have better performance, whereas

write-invalidate protocols are superior under others [34]. This argues that rather than changing

79

the current implementation of the Replicated SSAC to use write-invalidate, it would be better to

add a new Clustered Object that specifically targets the access pattern in question.

Finally for case 3, where the requests have little locality and five percent are writes, the Shared

SSAC provides performance better than the other two implementations, as shown in figure 5.7.

In this case, the write requests combined with the completely random choice of COIDs forces

the Replicated SSAC to suffer the greatest possible coherency overheads. Each representative will

contain a copy of each of the Cache Objects being accessed and as such will require explicit updating

on every write. The costs for updating the copies are not amortized over any significant number of

requests and as such result in no benefit. The random nature of the requests causes the Partitioned

SSAC to perform similarly as in Case 1.

Summary

We have shown that each of the three SSAC implementations is able to address a specific access

pattern more effectively than the other two: the Replicated SSAC performs best for case 1; the

Partitioned SSAC for case 2; and the Shared SSAC for case 3. While the access patterns chosen

are not necessarily representative of realistic workloads and do not cover the entire space, they do

represent three distinct workloads that place differing demands on the SSAC implementations. The

three Clustered Object implementations each maintain the same interface and yet display separate

performance characteristics. Booch points out that a foundation class library should be “Complete”

in that:

The Library must provide a family of classes, united by a shared interface but each

employing a different representation, so that developers can select the ones with the

time and space semantics most appropriate to their given application.[4]

In this light, the results provide initial evidence that Clustered Objects may be suitable for the

development of a “Complete” multiprocessor foundation class library. It should be possible to

develop implementations that provide various tradeoffs in locality management for differing access

patterns.

Chapter 6

Design Guidelines

We found that when implementing Clustered Objects, it is generally best to adhere to the following

guidelines described in more detail in the following subsections:

• One should ensure that the most common operations are optimized for locality.

• A family of Clustered Objects should be implemented when different internal policies better

support different access patterns.

• Representatives that frequently access each other should directly maintain references to the

representatives they access.

• One should consider implementing separate Clustered Objects for logically separate entities

that can have different data management policies.

• Internal Padding should be used to ensure a secondary cache line boundary between repre-

sentatives.

6.1 Optimize Most Common Operations for Locality

Generally, a specific implementation of a given data structure will not perform well under all

access patterns. Hence, the expected use of the data structure should be taken into account when

determining what operations should be optimized for locality. For example, in the case of the

integer counter, it was stated that the most frequent operations are modifications of the counters

value. For this reason, all distributed implementations ensured that the increment and decrement

methods are performed entirely with local memory accesses, even though the value method then

80

81

became primarily a more expensive remote memory access operation. This is not a problem if the

value method is invoked infrequently relative to increment and decrement . If, however, the global

value method were invoked more frequently, then perhaps value should have been optimized for

locality (for example by treating each representative’s local value as a replica of the global value

and using some form of coherence protocol when modifying the counter’s value). Of course, it is

possible that the workload might invoke the modification and value operations equally, in that case

a shared or partially shared implementation may prove more appropriate.

6.2 Provide Multiple Implementations

When developing a Clustered Object, it becomes necessary to choose one policy over another when

implementing a particular internal function. For example, in the case of the Replicated SSAC one

must choose between write-update, write-invalidate or some other protocol when implementing the

internal coherence of the replicated values. The protocols yield different performance results for

different access patterns. In such cases, it is best to provide multiple versions of the Clustered

Object so that a programmer can choose the right implementation for the access pattern expected.

6.3 Split Complex Clustered Objects into Multiple Clustered Ob-

jects

The different components of a complex Clustered Object could each potentially use a separate

data management policy. For example, the replicated SSAC consists of two key components:

the hash tables and the directory. It is not obvious that the same data management policy is

appropriate for both components, under any given access pattern. Although the hash tables are

replicated in our example, the directory need not be, and could instead be shared or partitioned.

The use of a separate Clustered Object to implement the directory allows for greater flexibility

and customization. One might implement a simple shared directory or some partitioned directory

Clustered Objects, all with the same external interface.

