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Abstract

Traditional operating-system locking designs tend
to either be very complex, result in poor concur-
rency, or both. These traditional locking designs fail
to take advantage of the event-driven nature of op-
erating systems, which process many small, quickly
completed units of work, in contrast to CPU-bound
software such as scientific applications. This event-
driven nature can often be exploited by splitting up-
dates into the two phases: 1) carrying out enough of
each update for new operations to see the new state,
while still allowing existing operations to proceed on
the old state, then: 2) completing the update after
all active operations have completed. Common-case
code can then proceed without disabling interrupts

or acquiring any locks to protect against the update
code, which simplifies locking protocols, improves
uniprocessor performance, and increases scalability.
Examples of the application of these techniques in-
clude maintaining read-mostly data structures, such
as routing tables, avoiding the need for existence
locks (and hence avoiding locking hierarchies with
the attendant deadlock issues), and dealing with un-
usual situations like module unloading.

1 Introduction

Operating systems such as Linux often perform ex-
pensive synchronization operations in common code
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Figure 1: Race Between Teardown and Use of Ser-
vice

paths to protect against infrequent destructive mod-
ifications. For example, a read access to a shared file
descriptor must acquire a lock to protect against in-
frequent file struct expansions. As another ex-
ample, code accessing a kernel module must incre-
ment a reference count to protect itself against infre-
quent module unloads. These synchronization oper-
ations on the common code paths result in increased
overhead, reduced scalability on a multiprocessor,
and are often the sole reason for complex lock hier-
archies, which both increase complexity and intro-
duce hard-to-solve deadlock-avoidance issues when
locks must be acquired out of order.

Let us consider the example of kernel module un-
loading. A schematic of accesses racing with the un-
loading of a module is shown in Figure 1, with time
increasing to the right. Operations 1A, 1B, 2A, and
2B denote in-kernel code sequences that do not yield
the CPU. The slanted arrows depict invocations of
the module and responses from the module. The
arrows are not vertical because code executed, in-
terrupts taken, and memory error-correction events
can result in delay between a decision to use a mod-
ule and the unload of that module. For example,
when Operation 1B started, the module was loaded,
but was unloaded before it could be invoked. Unless
Operation 1B has been coded to allow for this, the
result is most likely an “oops”.

There are a number of ways of handling this race,
which will be covered in Sections 2 and 7. One of
these ways is read-copy update. The key observa-
tion leading to read-copy update is that Operation
2B, which started after the module was unloaded,
is not subject to this race condition. This suggests
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Figure 2: Read-Copy Update Handling Race

that the module-unloading procedure should pro-
vide a “grace period” during which ongoing opera-
tions (e.g., Operation 1B) are allowed to continue
using the module, but new operations (e.g., Opera-
tion 2B) are told that the module is no longer loaded
(see Figure 2).

This grace period extends until after the end of all
operations that started before the beginning of the
grace period. Therefore, any operation that sees the
module still loaded is guaranteed to be able to use
it. Once the grace period expires, the system may
complete any required cleanup, in this case, unmap-
ping the module and freeing up the associated data
structures.

The end of a grace period is detected indirectly:
when every CPU (or task, in preemptive environ-
ments) has passed through a “quiescent state”, the
grace period may end. A “quiescent state” is a point
in the code at which it is guaranteed that all pre-
vious operations have completed. For example, in
a non-preemptive kernel, context switch is a qui-
escent state for a given CPU. In Figures 1 and 2,
the quiescent states occur between the dashed boxes
representing the operations.

Use of quiescent states is pessimistic in the sense
that it forces us to wait until all pre-existing oper-
ations on all data structures have completed, when
in fact only a few (or none!) of them might be using
the data structure of interest. This pessimistic ap-
proach allows us to deduce that a given data struc-
ture is no longer referenced without having to use
locks or atomic operations. This in turn provides
good performance and scalability, and may be used
in event-driven systems (such as the Linux kernel)



where operations complete quickly.

Implementations may choose di↵erent sets of quies-
cent states, in fact, thus far, four di↵erent strategies
have been used:

• DYNIX/ptx 2.1 (1993) and Rusty Russell’s first
wait for rcu() patch [Russell01a] simply ex-
ecute onto each CPU in turn. Once they have
done this, each CPU has seen at least one con-
text switch. Since context switch on a CPU is a
quiescent state for non-preemptive kernels, this
procedure finds the end of a grace period, as re-
quired. This mechanism is appropriate if block-
ing and preemption are prohibited in read-side
critical sections. These implementations track
quiescent states on a per-CPU basis. See Sec-
tion 4 for an implementation of this approach.

• DYNIX/ptx 4.0 (1994) and Dipankar Sarma’s
read-copy-update patch for Linux use context
switch, execution in the idle loop, execution
in user mode, system call entry, trap from
user mode, and CPU o✏ine (this last for
DYNIX/ptx only) as the quiescent states. Once
each CPU has passed through at least one of
these quiescent states, any pre-existing opera-
tions are guaranteed to have completed. This
approach is appropriate for kernels that pro-
hibit blocking and preemption in read-side crit-
ical sections. These implementations track qui-
escent states on a per-CPU basis. See Sec-
tion 6.2 for a design outline.

• Rusty Russell’s second wait for rcu()
patch [Russell01b] uses voluntary context
switch as the sole quiescent state. This
approach is appropriate for kernels that al-
low preemptions, but not voluntary context
switches, in read-side critical sections. This
implementation tracks quiescent states on a
per-task basis. See the patch for more details.

• Tornado’s and K42’s “generation” facility
tracks beginnings and ends of operations.
When an operation begins, it increments a per-
CPU current generation counter. When the op-
eration ends, it decrements this same counter.
When the counter goes to zero, then all pre-
existing operations that began their execution
on that CPU are guaranteed to have completed.
This approach is appropriate for kernels that
allow both preemption and voluntary context
switches in read-side critical sections. These

implementations track quiescent states on a
per-thread (“task” in Linux) basis. See Sec-
tion 6.1 for a design outline.

Read-copy update provides a grace period to con-
current accesses by performing destructive updates
in two phases: 1) carrying out enough of each up-
date for new operations to see the new state, while
allowing pre-existing operations to proceed on the
old state, then 2) completing the update after the
grace period expires, so that all pre-existing oper-
ations have completed. This splitting of destruc-
tive updates has resulted in read-copy update being
called “two-phase update” in some academic circles.

Read-copy update works best when: 1) it is pos-
sible to divide an update into two phases, 2) it is
possible for common-case operations to proceed on
stale data (e.g. continuing to handle operations by a
module being unloaded), and 3) destructive updates
are very infrequent. We have found that these sit-
uations are very common in existing operating sys-
tems. This paper lists how read-copy update has
been used in DYNIX/ptx, Tornado, and K42. The
paper also shows some “toy” examples and describes
patches that provide and use read-copy update in
Linux.

2 Toy Example of Read-Copy Up-
date Usage

This section presents a simple circular doubly
linked-list example, showing code fragments com-
paring a reference-counting locking algorithm taken
from Linux with its read-copy-update equivalent.
This “toy” example illustrates the time and com-
plexity overhead of the di↵erent approaches. The
same techniques discussed here can be applied to
both specific data structures, like this linked-list ex-
ample, or larger synchronization problems, as dis-
cussed in Section 5. Additional locking algorithms
are presented in Section 7.

For each algorithm, we present a search() and a
delete() function. The search() algorithm re-
turns a pointer to an element in the list given its
addr, and does whatever operation is required to
prevent that element from being freed up. The
delete() algorithm arranges for the specified el-
ement to eventually be freed up. Of course, the



1 struct el {
2 struct el *next;
3 struct el *prev;
4 spinlock_t lock;
5 long address;
6 long data;
7 long refcnt;
8 long deleted; /* read-copy only... */
9 struct kmem_defer_item kd; /* " " */
10 };

Figure 3: List Element Data Structure

1 struct el search(long addr)
2 {
3 read_lock(&list_lock);
4 p = head->next;
5 while (p != head) {
6 if (p->address == addr) {
7 atomic_inc(&p->refcnt)
8 read_unlock(&list_lock);
9 return (p);
10 }
11 p = p->next;
12 }
13 read_unlock(&list_lock);
14 return (NULL);
15 }

Figure 4: Reference-Counted Search

delete() operation may not be able to free up
the element immediately due to concurrent searches.
Figure 3 shows the list-element data structure used
in these search() and delete() functions.

2.1 Reference-Counted Search and
Delete

Figure 4, Figure 5, and Figure 6 show reference-
counted search, release, and deletion, respectively.
These code fragments are (severely) distilled from
neigh lookup() and friends in Linux 2.4.2. These
code fragments depart from the neigh lookup()
implementation by collapsing neigh force gc()
into the delete() function.

Figure 7 shows how the reference-counted search()
and delete() functions might be used. Lines 3
through 5 show how a read-only operation might
be carried out. Note that this read-only access still
results in cachelines being bounced by lines 3, 7,
and 8 of Figure 4 and by line 3 of Figure 5. Lines 9

1 static void release(struct el *p)
2 {
3 if (atomic_dec_and_test(&p->el_refcnt) {
4 kfree(p);
5 }
6 }

Figure 5: Reference-Counted Release

1 struct el delete(struct el *p)
2 {
3 write_lock(&list_lock);
4 p->next->prev = p->prev;
5 p->prev->next = p->next;
6 release(p);
7 write_unlock(&list_lock);
8 }

Figure 6: Reference-Counted Deletion

through 15 of Figure 7 show how an update opera-
tion, possibly including a deletion, might be carried
out. Note that although the cacheline bouncing in
lines 3 and 8 of Figure 4 can be greatly reduced by
using a brlock, this change would make the write-
side locking on lines 3 and 7 of Figure 6 much more
costly.

2.2 Read-Copy Update Search and
Delete

Figure 8 and Figure 9 show read-copy search and
deletion, respectively.

1 /* Read-only access. */
2
3 p = search(addr);
4 /* Read-only access to p. */
5 release(p);
6
7 /* Access and deletion. */
8
9 p = search(addr);
10 /* Access and update p. */
11 if (to_be_deleted) {
12 delete(p);
13 } else {
14 release(p);
15 }

Figure 7: Reference-Counted search/delete Usage



1 struct el *search(long addr)
2 {
3 struct el *p;
5 p = head->next;
6 while (p != head) {
7 if (p->address == addr) {
8 return (p);
9 }
10 p = p->next;
11 }
12 return (NULL);
13 }

Figure 8: Read-Copy Search

The search() function can return a reference to an
already-deleted element, but the kfree rcu() guar-
antees that the element will not be freed (and thus
possibly re-used for some other purpose) while this
reference exists (see Figure 20 for a definition of
kfree rcu()). There are a number of techniques
that may be used to ensure that search() returns
references only to elements that have not yet been
deleted; see Section 7.3 for an example. However,
there are quite a few algorithms that tolerate “stale
data”, for example, many algorithms that track
state external to the machine must deal with stale
data in any case due to communications delays.

The delete function is quite similar to that
of a single-threaded application, with the addi-
tion of locking, and with kfree() replaced by
kfree rcu(). The internal implementation of
kfree rcu() waits for a grace period before freeing
the specified block of memory (see Section 4.2), and
also provides the required read-write barriers that
allow this function to execute correctly on weakly
consistent machines.

The search() function contains absolutely no locks
or atomic instructions, which means that the per-
formance of this function will scale with CPU core
clock rate, rather than the much slower memory
latencies for an implementation based on locks or
atomic operations. In addition, the search() does
not disable interrupts, which means that read-copy
update can improve performance of UP as well as
SMP kernels. However, search() can return stale
data. This can be prevented, if need be, see for
example Section 7.3.

Note that delete() is very similar to its reference-
count counterpart, including the global lock. This
particular implementation will therefore give good

1 void delete(struct el *p)
2 {
3 spin_lock(&list_lock);
4 p->next->prev = p->prev;
5 p->prev->next = p->next;
6 spin_unlock(&list_lock);
7 kfree_rcu(p, NULL);
8 }

Figure 9: Read-Copy Deletion

1 /* Read-only access. */
2
3 p = search(addr);
4 /* Read-only access to the structure. */
5 /* Next yield of CPU acts as release. */
6
7 /* Access and deletion. */
8
9 spin_lock(&list_lock);
10 p = search(addr);
11 /* Access and update p. */
12 spin_unlock(&list_lock);
13 if (to_be_deleted) {
14 delete(p);
15 }
16 /* Next yield of CPU acts as release. */

Figure 10: Read-Copy search/delete Usage

speedups only if there are many more searches than
deletions. In many situations (e.g., routing-table
updates), this will be the case. In other situations,
the deletion function might use a more complex but
more highly parallel design.

Figure 10 shows how the read-copy search() and
delete() functions might be used. Line 3 shows
how a read-only operation might be carried out.
Note that there is absolutely no cacheline bounc-
ing if all operations are read-only. Lines 9-15 show
how an update operation, possibly including a dele-
tion, might be carried out. The list lock serializes
concurrent modifications.

2.3 Discussion

The reference-count and read-copy search() and
delete() functions each have their strengths. The
read-copy functions avoid all cacheline bouncing for
reading tasks, but can return references to deleted
elements, and cannot hold a reference to elements
across a voluntary context switch. There are hybrid
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designs that combine the strengths of these tech-
niques; a few of these are shown in Section 7.

2.4 Read-Copy Deletion Animated

This section steps through the read-copy deletion
function shown in Figure 9 using the example list
shown in Figure 11.

To delete element B, the updater task acquires
list lock to exclude other list manipulation (line 3
in Figure 9), unlinks element B from the list (lines 4
and 5), and releases list lock (line 6). This results
in the situation shown in Figure 12. This action
constitutes the first phase of the update.

At this point, any subsequent searches of the list
(see Figure 8) will find that element B has been
deleted. However, ongoing searches, such as that of
the reader task (which is executing line 6 of Fig-
ure 8, may still find element B: these tasks see stale
data. This stale data has been flagged so that it
may be easily ignored [Pugh90], as illustrated in Sec-
tion 7.3. In some cases, stale data may be tolerated,
for example, data representing external state, such
as routing tables, can be stale in any case due to
unavoidable update delays.

Finally, the updater task passes a pointer to element
B to the kfree rcu() primitive (line 7 of Figure 9),
which adds the memory to a list waiting to be freed,
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as shown in Figure 13.

The question answered by read-copy update is
“when is it safe to return element B to the freel-
ist?” The answer is “as soon as each pre-existing
operation completes”, since any new searches will
be unable to acquire a reference to element B. All
pre-existing operations are guaranteed to have com-
pleted at the end of a grace period. The end of
the grace period is detected via quiescent states, as
noted earlier.