Decomposition of software into distinct interacting objects, with fixed interfaces, is fundamental

to the development of a runtime customizable system like the ones proposed by Krieger et al. [2]

and Bershad et al. [3]. Using separate Clustered Objects for each component naturally leads

to composition at run time. For example, the Replicated SSAC could be implemented to take a

82

Clustered Object Identifier of its directory Clustered Object as an instantiation parameter, allowing

the instantiator of the Replicated SSAC to specify what type of directory to use by first instantiating

the appropriate directory Clustered Object and then passing its Clustered Object Identifier to the

Replicated SSAC.

6.4 Maintain Inter-representative References

If representatives need to locate each other frequently, they should directly maintain the necessary

representative references. For example, the representatives of the CounterLinkedCO and Counter-

ArrayCO Clustered Objects both directly maintained pointers to the other representatives. Both

implementations did not need to use the Misshandling representative management functions and

thus performed better than the CounterLocalizedCO implementation.

In cases where the operations of a representative need only access a limited number of neigh-

boring representatives, it is best to explicitly organize them with embedded pointers. This leads

to standard organizations of representatives in linked lists, queues, trees, etc. On the other hand,

if operations of the Clustered Object need to randomly access representatives or iterate over all

representatives, a shared structure such as an array of pointers would be more appropriate. A

shared array structure is simple to update and has better spatial locality. However, a shared array

can lead to increased cache misses if the array is frequently updated.

6.5 Pad Representatives

It was generally found that for high performance, it is necessary to pad the representatives to

secondary cache line boundaries. This ensures that false sharing between the data elements of

one representative and other data does not occur. However, it can lead to considerable memory

overhead per Clustered Object. In the worst case, a Clustered Object is implemented with a

clustering degree of 1, and each representative contains one word of data, in that case 120 bytes

of overhead would result per-representative, assuming 64-bit words and 128-byte secondary cache

lines.

Chapter 7

A new Clustered Object Model

This work represents just an initial attempt at using the Clustered Object approach and certainly

does not constitute any final design. In implementing the Clustered Objects, we learned a number

of lessons and today we would probably implement Clustered Objects differently. This chapter

presents a new Clustered Object model motivated by the experience gained.

7.1 Limitation of initial Model

At the outset, we thought we would design and then provide a class foundation library that would

ultimately serve as the means by which a programmer would implement new Clustered Objects

and that it would be based on Tornado’s object reference translation and miss handling support.

The library would provide pre-built patterns of commonly occurring Clustered Object designs.

We had hoped that by building some initial Clustered Objects with the existing infrastructure,

the necessary insight would be gained to guide the development of the library. During the course

of our work, it became apparent that a well defined model for Clustered Objects was necessary,

along with a class representation to support it. Basing the model on Tornado’s Object Translation

System led to a simple model in which a Clustered Object is composed of a Misshandling Object

and a set of representative objects. This model was easily represented with two class hierarchies.

However, this initial model, although simple, has a number of shortcomings:

• It does not clearly separate Clustered Object management from Misshandling behaviour. The

Misshandling object is used both as a generic interface to the Object Translation System and

to manage and connect the components of the Clustered Object.

83

84

• It does not support Clustered Object global data in a standard way. The data members

specified in the representative class are local to each representative instance. There is no

natural way to indicate that some data members should be global to all representatives of a

particular Clustered Object, but not allow access from other Clustered Objects.

• It does not support initialization parameters for Clustered Objects in a standard way. When a

Clustered Object is instantiated only the Misshandling object is created, the representatives

are instantiated on first use by the Misshandling object. Thus a means for communicat-

ing initialization parameters to the representatives, specified when the Clustered Object is

instantiated, is required.

• It lacks a clear separation of a Clustered Object’s distinct interfaces. A Clustered Object has

two types of interfaces:

– an external client interface.

– internal interfaces between the constituent objects. Eg. inter-representative interfaces.

Without support for multiple separate interfaces it is difficult to specify the independent

roles of an object. One cannot easily specify a new Clustered Object that both supports a

predefined external interface A and a predefined inter-representative interface B.

7.2 New Model

Figure 7.1 illustrates a new model that attempts to address these shortcomings. It was developed

based on the experiences we have gained so far, but it has not yet been implemented. In Figure

7.1, four different types of arrows are used:

Instantiates : the object at the tail of the arrow instantiates the object at the head of the arrow.

Invokes Methods of : the object at the tail of the arrow invokes specific methods of the object at

the head of the arrow. An object at the head must implement a specific interface for each

‘Invokes Methods of’ arrow that points to it.