At this point, kfree rcu() can safely return el-
ement B to the freelist potentially for immediate
reuse, as shown in Figure 14.

For this return to freelist to be safe, the reader task
must be prohibited from retaining a reference to el-
ement B across a quiescent state. This is equivalent
to the prohibition against maintaining similar refer-
ences outside of the corresponding critical sections
in traditional locking. In either case, the data struc-
ture might be arbitrarily modified in the meantime,
possibly rendering the reference invalid.

2.5 Architectural Trends and Locking
Algorithms

Figure 15 shows the historical memory-latency ra-
tios for Sequent’s computers. The latency ratio
shown in this figure represents the number of in-



Figure 15: Memory-Latency Ratios for Sequent
Computers

structions that could be executed in the time re-
quired to do a single load from memory. The line
bifurcates in 1996 due to the introduction of NUMA
hardware: the upper line (labeled “remote”) repre-
sents the number of instructions that can be exe-
cuted during the time required to do a single load
from remote memory, and the middle line (labeled
“local”) represents the number of instructions that
can be executed during the time required to do a
single load from local memory.

The trend is consistently upwards towards higher
memory-latency ratios, thanks to Moore’s law. The
two exceptions to this trend are the reduction in lo-
cal memory latencies in 1996 (due to adoption of
the NUMA architecture), and the reduction in both
local and remote memory latencies in 2001 (due to
adoption of a hardware crossbar interconnect and to
a combination of relatively fast local memory laten-
cies and relatively slow CPU clock rate on Itanium
CPUs compared to contemporary Pentium CPUs or
to McKinley expectations).

A key observation here is that traditional locking
is limited by worst-case memory latency. This is
because each acquisition of the lock must do a write
to that lock’s data structure, so that the lock’s data
structure will normally only be in “modified” state
in the cache of the last acquiring CPU. The next
acquiring CPU will therefore likely incur a remote-
memory-access latency penalty when acquiring the
lock. Improvements in the speed of lock acquisition
will therefore be limited by the slow improvements
in remote memory latency, rather than the much
faster improvements in CPU core speed [Hennes91,
Stone91, Burger96].

This trend illustrates the increasingly large perfor-
mance penalties of cacheline bouncing, which in
turn motivates use of locking techniques that are
not limited by remote memory latency. In read-
mostly situations, brlock and read-copy update are
examples of such techniques.

3 Conditions and Assumptions

Use of read-copy update is most likely to be help-
ful with read-intensive data structures, where stale
data may be either tolerated or suppressed, and
where event-driven operations complete quickly.

“Read intensive” means that the update fraction
(ratio of updates to total accesses) f is much smaller
than the reciprocal of the number of CPUs: if you
have eight CPUs, then a “read-intensive” workload
would have f much less than 0.125. It is possi-
ble for f to be as small as 10�10, for example, in
storage-area network (SAN) routing tables (consider
100 disks, each with 100,000-hour mean time be-
tween failure, connected to a system doing 3,000
I/Os per second). However, in some special cases,
read-copy update can provide performance benefits
even though f exceeds 0.9 [McK98a].

Use of a grace period means that reading tasks can
see stale data. However, any reading task that starts
its access after the first phase of an update is guaran-
teed to see the new data. This guarantee is su�cient
in many cases. In addition, data structures that
track state of components external to the computer
system (e.g., network connectivity or positions and
velocities of physical objects) must tolerate old data
because of communication delays. In other cases,
old data can be flagged so that the reading task can
detect it and take explicit steps to obtain up-to-date
data, if required [Pugh90], as shown in Section 7.3.

Read-copy update requires that the modification
be compatible with lock-free access. For example,
linked-list insertion, deletion, and replacement are
compatible: a reading access will see either the old
or new state of the list. However, if a list is re-
ordered in place, the reading task can be forced
into an infinite loop if the last element is consis-
tently moved to the front of the list each time a
reading task reaches it. It is possible to perform
an arbitrary read-copy-update modification of any
data structure by making a copy of the entire struc-



ture, but this is ine�cient for large structures. As
we gain more experience with read-copy update, we
expect to learn how to e�ciently transform more
general modifications into read-copy update form.

Another issue with read-copy update is that a mod-
est amount of memory must be available to track
memory waiting to be freed, and to allow for the
fact that memory is not freed as soon as it would
be when using traditional locking designs. However,
given the ever-decreasing cost of memory, this issue
does not cause much trouble in practice.

Finally, read-copy update is less applicable to non-
event-drive software, such as some CPU-bound
scientific applications, although similar techniques
have been used, as reviewed by Adams [Adams91].

4 Simple Infrastructure to Support
Read-Copy Update

This section presents a simple implementation of
read-copy-update infrastructure in two parts: (1)
a wait for rcu() primitive that waits for a grace
period to expire, and (2) a kfree rcu() primitive
that waits for a grace period before freeing a spec-
ified block of memory. Please note that the APIs
defined in this section are under development and
thus subject to change.

4.1 Simple Grace-Period Detection

Figure 16 shows how read-copy update progresses.
The boxes represent non-preemptible kernel execu-
tion, the space between them represents quiescent-
state execution (e.g., context switch, user mode, idle
loop, or user-mode execution), and each numbered
arrow represents an active entity, for example, a
CPU or a task, with time progressing to the right.1

The leftmost dashed line indicates the time of the
first phase of the read-copy update (e.g., lines 3
through 6 in Figure 9). The second phase of the
update (e.g., the actual freeing in the kfree rcu()
on line 7 of Figure 9, a simple version of which is

1
Rusty Russell [Russell01b] describes one way of relaxing

this restriction, so that involuntary context switches (pre-

emptions) are permitted in read-side critical sections. Sec-

tion 6.1 describes another approach that could be used.

CPU 0

CPU 1

CPU 2

CPU 3

A B C D -

E F G -

H I J K -

L M N -

-�
Minimum Grace Period

Figure 16: Read-Copy Update Grace Period
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Figure 17: Simple Grace-Period Detection

shown in Section 4.2) may proceed as soon as all op-
erations that were in progress during the first phase
have completed, namely, operations A, E, and L.
The earliest time the second phase can safely be ini-
tiated is indicated by the rightmost dashed line in
Figure 16, and the distance between the two dashed
lines is the minimum allowable duration of the grace
period – during this time, there may exist tasks that
still hold references to element B in Figure 12.

A simple procedure to determine when the second
phase may safely be initiated in a non-preemptive
operating-system kernel is depicted in Figure 17.
The updater simply forces itself to execute on each
CPU in turn. The boxes labeled “u” represent this
updater’s execution. Once it has run on each CPU,
then the non-preemptive nature of the Linux kernel
guarantees that all operations that were in progress
during phase one must have completed. Rusty Rus-
sell’s wait for rcu() primitive, shown in Figure 18,
is an example of this procedure.



1 void wait_for_rcu(void)
2 {
3 unsigned long cpus_allowed;
4 unsigned long policy;
5 unsigned long rt_priority;
6 /* Save current state */
7 cpus_allowed = current->cpus_allowed;
8 policy = current->policy;
9 rt_priority = current->rt_priority;
10 /* Create an unreal time task. */
11 current->policy = SCHED_FIFO;
12 current->rt_priority = 1001 +
13 sys_sched_get_priority_max(SCHED_FIFO);
14 /* Make us schedulable on all CPUs. */
15 current->cpus_allowed =
16 (1UL<<smp_num_cpus)-1;
17
18 /* Eliminate current cpu, reschedule */
19 while ((current->cpus_allowed &= ~(1 <<
20 cpu_number_map(
21 smp_processor_id()))) != 0)
22 schedule();
23 /* Back to normal. */
24 current->cpus_allowed = cpus_allowed;
25 current->policy = policy;
26 current->rt_priority = rt_priority;
27 }

Figure 18: Non-Preemptible Grace-Period Detec-
tion

Lines 7 through 13 save the current scheduling state,
and set up a FIFO scheduling policy with su�cient
priority to preempt all other tasks. Lines 15 and 16
create a mask that allows the task to run on any
CPU. The loop on lines 19 through 22 repeatedly
eliminates the current CPU from the set allowed
to run this task, then yields the CPU. Thus, upon
loop completion, the task will have run on each of
the CPUs, which means that each CPU will have
completed whatever it was doing at the time of the
call to wait for rcu(). In the case of the read-copy
deletion algorithm in Figure 9, this in turn means
that it is now safe to free up the memory passed
to kfree rcu(). Lines 24 through 26 restore the
scheduling state.

This code is quite straightforward, but it does have
a few shortcomings: (1) it would not work in a pre-
emptible kernel unless preemption is suppressed in
all read-side critical sections, (2) it cannot be called
from an interrupt handler (but schedule task()
can be used to call it indirectly), (3) it cannot be
called while holding a spinlock or with interrupts
disabled (but, again, schedule task() can be used
to call it indirectly), and (4) it is relatively slow.
Rusty Russell’s patch [Russell01b] and Section 6.1
describe two possible ways of addressing item 1. The
following section describes the kfree rcu() primi-
tive that addresses items 2 and 3. Section 6.2 de-
scribes a faster grace-period-detection algorithm for
non-preemptible read-side critical sections that ad-
dresses items 2, 3, and 4.

Another way of addressing items 2 and 3 is to define
a call rcu() function that queues callbacks onto a
list. A separate free pending rcus() function can
then invoke all the pending callbacks after forcing
a grace period. Figure 19 shows a straightforward
implementation of these two functions. Note that it
makes sense to invoke free pending rcus() when
memory pressure needs to be applied.

4.2 Simple Deferred Free

This section describes a simple implementation of a
deferred-free function named kfree rcu().

In many cases, a (mythical) destroy soon() primi-
tive would be ideal – just pass a pointer to the data
structure that is to be freed up during the second
phase of read-copy update, then go about your busi-
ness. Unfortunately, there is no safe implementation



1 void call_rcu(struct rcu_head *head,
2 void (*func)(void *head))
3 {
4 unsigned long flags;
5
6 head->destructor = func;
7 spin_lock_irqsave(&rcu_lock, flags);
8 head->next = rcu_list;
9 rcu_list = head;
10 spin_unlock_irqrestore(&rcu_lock, flags);
11 }
12
13 void free_pending_rcus(void)
14 {
15 struct rcu_head *list;
16
17 spin_lock_irq(&rcu_lock, flags);
18 list = rcu_list;
19 rcu_list = NULL;
20 spin_unlock_irq(&rcu_lock, flags);
21
22 /* If list nonempty, wait and destroy. */
23 if (list) {
24 wait_for_rcu();
25 while (list) {
26 struct rcu_head *next = list->next;
27
28 list->destructor(list);
29 list = next;
30 }
31 }
32 }

Figure 19: Non-Blocking Grace-Period Detection

of destroy soon() that can be called from inter-
rupt handlers or with locks held. This is because
we do not want to wait for an entire grace period
inside the function: we want to queue the object
for destruction and return as quickly as possible,
without incurring gratuitous context switches. Un-
fortunately, any function allocating memory must
be able to either block or fail, and destroy soon()
can do neither.

Instead, we allocate the memory required for the
list when the memory is initially allocated by using
kmalloc rcu(), which is shown in lines 7 through 16
of Figure 20. The memory may be freed by invoking
kfree rcu(), as shown in lines 28 through 40. If the
memory to be freed consists of several linked blocks
(e.g., a linked list), a “destructor” function may be
passed to kfree rcu(). This destructor function
is responsible for freeing up the linked blocks, and
kfree rcu() frees up the block whose pointer was
initially passed in.

The kfree rcu() function uses an auxiliary
sync and destroy() function (see lines 18 through
26) that is run as a tasklet on line 39 to do the ac-
tual freeing. A struct rcu head is used to queue
the tasklet.

This approach works well, but still has low perfor-
mance, since each and every call to kfree rcu() re-
sults in a call to wait for rcu(), which incurs one
context switch per CPU. In addition, some small
but distracting modifications are required to allow
memory from slab allocators to be deferred freed
and to handle more general alignment constraints.
Finally, in some cases, the struct rcu head can be
unioned into the data structure being deferred freed.

A more complex implementation that addresses
these issues is described in Section 6.2.

5 Using Read-Copy Update

This section walks through implementations of scal-
able FD management, hotplug CPU support, and
module unloading that use read-copy update.



1 struct rcu_head
2 {
3 struct tq_struct task;
4 void (*destructor)(void *obj);
5 };
6
7 void *kmalloc_rcu(size_t size, int flags)
8 {
9 struct rcu_head *ret;
10
11 size += L1_CACHE_ALIGN(sizeof(*ret));
12 ret = kmalloc(size, flags);
13 if (!ret)
14 return NULL;
15 return ret + 1;
16 }
17
18 static void sync_and_destroy(void *rcu_head)
19 {
20 struct rcu_head *head = rcu_head;
21
22 wait_for_rcu();
23 if (head->destructor != NULL)
24 head->destructor(head + 1);
25 kfree(head);
26 }
27
28 void kfree_rcu(void *obj,
29 void (*destructor)(void *))
30 {
31 struct rcu_head *head;
32
33 head = (struct rcu_head *)obj - 1;
34
35 head->task.sync = 0;
36 head->task.routine = &sync_and_destroy;
37 head->task.data = head;
38 head->destructor = destructor;
39 schedule_task(&head->task);
40 }

Figure 20: Simple Deferred Free

1 if (i) {
2 memcpy(new_openset, files->open_fds,
3 files->max_fdset/8);
4 memcpy(new_execset, files->close_on_exec,
5 i * sizeof(struct file *));
6 memset(&new_openset->fds_bits[i], 0, count);
7 memset(&new_execset->fds_bits[i], 0, count);
8 }
9 nfds = xchg(&files->max_fdset, nfds);
10 new_openset = xchg(&files->open_fds,
11 new_openset);
12 new_execset = xchg(&files->close_on_exec,
13 new_execset);
14 write_unlock(&files->file_lock);
15 free_fdset(new_openset, nfds);
16 free_fdset(new_execset, nfds);
17 write_lock(&files->file_lock);

Figure 21: Expanding FD Array

5.1 Scalable FD Management Using
Read-Copy-Update

FD management maintains the data structures that
map from a file descriptor to the corresponding
struct file. This mapping is implemented as a
set of arrays (pointed to by fd, close on exec, and
open fds), which can grow as the process opens
more files.

The current FD management code uses a reader-
writer lock (file lock) to guard the files struct
state, in particular, the fd, close on exec, and
open fds pointers. The read-copy-update modifi-
cations replace the reader-writer file lock with
a spinlock; read lock() calls are deleted, and
write lock() calls are replaced with spin lock().

The expand fd array() and expand fdset() func-
tions are then cast into read-copy-update form, with
the update split into two phases separated by a
grace period.