Contains a pointer to: the object at the tail of the arrow contains a pointer to the object at the

head of the arrow.

85

Factory Object

Instantiates
Invokes Methods
Contains a pointer to
Contains as a member

LEGEND

Misshandling Object

Clients

Global Data Object

Object Translation
System

Representative
Objects

Figure 7.1: A New Model of Clustered Objects: The Factory Model

Contains as a member : the object at the tail of the arrow contains the object at the head the

arrow, as a data member. Objects contained within another object are created when the

containing object is instantiated.

7.2.1 Factory Object

In the new model, every Clustered Object contains a Factory object. The Factory object acts

as the centralized manager of the Clustered Object. Its primary responsibilities are to create all

constituent objects, initialize them as necessary, and provide centralized methods and data. In

the new model, a Clustered Object is created by instantiating the appropriate Factory object. As

can be seen by the ‘Contains as a member’ arrows in figure 7.1, the Factory object contains both

a Misshandling object and a Global data object. Both of these will be discussed in the following

subsections. Since they are contained within the Factory object as members, they will be created

along with the Factory object. As illustrated, the Factory object also instantiates all representative

objects.

The Factory Object implements a specific interface that can be invoked by the Misshandling

object when representatives need to be created or destroyed. The Factory object also implements

interfaces invoked by the representative objects. These methods can be invoked by any represen-

86

tative of the Clustered Object and are largely left to the implementor to define as required. An

example of two standard methods that might compose this interface, are lock rep creation and un-

lock rep creation, which suspend the changes to the set of representatives when accessing the entire

set.

It is expected that the class representation for the new model will provide a separate hierarchy

of Factory objects. Each class will provide a base definition for a Factory object. When writing a

new Clustered Object, an implementor will create a new Factory Object by inheriting from one of

the classes in the Factory hierarchy.

7.2.2 Misshandling Object

The Misshandling object in the new model acts solely as an interface between a Clustered Object

and the Object Translation System. It implements the necessary methods required by the Object

Translation System, namely handlemiss and cleanup. It keeps track of which representatives have

been assigned to which processors and enforces the clustering degree of the Clustered Object.

The Misshandling object has a pointer to the Factory object, as illustrated in figure 7.1. The

pointer is required so that the Misshandling object can make requests to the Factory object in order

to create new representatives. The Misshandling object is unaware of what class the representatives

belong to or how they should be initialized. It expects the Factory object to implement any

Clustered Object specific knowledge, such as which class to instantiate representatives from, how

to initialize them and potentially connect them.

It is expected that one Misshandling class will be sufficient to efficiently support all Clustered

Objects and it would be provided as part of the basic infrastructure. All Factory object classes

would contain a member of this Misshandling class by definition.

7.2.3 Global Data Object

In the initial model there was no standard notion of data that is accessible by all representatives

within a Clustered Object. The data members of a representative are local to the representative,

and modifications to one representative’s members do not affect the members in other representa-

tives. Of course, explicit coherency could be implemented between the representatives to ensure

consistency between a subset of their data, but this adds to complexity and overhead and is only

warranted in some read-after-modify circumstances. It seems more appropriate to use shared mem-

ory to implement simple data that should be globally accessible by all representatives.

87

class foo : public Factory
{

GLOBAL:
int _repcount

private:
.
.
.

};

void
foorepclass :: bar ()
{

int a=_repcount;
.
.
.

}

Figure 7.2:

In the new model, each Clustered Object has a Global Data object embedded within the Factory

object. The Global Data object contains the global data members of the Clustered Object. As

illustrated, each representative has a pointer to the factory object and thus can gain access to

the Global Data object. Clearly, any of the Factory objects members could be treated as global

data. However, providing an explicit object for all global data allows the global data members to

be identified separately from the other data members of the Factory object. For example, C++

access rules dictate that data members of a class are not accessible from outside the class, unless

another class is granted special access through the friend construct. To provide the representatives

of a Clustered Object access to some of the data members of the Factory Object, the class of

the representatives would have to be explicitly granted friend access, but this would give the

representatives access to all the data members of the Factory object and not just the ones intended.

Ideally, there would be compiler support for a special access type called GLOBAL that could

be used to identify data members as being accessible to the representatives of a Clustered Object.