The original form of the update portion of
expand fd array() is shown in Figure 21. In
the read-copy-update version, lines 1 through 13
are executed in the first phase, and lines 15 and
16 is executed after a grace period, using the
wait for rcu() function to defer execution of the
free fdset() functions. This approach allows any
tasks running on other CPUs that are still refer-
encing the arrays pointed to by the old values of fd,
close on exec, and open fds to continue normally.



1 if (i) {
2 memcpy(new_openset, files->open_fds,
3 files->max_fdset/8);
4 memcpy(new_execset, files->close_on_exec,
5 i * sizeof(struct file *));
6 memset(&new_openset->fds_bits[i], 0, count);
7 memset(&new_execset->fds_bits[i], 0, count);
8 }
9 RC_MEMSYNC();
10 new_openset = xchg(&files->open_fds,
11 new_openset);
12 new_execset = xchg(&files->close_on_exec,
13 new_execset);
14 RC_MEMSYNC();
15 nfds = xchg(&files->max_fdset, nfds);
16 write_unlock(&files->file_lock);
17 wait_for_rcu();
18 free_fdset(new_openset, nfds);
19 free_fdset(new_execset, nfds);
20 write_lock(&files->file_lock);

Figure 22: Read-Copy Expanding FD Array

A read-copy version is shown in Figure 22. This
code must install the new arrays before updat-
ing max fdset, since read-side critical sections are
no longer excluded when running this code. The
RC MEMSYNC() calls are needed to maintain mem-
ory ordering on CPUs with extremely weak memory
consistency. The expand fdset() function is mod-
ified in a similar fashion, see the patch [Soni01b] for
more details.

This patch uses a slightly di↵erent approach from
that shown in Figure 22. Rather than using
wait for rcu(), it registers read-copy callbacks,
which asynchronously invoke auxiliary functions to
free the memory after the grace period expires. This
somewhat more complex approach is necessary for
good performance, as the wait for rcu() approach
results in extra context switches, whose overhead
overwhelms read-copy update’s performance gains
in this case. Future work includes measuring per-
formance using the kfree rcu() interface.

Figure 23 shows the performance benefits of the
read-copy version of FD management on the chat
benchmark with rooms=20 and messages=500 in a
2.4.2 SMP kernel. These runs used a 1-way, 2-way,
3-way, and a 4-way PIII Xeon 700MHz system with
1MB L2 cache and 1GB of RAM. The read-copy up-
date version attains over 30% more throughput at
four CPUs, which should benefit all multithreaded
applications that do heavy disk or network I/O. In

Figure 23: FD Management Performance

addition, this change does not penalize uniprocessor
kernels, instead showing a statistically insignificant
performance increase (0.65%). In all cases, kern-
prof measurements revealed greatly reduced hits in
the fget() function. Since there was no sign of
heavy contention on the lock used in this code, it is
probable that the increased throughput was due to
reduced cacheline bouncing.

5.2 Hotplug CPU Support Using Read-
Copy Update

Hotplug CPU support allows a given CPU to be
taken o✏ine, so that it will not schedule tasks, take
interrupts, or run tasklets. This is useful for bench-
marking (as it allows you to vary the number of
CPUs available without a reboot) and to remove a
CPU that is showing signs of immanent failure (such
as high soft-error rate in the CPU’s caches).

One consequence of hotplug CPU support is that
the current online processors array is no longer
read only. Traditional approaches would require
that locking be added to all existing code access-
ing this array. Such a change would be intrusive
and awkward. To avoid this pervasive change, the
hotplug-CPU-support patch uses read-copy update,
which allows code accessing this array to remain un-
changed, with no locking whatsoever.

The essence of hotplug CPU support is captured
by the cpu down() function, which is shown in Fig-
ure 24. Lines 4 through 6 acquire cpucontrol to en-
sure that only one CPU is being taken out of service
at a time. Lines 7 through 10 give error EINVAL if



1 int cpu_down(unsigned int cpu)
2 {
3 int ret;
4 if ((ret =
5 down_interruptible(&cpucontrol)) != 0)
6 return (ret);
7 if (!cpu_online(cpu)) {
8 ret = -EINVAL;
9 goto out;
10 }
11 if (num_online_cpus() == 1) {
12 ret = -EBUSY;
13 goto out;
14 }
15 current->cpus_allowed = (1<<cpu);
16 schedule();
17 if (smp_processor_id() != cpu)
18 BUG();
19 current->cpus_allowed = -1;
20 ret = __cpu_disable(cpu);
21 if (ret != 0) goto out;
22 if (cpu_online(cpu))
23 BUG();
24 __wait_for_rcu();
25 notifier_call_chain(&cpu_chain,
26 CPU_OFFLINE,
27 (void *)cpu);
28 __cpu_die(cpu);
29 out:
30 up(&cpucontrol);
31 return ret;
32 }

Figure 24: Hotplug CPU Support

the specified CPU has already been taken out of ser-
vice. Lines 11 through 14 give error EBUSY if this
is the last CPU in service. Lines 15 and 16 switches
this task onto the departing CPU, and lines 17 and
18 verify that this switching in fact occurred. Line
19 allows the next context switch to place us on one
of the remaining CPUs, and line 20 disables the de-
parting CPU. Line 21 returns the specified error if
cpu disable() fails. Lines 22 and 23 verify that

the CPU was in fact disabled. Line 24 uses read-
copy update to ensure that all other CPUs become
aware of the specified CPU’s departure. Then, lines
25 through 27 invoke all the registered notifiers, and
line 28 does final cleanup for the departing CPU.
Lines 30 and 31 release cpucontrol and return any
error indication.

The cpu up() function also uses read-copy update
to ensure that all CPUs are aware of the arriving
CPU before the notifiers are invoked.

Read-copy update allowed hotplug CPU support to
be implemented with minimal impact to the rest of
the system.

5.3 Module Unloading Using Read-
Copy Update

Module unloading in Linux 2.4 is subject to a de-
structive race when an attempted use of a given
module races with unloading of that module. Al-
though the module-unloading code marks the mod-
ule as “unloaded”, it is still possible for a call to that
module to see the module as loaded, but not get
around to performing the module invocation until
after the module was fully unmapped, and all asso-
ciated data was freed. This race can cause tasks at-
tempting to use the module to access already-freed
memory. One of the authors (Maneesh) modified
the module-unloading code to use read-copy update,
eliminating the race. This modification works by
leaving the data structures in place for a grace pe-
riod, so that racing calls to the kernel module always
either see a valid data structure marked “unloaded”
or no data structure at all.

Please note that this code is a work in progress that
is intended only to demonstrate use of read-copy
update. We absolutely do not recommend that this
change be incorporated into the Linux kernel in its
current form.

This modification requires that the module writer
make some changes to the module:

1. Insert a call to kmod def cleanup() in the
module’s cleanup routine.

2. If the module has an open-read/write-release
format, insert a call to MOD INC USE COUNT
in the open function and insert a call to
MOD DEC USE COUNT in the release function.
This allows processes to safely block between
the time that they open and close a file.

3. Insert a call to MOD INC USE COUNT before any
blocking operation in the module code, and in-
sert a call to MOD DEC USE COUNT after any such
blocking operation. This prevents the mod-
ule from being unloaded while a given task is
blocked inside the module.

In summary, read-copy update protects against uses



1 typedef struct module_data_destructor
2 module_data_destructor_t;
3 typedef void
4 (*module_data_destructor_func_t)(
5 void *arg);
6 struct module_data_destructor {
7 module_data_destructor_func_t func;
8 void *arg;
9 };

Figure 25: Module Data Destructor Structure

1 int
2 kmod_def_cleanup(struct module *mod,
3 module_data_destructor_t *mdd)
4 {
5 rc_callback_t *cb;
6 if (!(cb = rc_alloc_callback(
7 (rc_callback_func_t)kmod_cu_cb_fn,
8 mod, mdd, GFP_ATOMIC))) {
9 return -ENOMEM;
10 }
11 rc_callback(cb);
12 return 0;
13 }

Figure 26: kmod Deferred Cleanup

of the module while it is being unloaded, while the
reference count prevents the module from being un-
loaded while a task is blocked inside it.

The kmod def cleanup() function in Figure 26
takes a pointer to struct module as its first argument
and a pointer to a module data destructor t as its
second argument. The latter is defined as shown in
Figure 25. The func field contains a pointer to a
function that is invoked after a grace period start-
ing at the beginning of the module unload, and the
arg field contains an arbitrary value that is passed
to this function. This function is used to allow the
module to do final cleanup of resources needed by
module uses that race with the unload operation.

The kmod def cleanup() function is shown in Fig-
ure 26. Lines 6 through 10 attempt to allocate and
initialize a read-copy callback structure, returning
ENOMEM upon failure. Line 11 registers a read-copy
callback. This callback will be invoked after a grace
period, resulting in a call to kmod cu cb fn(cb,
mod, mdd).

The rc alloc callback() function simply allo-
cates an rc callback t structure and initializes its

1 void rc_callback(rc_callback_t *rp)
2 {
3 wait_for_rcu();
4 (*(rp->callback))(rp, rp->arg1,
5 rp->arg2);
6 }

Figure 27: Register Read-Copy Callback

1 static int
2 kmod_cu_cb_fn(rc_callback_t *cb,
3 struct module *mod,
4 module_data_destructor_t *mdd)
5 {
6 if (mdd)
7 mdd->func(mdd->arg);
8 module_unmap(mod);
9 rc_free_callback(cb);
10 return 0;
11 }

Figure 28: kmod Cleanup Function

fields to contain the specified function (in this case,
kmod cu cb fn()) and two arguments to be passed
to this function (in this case, mod and mdd). A
simple definition of rc callback() is shown in Fig-
ure 27. This executes a wait for rcu(), then in-
vokes the callback, allowing for final cleanup. A
higher-performance implementation of this function
is described in Section 6.2.

When invoked from kmod def cleanup(),
the rc callback() function will call
kmod cu cb fn(), since this function was passed
to rc alloc callback on line 7 of Figure 26.
The definition of kmod cu cb fn() is shown in
Figure 28. Lines 6 and 7 of Figure 28 invoke the
module-defined cleanup function, if one exists. Line
8 unmaps the module, and line 9 frees the callback
data structure. Finally, line 10 returns to the caller.

The e↵ect of these changes is to defer module
cleanup until all racing uses of that module have
finished. This eliminates destructive races. More
information is available with the patch [Soni01a].



6 Advanced Infrastructure for Read-
Copy Update

This section describes the design used in the
Tornado and K42 research operating sys-
tems [Gamsa99] and a more complex but
higher-performance design for non-preemptive
Linux kernels. Most, and perhaps all, of the
optimizations found in this last implementation can
easily be applied to the implementation described
in Section 4.

6.1 Tornado/K42 Design for Read-
Copy Update

The K42 and Tornado implementations of read-copy
update are such that read-side critical sections can
block as well as being preempted. For each CPU,
the scheduler maintains two generation counters. At
any given time one counter is identified as the cur-
rent generation. When a operation (such as a sys-
tem call or interrupt) begins, it is associated with
the current generation by incrementing the current
counter and storing a pointer to that counter in the
task. When the operation ends, the corresponding
generation counter is decremented. Periodically, the
non-current generation is checked to see if it is zero,
indicating that all associated operations have termi-
nated. When this happens, the roles of the current
and non-current generations are reversed. A sep-
arate per-CPU generation sequence number is ad-
vanced every time a new generation is identified as
current. Given such mechanisms, when the genera-
tion sequence has advanced twice we can be assured
that all operations in existence prior to the advance-
ment have terminated on the specific CPU. In order
to know when all operations have terminated across
all the CPUs, a token is constantly circulated across
all CPUs. The token is handed from one CPU to
the next CPU when the generation sequence has ad-
vanced by at least two on the CPU in current pos-
session of the token. Thus when the token returns
to a given CPU all operations across the entire sys-
tem that were in existence, since the last time the
CPU had the token, have terminated.

Read-copy update is used pervasively within K42
and Tornado, and is available to user applications
and libraries as well as within the kernel. However,
systems calls such as recvmsg(), which can block
indefinitely, must be carefully coded so that this

long-term blocking is not considered to be part of
an operation.

6.2 High-Performance Design for Read-
Copy Update

The read-copy update implementation in Section 4
works well in many situations. However, some ad-
ditional capabilities can be beneficial in some situ-
ations:

1. Providing a function that is capable of doing
deferred frees of kmem cache alloc() memory,
as well as of more complex data structures such
as linked lists and trees.

2. Providing a mechanism that detects and iden-
tifies overly long lock-hold durations, which
could otherwise make grace periods excessively
long and degrade overall response times.

3. “Batching” grace-period-measurement requests
so that a single (expensive) invocation of grace-
period measurement can satisfy multiple re-
quests. This can be accomplished by having
a list of requests, with each request containing
a pointer to a callback function and arguments.

4. Maintaining per-CPU request lists in order to
further reduce the per-request overhead of mea-
suring grace periods.

5. Providing a less-costly algorithm for measuring
grace-period duration.

Each of these features could potentially be added to
the algorithms described in the preceding sections,
if required. This section describes the read-copy-
update patch that was ported from DYNIX/ptx,
which supports all of these capabilities and which
was used in the ”chat” benchmark runs described
in Section 5.1.

The overall data-structure design of this algorithm
is shown in Figure 29.

This design uses ‘callbacks” that allow code that
cannot block to schedule the phase-2 work via a
function call, in a manner similar to the tasklet
approach used in Section 4.2. These callbacks are
placed on the next, current, and intr lists shown
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Figure 29: High-Performance Read-Copy Update
Data Structures

in the figure. A wait for rcu() function can easily
be implemented using these callbacks.

Item 1 is addressed by providing a
kmem deferred free() function, which takes
a pointer to the memory to be deferred-freed, a
pointer to a cleanup function, as well as a pointer to
a portion of the memory that is used to thread the
memory onto a per-CPU list as shown in Figure 30.
Once the grace period has expired, the cleanup
function is invoked. This cleanup function may
then free up the structure(s), using any desired
mechanism.

Item 2 is addressed by recording a timestamp at
the beginning of a grace period. If a given CPU
takes too long arriving at a quiescent state, it can
print diagnostic information to help track down the
o↵ending code path.

Item 3 is also addressed by the lists, since multi-
ple callbacks on the lists (representing multiple re-
quests) can be satisfied by a single set of quiescent
states. This batching can greatly improve perfor-

1 void kmem_deferred_free(
2 void *ptr,
3 int (*func)(void *),
4 struct kmem_defer_item *kp)
5 {
6 int cpu = smp_processor_id();
7 kp->kdi_next = NULL;
8 kp->kdi_ptr = ptr;
9 kp->kdi_func = func;
10 __cli();
11 *KMEM_DEFER_PERCPU(cpu)->kmemd_tail = kp;
12 KMEM_DEFER_PERCPU(cpu)->kmemd_tail =
13 &kp->kdi_next;
14 if (KMEM_DEFER_PERCPU(cpu)->kmemd_idle) {
15 kmemd_register_percpu();
16 return;
17 }
18 __sti();
19 return;
20 }

Figure 30: Fast Deferred Free

mance if many update-side read-copy operations are
in flight simultaneously.