Figure 7.2 gives an example of how one might define a Clustered Object foo, which has a Global

data member repcount, assuming a compiler supported the GLOBAL access specifier. If the

representative class for the Clustered Object foo is foorepclass, then the figure also illustrates a

method of the representative class called bar that makes use of the global data member repcount.

Since compiler support for GLOBAL does not exist, a separate global data object, along with a

set of macros, can be used to provide similar functionality. Figure 7.3 illustrates the same example

88

class foo : public Factory
{

GLOBAL_START(foorepclass)
int _repcount;

GLOBAL_END
.
.
.

};

void
foorepclass :: bar()
{

int a=GLOBAL(_repcount);
.
.
.

}

Figure 7.3:

class foo : public Factory
{

public:
class Globals {

friend class foorepclass;
int _repcount;

} globals;
private:

.

.

.
}

void
foorepclass :: bar()
{

int a=_factory->globals._repcount;
.
.
.

}

Figure 7.4:

89

using a set of macros. Figure 7.4 shows how the macros could be expanded to implement the

global data via a separate Global data class. Data members declared between the macros, called

GLOBAL START and GLOBAL END are considered to be global members. The macros expand

to define a Globals class within the scope of the Factory object. This initial class explicitly declares

the representative class, foorepclass, as a friend, thus granting the representatives access to the

Global Data object’s members. The macros also ensure that the Clustered Object contains an

instance of the Globals class called globals. Finally, the implementation of the bar representative

function now uses a macro called GLOBAL to access the repcount global member. The GLOBAL

macro expands to ensure that the access to the global data member happens via the representative’s

pointer to its Clustered Object’s Factory object.

7.2.4 Initialization Parameters

In our current class representation, there is no standard support for client specified initialization.

When client code instantiates a Clustered Object, it often needs to specify a set of initial parameters

that need to be recorded and passed (or made accessible) to the representatives. For example, a

Clustered Object that implements some sort of array, may require the user to specify the size of

the array at creation time. This value needs to be available to the representatives so that they can

allocate their local resources appropriately. Similarly, the same Clustered Object may allow the

instantiator to specify a parameter that indicates whether the Clustered Object is to implement

a partitioned or replicated array. Again, the representatives need to be aware of the value of the

initialization parameter to behave appropriately.

In the new model, initialization parameters are treated as global data members. If the repre-

sentatives require their own copy of the initialization parameters, they are free to make a local copy

in their constructor. This is also true for any of the other global data members.

7.2.5 Representative Objects

In both the initial and the new model, the representatives serve as local implementations of the

Clustered Object’s external interface. In the initial model there was no explicit separation of

internal and external interfaces.

The new model explicitly identifies the different interfaces implemented by the components of

the Clustered Object. This is particularly relevant to the representatives as they implement the

majority of the interfaces. Figure 7.1 shows three ’Invokes methods of’ arrows pointing to each

90

representative. The most obvious interface is the external client interface. These are the methods

that the clients see as the uniform interface to the Clustered Object. Another interface is the

internal inter-representative interface. These are the methods that representatives may invoke of

each other. The final interface is a representative management interface for use by the Factory

object. For example, the Factory Object invokes a method on each representative to set the

representative’s Factory Object pointer.

The main advantage of separating the interfaces is that it naturally leads to separate hierarchies

for each interface. In the new model, one expects three different hierarchies of interfaces. One

hierarchy would define all the external interfaces a Clustered Object might support. This hierarchy

will grow with every new Clustered Object external interface developed. Examples of interfaces

that might be part of the external interface hierarchy include: Counter, SSAC, Constant, Array,

and HashTable. In this way, one can create new Clustered Objects that can be used by clients

expecting a specific external interface.1

A second hierarchy would define all the inter-representative interfaces. Examples of such in-

terfaces are: Invalidate, Update, and Broadcast. These interfaces define standard methods that a

representative needs to implement in order to interact in some pre-determined way.

The final interface hierarchy would define the methods that a representative implements in order

to function with a Factory Object. It is expected that this hierarchy will be small, and perhaps be

composed of just one standard interface.

By having separate hierarchies, an implementor can define new Clustered Objects by compos-

ing classes from the hierarchies. For example, one might want to implement a Clustered Object

that supports the Counter external interface and has representatives that implement an invalidate

protocol. This could be achieved by defining a Clustered Object whose representative class inherits

both the Counter external interface and the Invalidate inter-representative interface. Of course, to

function correctly with the Clustered Object’s Factory object, the representative class would also

have to implement a representative management interface.

The above example requires the representative class to inherit from three different interfaces.

This requires language and system support for multiple inheritance. C++ does support multiple

inheritance, but Tornado’s dynamic type checking disallows it. In the original model, interfaces

were not separated so the restriction to single inheritance was not a problem. However, the multiple

interface hierarchies suggested by the new model does require multiple inheritance, which in turn
1It is of course possible that a new Clustered Object may implement more than one external interface.

91

would require a redesign of Tornado’s dynamic type checking system.

7.3 Summary

We presented a new Clustered Object model, based on the experience of using the initial model

and its class representation. The new model provides a more structured internal architecture of a

Clustered Object. It separates out the management responsibilities into a separate Factory object.

It explicitly identifies a Global Data object to explicitly manage the data that is global with respect

to the representatives but local to the Clustered Object instance. Finally, the new model suggests

the use of multiple inheritance to provide for more flexibility and reuse in the development of

Clustered Objects.

Further work must be done to develop a class representation for the new model and to build

a set of Clustered Objects with it. Options for the addition of multiple inheritance support to

Tornado also need to be explored.

Chapter 8

Summary

The primary goal of Clustered Objects is to support performance optimizations typically needed

in an SMP environment and at the same time support object-oriented structuring:

• Developing high performance software for CC-NUMA SMPs requires paying special attention

to concurrency, the caching behaviour and the sharing and locality in memory accesses. Data

structures and associated algorithms can be designed to replicate, partition and selectively

place data in order to reduce sharing and maximize locality.

• Object-oriented programming uses information hiding to isolate individual data structures

along with the operations on them. Externally visible operations form a strict interface for

clients of a data structure and hide the internal implementation.

Clustered Objects combine the ability to replicate and partition data with information hiding.

Each Clustered Object provides a well-defined external interface. Internally, however, the Clustered

Object is made up of multiple representative objects that are instantiated on a per-processor basis.

Each representative object supports the external interface of its Clustered Object and is associated

with a specific subset of processors. The data members for a given representative object are

allocated from memory local to the processor on which it was instantiated. All invocations of the

external interface on a given processor are directed to a local representative object. The multiple

representative objects of a Clustered Object provide a means for replicating and partitioning the

data of the Clustered Object. Some of the advantages of Clustered Objects are:

• Having an object-oriented approach to information hiding means that a system composed of

Clustered Objects can be customized and refined incrementally. A given Clustered Object

92

93

in the system can be easily replaced with a new Clustered Object that supports the same

external interface but provides a new internal implementation.

• The ability to replicate, partition and locally place data allows Clustered Objects to be

optimized for SMP environments.

• The ability to instantiate local representative objects on first use limits the resources consumed

by a Clustered Object. Representatives are only created on the processors that access the

Clustered Object, rather than on all processors of the system.

We have proposed two models for the structure of a Clustered Object. The first model was

developed based on the Object Translation System of the Tornado operating system. Two class

hierarchies were developed to support this model. Each Clustered Object is composed of a single

management object called a Misshandler and a set of representative objects. The model was

used to implement the example Clustered Objects studied. A second model was developed based

on the experience gained from implementing the example Clustered Objects. The second model

provides a standard way of implementing internal Clustered Object global data and initialization

parameters. It separates out representative management from a Clustered Object’s interaction

with the underlying Clustered Object system. Finally the second model defines explicit interfaces

between the components of a Clustered Object. The implementation and evaluation of the second

model is left as future work.

In order to gain insights into the performance of Clustered Objects, two sets of example Clus-

tered Objects were implemented and evaluated. One set consisted of multiple implementations of a

simple integer counter. The performance of a simple shared implementation under a specific access

pattern was used as a reference point. A performance improvement of two orders of magnitude

was realized with localized non-Clustered Object implementations over the naive shared imple-

mentation. It was found that the Clustered Object implementations were able to achieve similar

performance to optimized non-Clustered Object SMP implementations.