Item 4 is addressed by replicating the lists per-
CPU, reducing cacheline bouncing and eliminat-
ing the need for locks guarding the lists. Instead,
the rc callback() function simply enqueues the
rc callback t onto the current CPU’s next list
with interrupts disabled as shown in Figure 31. The
declaration on lines 3 and 4 points rcpl to this
CPU’s rclock state. Line 5 marks the callback as
registered, and line 6 collects statistics. Finally,
lines 7 through 14 adds the callback to the end of
the list. The list is processed by code invoked from
the clock interrupt handler.

Item 5 is addressed by maintaining the following:

1. per-CPU counters for each quiescent state, in-
cluding number of context switches, number of
passes through the idle loop, number of system
calls, and number of traps from user code (dif-
ferent read-copy update semantics, for exam-
ple, allowing preemption, can be obtained by
selecting a di↵erent set of quiescent states and
tracking tasks rather than CPUs [Bhatt01]).

2. a bitmask that contains a bit for each CPU,
which is set if that CPU needs to pass through
a quiescent state.

3. a global current-generation and maximum-



1 void rc_callback(rc_callback_t *rc)
2 {
3 rc_plocal_t *rcpl =
4 RC_PLOCAL(smp_processor_id());
5 rc->flags |= RCC_REGISTERED;
6 atomic_inc(&rc_ctrlblkd.nreg);
7 rc->next = NULL;
8 __cli();
9 if (rcpl->rclocknxtlist == NULL) {
10 rcpl->rclocknxtlist = rc;
11 } else {
12 *rcpl->rclocknxttail = rc;
13 }
14 __sti();
15 }

Figure 31: Fast Read-Copy Callback Registry

generation counter, along with per-CPU gen-
eration counters. These generation numbers
count grace periods. The per-CPU generation
counters indicate which generation the call-
backs in the corresponding current list belong
to.

This data is processed by a state machine that is
invoked from the per-CPU timer interrupt.

A new generation is initiated by setting all CPU’s
bits in the bitmask, by incrementing the global cur-
rent generation, and by setting the global maximum
generation to one greater than the current value.

As each CPU notices that its bit is set, it copies
its counters to corresponding “snapshot” counters.
Later, when the CPU notices that any of the coun-
ters di↵ers from the snapshot, it clears its bit. If
its bit is the last one set, it increments the global
current generation. If the global current generation
does not then exceed the global maximum genera-
tion, the CPU initiates a new generation.

As each CPU notices that the global current gen-
eration has advanced past its generation number, it
appends the contents of its current list to its intr
list, and schedules a tasklet to process it. If the
CPU’s next list is nonempty, the CPU moves it to
its current list, and sets its per-CPU generation
number to be one greater than the global genera-
tion number. If a generation is already in progress,
the CPU sets the global maximum generation num-
ber to be one greater than its per-CPU generation
number, otherwise, it starts a new generation.

The rc callback() function simply adds the call-
back to the current CPU’s next list. If the CPU’s
current list is empty, then the CPU notices (at
the next timer interrupt) that its next list is non-
empty, it will move the contents of its next list to its
current list and request a new generation, starting
one if there is not already one in progress.

For more details, see the patch [Sarma01], its docu-
mentation [McK01a], and the paper reporting the
performance of the DYNIX/ptx implementation
[McK98a]. This design is more complex than the
implementations discussed earlier, but is also more
flexible and has much better performance.

7 Other Locking Algorithms

This section presents a few locking algorithms, and
shows how they relate to variants of read-copy up-
date. These algorithms all search and delete from a
circular doubly linked list, and use the struct defini-
tion shown in Figure 3. This section is by no means
an exhaustive survey of locking algorithms.

7.1 Data Locking

Data locking associates a separate lock with each
instance of a given data structures, and can there-
fore be arbitrarily scalable. Data locking is prone
to deadlock, and requires reading tasks to perform
expensive writes to shared memory that result in
bounced cache lines (for example, lines 4 and 8 in
Figure 32). This data locking example thus serves
to show how read-copy update can simplify deadlock
avoidance (see Section 7.3). In addition, although
the list elements may be manipulated in parallel,
searches cannot be done in parallel.

Note that there is no natural lock hierarchy:
search() must acquire the locks in the opposite or-
der from delete (see lines 4 through 10 of Figure 33).
One alternative would be to hold list lock upon
return from search(), but this change would in-
crease the contention on this global lock to the point
where there would be no advantage over a global
lock. Another alternative would be to uncondition-
ally drop p->el lock and then acquire list lock
and el lock in order, but this also increases con-
tention on list lock.



1 struct el *search(long addr, bool keeplock)
2 {
3 struct el *p;
4 spin_lock(&list_lock);
5 p = head->next;
6 while (p != head) {
7 if (p->address == addr) {
8 spin_lock(&p->lock);
9 if (!keeplock) {
10 spin_unlock(&list_lock);
11 }
12 return (p);
13 }
14 p = p->next;
15 }
16 spin_unlock(&list_lock);
17 return (NULL);
18 }

Figure 32: Data-Locked Search

Although this deadlock-avoidance code is not too
complex in this “toy” example, it has doubled in
size compared to Figure 9. Not only is data-locked
deletion function more di�cult to write and inspect,
it is also more di�cult to test. Lines 5 through 9 are
only executed in case of a race with another CPU,
and line 8 requires an additional race at the same
time.

7.2 Reader-Writer Locking

Ingo Molnar’s brlock is an example of a distributed
reader-writer lock [Hseih91]. It can be thought of
as a cache-aligned array of per-CPU locks, where
a reading task acquires only its CPU’s lock, and
a writing task must acquire all CPUs’ locks. The
cacheline containing a given CPU’s lock is there-
fore likely to remain in that CPU’s cache, so that
readers are much less likely to need to bounce cache
lines. However, brlock structures are quite large,
so that they normally cannot be embedded within
data structures. The code structure is very similar
to that of reader-writer locking, but attains much
higher concurrency in parallel searches as long as
reading is much more common than writing.

Figure 34 shows the search() code, which has
gained some complexity because the list lock
might need to be kept in either read or write mode.
However, this added complexity allows reading tasks
to search the list and to examine individual elements
in parallel. Writing tasks are still serialized.

1 void delete(struct el *p, bool keeplock)
2 {
3 long addr;
4 if (!spin_trylock(&list_lock)) {
5 addr = p->address;
6 spin_unlock(&p->lock);
7 if ((p = search(addr, 1)) == NULL) {
8 return;
9 }
10 }
11 p->next->prev = p->prev;
12 p->prev->next = p->next;
13 spin_unlock(&p->lock);
14 if (!keeplock) {
15 spin_unlock(&list_lock);
16 }
17 kfree(p);
18 }

Figure 33: Data-Locked Deletion

1 struct el *search(long addr, bool write)
2 {
3 struct el *p;
4 if (write) {
5 br_write_lock(&list_lock);
6 } else {
7 br_read_lock(&list_lock);
8 }
9 p = head->next;
10 while (p != head) {
11 if (p->address == addr) {
12 return (p);
13 }
14 p = p->next;
15 }
16 if (write) {
17 br_write_unlock(&list_lock);
18 } else {
19 br_read_unlock(&list_lock);
20 }
21 return (NULL);
22 }

Figure 34: Reader-Writer Locked Search



1 void delete(struct el *p, bool keeplock)
2 {
3 p->next->prev = p->prev;
4 p->prev->next = p->next;
5 if (!keeplock) {
6 br_write_unlock(&list_lock);
7 }
8 kfree(p);
9 }

Figure 35: Reader-Writer Locked Deletion

The deletion code (Figure 35) is reasonably simple.
The caller must have kept the list lock in write
mode, presumably by having invoked search()
with write!=0.