The second set of experiments entailed three different Clustered Object implementations of a

more complex SMP data structure. These three implementations were compared using three differ-

ent access patterns. Each implementation performed better than the other two implementations for

one of the access patterns. In each case, an order of magnitude separated the best performer from

the worst. This implies that the flexibility to interchange Clustered Objects will be useful as no

one implementation can perform well under all access patterns. The development of a foundation

94

library of Clustered Objects that provides a programmer with a range of performance options is

left for future work.

This work has established that Clustered Objects promises a way of developing software that

is optimized for SMP systems and yet has the software engineering advantages of object-oriented

techniques. Future work must be done to further refine the Clustered Object model, explore more

dynamic policies and develop a foundation library.

8.1 Future Work

More experience using Clustered Objects to implement performance critical software is required to

more fully develop and evaluate Clustered Objects. A systematic re-implementation of Tornado’s

data structures as Clustered Objects would permit a more complete evaluation. The experience

gained would be invaluable in developing a more comprehensive Clustered Object model and the

building of a foundation library. A complete system implemented with Clustered Objects would

also provide a test bed for a thorough performance evaluation.

Other aspects that require attention are:

• support for dynamic migration of representatives.

• support for dynamic clustering. A Clustered Object could be given the ability to change its

clustering degree in response to the access pattern.

• support for more variability in the representatives of a Clustered Object. For instance, dif-

ferent representative classes could be used within one Clustered Object.

It would also be interesting to carefully compare and evaluate the behaviour of Clustered Objects

with other partitioned object models. Unfortunately at this point, no performance details for either

the Fragmented Object model [22, 5] or the Distributed Object [38, 14] model have been published.

Bibliography

[1] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghemawat, Monika R. Henzinger,

Shun-Tak A. Leung, Richard L. Sites, Mark T. Vandervoorde, Carl A. Waldspurger, and

William E. Weihl. Continuous profiling: Where have all the cycles gone? In Proceedings of

the 16th Symposium on Operating Systems Principles (SOSP-97), volume 31,5 of Operating

Systems Review, pages 1–14, New York, October5–8 1997. ACM Press.

[2] M. Auslander, H. Franke, O. Krieger, B. Gamsa, and M. Stumm. Customization-lite. In 6th

Workshop on Hot Topics in Operating Systems (HotOS-VI), pages 43–48, 1997.

[3] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski, D. Becker, S. Eggers,

and C. Chambers. Extensibility, safety and performance in the SPIN operating system. In

Proceedings of the 15th Symposium on Operating Systems Principles, pages 267–284, Copper

Mountain, Colorado, December 1995.

[4] G. Booch. Object-Oriented Analysis and Design with Applications. The Benjamin/Cummings

Publishing Company Inc., 2nd edition, 1994.

[5] Georges Brun-Cottan and Mesaac Makpangou. Adaptable replicated objects in distributed

environments. Technical Report BROADCAST#TR95-100, ESPRIT Basic Research Project

BROADCAST, June 1995.

[6] J. Chapin, S. A. Herrod, M. Rosenblum, and A. Gupta. Memory system performance of UNIX

on CC-NUMA multiprocessors. In Proc. of the 1995 ACM SIGMETRICS Joint Int’l Conf. on

Measurement and Modeling of Computer Systems (SIGMETRICS’95/PERFORMANCE’95),

pages 1–13, May 1995.

95

96

[7] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and A. Gupta. Hive: Fault

containment for shared-memory multiprocessors. In Proc. of the 15th ACM Symp. on Operating

Systems Principles (SOSP-15), pages 12–25, December 1995.

[8] Jeffrey M. Denham, Paula Long, and James A. Woodward. DEC OSF/1 version 3.0 symmetric

multiprocessing implementation. Digital Technical Journal of Digital Equipment Corporation,

6(3):29–43, Summer 1994.

[9] Murthy Devarakonda and Arup Mukherjee. Issues in implementation of cache-affinity schedul-

ing. In Proceedings of the Usenix Winter 1992 Technical Conference, pages 345–358, Berkeley,

CA, USA, January 1991. Usenix Association.

[10] B. Gamsa, O. Krieger, E. Parsons, and M. Stumm. Performace issues for multiprocessor

operating systems. Unpublished, University of Toronto, 1996.

[11] Ben Gamsa. Tornado: Maximizing Locality and Concurrency in a Shared-Memory Multipro-

cessor Operating System. PhD thesis, University of Toronto, 1999.

[12] Ben Gamsa, Orran Krieger, Jonathan Appavoo, and Michael Stumm. Tornado: Maximizing

locality and concurrency in a shared memory multiprocessor operating systems. Submitted

to 3rd Symposium on Operating Systems Design and Implementation, February 22-25, 1999,

New Orleans, LA.

[13] Annop Gupta, Andrew Tucker, and Shigeru Urushibara. The impact of operating system

scheduling policies and synchronization methods of the performance of parallel applications.

1991 ACM SIGMETRICS International Conference on Measurement and Modeling of Com-

puter Systems ACM SIGMETRICS Performance Evaluation Review, 19(1), May 21-24, 1991.

[14] P. Homburg, L. van Doorn, M. van Steen, A. S. Tanenbaum, and W. de Jonge. An object

model for flexible distributed systems. In First Annual ASCI Conference, pages 69–78, Heijen,

Netherlands, May 1995. http://www.cs.vu.nl/˜steen/globe/publications.html.

[15] D. R. Kaeli, L. L. Fong, R. C. Booth, K. C. Imming, and J. P. Weigel. Performance analysis

on a CC-NUMA prototype. IBM Journal of Research and Development, 41(3):205, 1997.

[16] Orran Krieger, Michael Stumm, Ron Unrau, and Jonathan Hanna. A fair fast scalable reader-

writer lock. In Proceedings of the 1993 International Conference on Parallel Processing, volume

II - Software, pages II–201–II–204, Boca Raton, FL, August 1993. CRC Press.

97

[17] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, Kourosh Ghara-

chorloo, John Chapin, David Nakahira, Joel Baxter, Mark Horowitz, Anoop Gupta, Mendel

Rosenblum, and John Hennessy. The Stanford FLASH multiprocessor. In Proceedings of

the 21st Annual International Symposium on Computer Architecture, pages 302–313, Chicago,

Illinois, April 18–21, 1994. IEEE Computer Society TCCA and ACM SIGARCH.

[18] Richard P. Larowe, Jr. and Carla Schlatter Ellis. Page placement policies for NUMA multi-

processors. Journal of Parallel and Distributed Computing, 11(2):112–129, February 1991.

[19] James Laudon and Daniel Lenoski. The SGI origin: A ccNUMA highly scalable server. In

Proceedings of the 24th Annual International Symposium on Computer Architecture (ISCA-

97), volume 25,2 of Computer Architecture News, pages 241–251, New YOrk, June2–4 1997.

ACM Press.

[20] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The directory-based

cache coherence protocol for the DASH multiprocessor. In Jean-Loup Baer and Larry Snyder,

editors, Proceedings of the 17th Annual International Symposium on Computer Architecture,

pages 148–159, Seattle, WA, June 1990. IEEE Computer Society Press.

[21] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop Gupta,

John Hennessy, Mark Horowitz, and Monica S. Lam. The Stanford Dash multiprocessor.

Computer, 25(3):63–79, March 1992.

[22] M. Makpangou, Y. Gourhant, J.-P. Le Narzul, and M Shapiro. Fragmented objects for dis-

tributed abstractions. In Thoman L. Casavant and Mukesh Singhal, editors, Readings in

Distributed Computing Systems, pages 170–186. IEEE Computer Society Press, Los Alamitos,

California, 1994.

[23] Michael Marchetti, Leonidas Kontothanassis, Ricardo Bianchini, and Michael Scott. Using

simple page placement policies to reduce the cost of cache fills in coherent shared-memory

systems. In Proceedings of the 9th International Symposium on Parallel Processing (IPPS’95,

pages 480–485, Los Alamitos, CA, USA, April 1995. IEEE Computer Society Press.

[24] Evangelos P. Markatos and Thomas J. LeBlanc. Using processor affinity in loop scheduling

on shared-memory multiprocessors. IEEE Transactions on Parallel and Distributed Systems,

5(4):379–400, April 1994.

98

[25] Paul E. McKenney and Jack Slingwine. Efficient kernel memory allocation on shared-memory

multiprocessor. In USENIX Association, editor, Proceedings of the Winter 1993 USENIX

Conference: January 25–29, 1993, San Diego, California, USA, pages 295–305, Berkeley, CA,

USA, Winter 1993. USENIX.

[26] MIPS R4000 Microprocessor User’s Manual.