It is possible to combine the ideas of reader-writer
locking and data locking, which allows multiple up-
dating tasks to manipulate individual elements con-
currently, but this combining adds more complexity.

7.3 Read-Copy Update Without Stale
Data

There are a number of ways of suppressing stale data
in read-copy update algorithms. One of the simplest
approaches is to combine the ideas of data locking
with those of read-copy update, using a per-element
lock and a deleted flag to detect and reject stale
data, as shown in Figures 36 and 37. This approach
introduces some cacheline bouncing, since the el-
ement must be locked in order to safely test the
delete flag. Although it is also possible to accom-
plish this test safely with (for example) compare-
and-exchange instructions, the cachelines will still
bounce. However, only the cachelines containing
the elements themselves will bounce, since there is
no need for a list lock to guard the search.

Figure 37 shows the corresponding delete function,
which adds only the setting of the delete flag and
the acquisition and release of the per-element lock
to the read-copy delete algorithm shown in Figure 9.

7.4 Read-Copy Update Across Context
Switches

There are also a number of ways of holding ref-
erences across context switches. One of the sim-

1 struct el *search(long addr)
2 {
3 struct el *p;
5 p = head->next;
6 while (p != head) {
7 if (p->address == addr) {
8 spin_lock(&p->lock);
9 if (!p->deleted) {
10 return (p);
11 }
12 spin_unlock(&p->lock);
13 }
14 p = p->next;
15 }
16 return (NULL);
17 }

Figure 36: Read-Copy Search Without Stale Data

1 void delete(struct el *p)
2 {
3 spin_lock(&list_lock);
4 spin_lock(&p->lock);
5 p->next->prev = p->prev;
6 p->prev->next = p->next;
7 p->delete = 1;
8 spin_unlock(&p->lock);
9 spin_unlock(&list_lock);
10 kfree_rcu(p, NULL);
11 }

Figure 37: Read-Copy Deletion Without Stale Data



1 void hold(struct el *p)
2 {
3 spin_lock(&p->lock);
4 atomic_inc(&p->refcnt);
5 spin_unlock(&p->lock);
6 }

Figure 38: Read-Copy Hold Across Context
Switches

1 static void release(struct el *p)
2 {
3 spin_lock(&p->lock);
4 if (atomic_dec_and_test(&p->el_refcnt) {
5 kfree_rcu(p, NULL);
6 }
7 spin_unlock(&p->lock);
8 }

Figure 39: Read-Copy Release

plest approaches is to combine the ideas of refer-
ence counting with those of read-copy update, using
a per-element reference counter as shown in Fig-
ures 38, 39, and 40. The search() algorithm is
identical to that shown in Figure 8, but hold() must
be called if a reference to the element is to be held
across a context switch, and a balancing release()
must be called some time after return from the con-
text switch. This approach again introduces some
cacheline bouncing due to hold()’s locking and ma-
nipulation of refcnt, however, hold() need only
be called when a context switch is encountered. Al-
though it is again also possible to eliminate the locks
via compare-and-exchange instructions, the cache-
lines will still bounce. However, there is no list lock,
and hence no bouncing cachelines corresponding to
a list lock.

Figure 40 shows the corresponding delete function,
which adds only release to the read-copy delete
algorithm shown in Figure 9.

8 Concluding Remarks

In restricted but commonly occurring situations,
read-copy update can significantly reduce complex-
ity while simultaneously improving performance
and scaling. It does so by splitting updates into
two phases, with an intervening grace period. This
form of update greatly simplifies handling races be-

1 void delete(struct el *p)
2 {
3 spin_lock(&list_lock);
4 p->next->prev = p->prev;
5 p->prev->next = p->next;
6 release(p);
7 spin_unlock(&list_lock);
8 }

Figure 40: Read-Copy Deletion Across Context
Switches

tween modifications and concurrent accesses while
still maintaining good performance on contempo-
rary hardware.

Although read-copy update is new to Linux,
it has been in production use within Sequent’s
DYNIX/ptx kernel since 1993, and was indepen-
dently developed for K42 and Tornado. DYNIX/ptx
is a highly scalable non-preemptive Unix kernel sup-
porting up to 64 CPUs that is primarily used for
high-end database servers, and K42 and Tornado
are research operating systems that are designed
from the ground up to run e�ciently on SMP and
NUMA systems.

Read-copy update is used as shown below. The
most common use of read-copy update is e�cient
maintenance of linked data structures as described
in Sections 2 and 7.

1. Distributed lock manager: recovery, lists of
callbacks used to report completions and error
conditions to user processes, and lists of server
and client lock data structures. This subsystem
inspired read-copy update.

2. TCP/IP: routing tables, interface tables, and
protocol-control-block lists.

3. Storage-area network (SAN): routing tables
and error-injection tables (used for stress test-
ing).

4. Clustered journaling file system: in-core inode
lists and distributed-locking data structures.

5. Lock-contention measurement: B* tree used to
map from spinlock addresses to the correspond-
ing measurement data (since the spinlocks are
only one byte in size, it is not possible to main-
tain a pointer within each spinlock to the cor-
responding measurement data).



6. Application regions manager (which is a
workload-management subsystem): maintains
lists of regions into which processes may be con-
fined.

7. Process management: per-process system-call
tables as well as the multi-processor trace data
structures used to support user-level debugging
of multi-threaded processes.

8. LAN drivers: resolve races between shutting
down a LAN device and packets being received
by that device.

The Tornado and K42 [Gamsa99] research operat-
ing systems independently developed a form of read-
copy update, which is used as follows:

1. To provide existence guarantees throughout
these operating systems. These existence guar-
antees simplify handling of races between use
of a data structure and its deletion.

2. To identify quiescent states so that implemen-
tations of an object can be swapped on the fly
while the object is in active use.

The patches described in this paper show that read-
copy update is feasible and useful in the Linux ker-
nel. More work is needed to obtain the right balance
between simplicity of read-copy update’s implemen-
tation and its capability. We will apply read-copy
update to more areas in the Linux kernel, and mea-
sure the resulting e↵ects on performance and com-
plexity.

Linux continues to evolve, and one possible addi-
tion to Linux is in-kernel preemption. Although
the current read-copy update patches do not han-
dle preemption, there is ongoing work in this
area [Russell01b]. Furthermore both Tornado and
K42 provide existence proofs that read-copy update
is both feasible and useful in preemptive environ-
ments.
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10 Availability

Read-copy update is freely available under
GPL [Russell01a, Sarma01, Russell01b]. The FD-
management, hotplug-CPU, and module-unloading
patches that use read-copy update are also freely
available under GPL [Soni01b, Russell01c, Soni01a].

More information is available at:

http://lse.sourceforge.net/locking/rclock.html

http://www.rdrop.com/users/paulmck
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