[27] E. Parsons, B. Gamsa, O. Krieger, and M. Stumm. (de)clustering objects for multiproces-

sor system software. In Fourth International Workshop on Object Orientation in Operating

Systems 95, pages 72–81, 1995.

[28] J. Kent Peacock. File system multithreading in system v release 4 mp. In Usenix Conference

Proceedings, pages 19–29. USENIX, 1992.

[29] J. Kent Peacock, Sunil Saxena, Dean Thomas, Fred Yang, and Wilfred Yu. Experiences from

multithreading system v release 4. In Proceedings of the Third Symposium on Experiences with

Distributed and Multiprocessor Systems (SEDMS III), pages 77–91. USENIX, March 1992.

[30] Mendel Rosenblum, Edouard Bugnion, Scott Devine, and Stephen Alan Herrod. Using the

SimOS machine simulator to study complex computer systems. ACM Transactions on Modeling

and Computer Simulation, 7(1):78–103, January 1997.

[31] Mendel Rosenblum, Stephen A. Herrod, Emmett Witchel, and Anoop Gupta. Complete com-

puter system simulation: The SimOS approach. IEEE parallel and distributed technology:

systems and applications, 3(4):34–43, Winter 1995.

[32] White Paper: Sequent’s NUMA-Q Architecture.

[33] Mark S. Squillante and Edward D. Lazowska. Using processor-cache affinity information in

shared-memory multiprocessor scheduling. IEEE Transactions on Parallel and Distributed

Systems, 4(2):131–143, February 1993.

[34] Per Stenström. A Survey of Cache Coherence Schemes for Multiprocessors. IEEE Computer,

23(6):12–24, June 1990.

[35] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis, S. Parthasarathy, and

Michael Scott. Cashmere-2L: Software coherent shared memory on a clustered remote-write

99

network. In Proc. of the 16th ACM Symp. on Operating Systems Principles (SOSP-16), Oc-

tober 1997.

[36] Josep Torrellas, Anoop Gupta, and John Hennessy. Characterizing the caching and synchro-

nization performance of a multiprocessor operating system. In Proceedings of the 5th Interna-

tional Conference on Architectural Support for Programming Languages and Operating System

(ASPLOS), volume 27, pages 162–174, New York, NY, September 1992. ACM Press.

[37] Ronald C. Unrau, Orran Krieger, Benjamin Gamsa, and Michael Stumm. Hierarchical clus-

tering: A structure for scalable multiprocessor operating system design. The Journal of Su-

percomputing, 9(1-2):105–134, ???? 1995.

[38] M. van Steen, P. Homburg, and A. S. Tanenbaum. The architectural design of globe: A

wide-area distributed sytem. Technical Report IR-442, vrige Universiteit, March 1997.

[39] R. Vaswani and J. Zahorjan. The implications of cache affinity on processor scheduling for mul-

tiprogrammed, shared memory muliprocessors. In Proc. Thirteenth ACM Symp. on Operating

System Principles, page 26, Pacific Grove, CA, October 1991. Published as Proc. Thirteenth

ACM Symp. on Operating System Principles, volume 25, number 5.

[40] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosemblum. Operating system sup-

port for improving data locality on CC-NUMA compute servers. In Seventh International Con-

ference on Architectural Support for Programming Languages and Operating Systems, pages

279–289, Cambridge, Massachusetts, 1–5 October 1996. ACM Press.

[41] Z. Vranesic, S. Brown, M. Stumm, S. Caranci, A. Grbic, R. Grindley, M. Gusat, O. Krieger,

G. Lemieux, K. Loveless, N. Manjikian, Z. Zilic, T. Abdelrahman, B. Gamsa, P. Pereira,

K. Sevcik, A. Elkateeb, and S. Srbljic. The NUMAchine multiprocessor. Technical Report

324, University of Toronto, April 1995.

[42] Zvonko G. Vranesic, Michael Stumm, David M. Lewis, and Ron White. Hector: A hierarchi-

cally structured shared-memory multiprocessor. Computer, 24(1):72–79, January 1991.

[43] C. Xia and J. Torrellas. Improving the performance of the data memory hierarchy for multi-

processor operating systems. In Proc. of the 2nd IEEE Symp. on High-Performance Computer

Architecture (HPCA-2), February 1996.

