
Scalability : The Software Problem
Jonathan Appavoo, Volkmar Uhlig, and Dilma da Silva

IBM T. J. Watson Research Center
{jappavoo,vuhlig,dilmasilva}@us.ibm.com

1 Introduction
For the past several years we have studied how to scale
general-purpose system software. System software is
unique, from a software perspective, in its requirement
to support and enable parallelism rather than exploiting it
to improve its own performance. System software must
ensure good overall system utilization and high degree
of parallelism for those applications that demand it. To
do this, system software must: (i) utilize the character-
istics of the hardware to exploit parallelism in general-
purpose workloads, and (ii) facilitate concurrent applica-
tions, which includes providing models and mechanisms
for applications to exploit the parallelism available in the
hardware.

Based on previous experience in constructing scalable
hardware and associated operating systems [1,5,6,9–12]
we designed a software structure aimed at better suiting
the underlying structure of a scalable SMMP (Shared-
Memory Multi-Processor) architecture: when additional
workload is presented to the system, additional hardware
resources can be efficiently utilized to service the load
increase. Controlling and managing communication is
ultimately the key to scalability therefore we focused on
locality — avoiding inter-processor communication —
by carefully limiting shared data access.

We adopted four key design principles:

1. Avoid off-processor communication in the imple-
mentation of communication and scheduling facil-
ities.

2. Use a runtime memory structure that scales with
hardware resources and workload demands in a way
to to ensure efficient and controlled memory con-
sumption and communication.

3. Avoids communication overheads when there is no
logical sharing in the workload — avoiding shared
meta-structures and false sharing.

4. Despite targeting SMMPs, use distributed data
structures to control communication when there is
a demand for shared-resource access.

“Sharing” lies at the heart of the problem. By its very
nature, sharing introduces barriers to scalability and it
can come from three main sources: First, sharing can

be intrinsic to the workload. For example, a workload
may utilize a single shared file to log all activity of mul-
tiple processes, or a multi-threaded application may use
a shared data array across multiple processors. Second,
sharing also arises from the data structures and algo-
rithms employed in the design and implementation of
the system software. For example, an operating system
may be designed to manage all physical memory as a
single shared pool and implement this management us-
ing shared data structures. Third, sharing can occur in
the physical design and protocols utilized by the hard-
ware. For example, a system utilizing a single mem-
ory bus and snooping-based cache coherence protocol re-
quires shared-bus arbitration and global communication
for memory access, even for data located in independent
memory modules.

Achieving scalable performance requires minimizing
all forms of sharing, which is also referred to as maxi-
mizing locality. On SMMPs, locality refers to the degree
to which locks are contended and data — including the
locks themselves — are shared amongst threads running
on different processors. The less contention on locks and
the less data is shared, the higher the locality. Maximiz-
ing locality on SMMPs is critical, because even minute
amounts of (possibly false) sharing can have a profound
negative impact on performance and scalability [3, 5].

2 Concurrency 6= Scalability
A common conception is to assume that software that
is implemented to be concurrent is scalable. This, how-
ever, is not true. Traditionally, software is considered to
be concurrent if it uses fine-grain synchronization. The
intent is to construct software which is correct in the face
of concurrent execution, but utilizes mutual exclusion
in a manner that critical sections have small lock-hold
times. This approach ignores the inherently non-scalable
runtime structure that such software has with respect to
memory access and, hence, communication.

Scalable End-to-End Performance In order not hin-
der overall system or individual application performance,
it is critical for system software to reflect the parallelism
of the workloads and individual applications. This point
is often overlooked. Smith alludes to the requirements
of individual applications, noting that the tension be-

1



tween protection and performance is particularly salient
and difficult in a parallel system and that the paral-
lelism in one protection domain must be reflected in an-
other [8]. In other words, to ensure that a parallel appli-
cation within one protection domain can realize its poten-
tial performance, all services in the system domains that
the concurrent application depends on must be provided
in an equally parallel fashion. It is worth noting that this
is true not only for individual applications, but also for
all applications forming the current workload on a par-
allel system: the demands of all concurrently executing
applications must be satisfied with equal parallelism in
order to ensure good overall system performance.

3 Virtualization and Scalability

As stated above, to achieve good scalability it is neces-
sary that all software executed to satisfy a desired task
scale with respect to the underlying communication ca-
pacity and resources of the system. As such, the locality
of resource access must be reflected across all protection
boundaries and software layers. If any of the layers in
the software stack does not scale, the overall system is
likely to not scale.

Each protection layer poses a scalability challenge:
strict separation by a protection boundary introduces a
semantic boundary about dependence and independence
of software components. The protection boundary re-
stricts the flow of semantic information on the degree of
concurrency, frequency of access, locality, and structur-
ing of refined resources provided in bulk by the lower
layers. While a hypervisor mitigates management of
low-level resources such as memory pages and processor
time slices, an operating system refines such resources
into buffer caches, short- and long-lived code and data
pages, thread-control blocks, linked lists, inode entries,
etc. Each of these higher-level constructs have specific
usage scenarios and thus access and communication pat-
terns [4].

Only by careful design of the interfaces we can bridge
the semantic gap between the software layers. When
managing bulk resources such as memory pages, we ex-
plicitly maintain locality information — degree of paral-
lelism and processor sets — with the resource [9]. Addi-
tionally, we allow for dynamic adaptation of the synchro-
nization primitives at runtime. For hypervisors, dynamic
adaptability is a key requirement since virtual machines
are typically long-lived objects and resources managed
through the hypervisor get re-assigned for other pur-
poses.

4 Operating System and General-Purpose
System Software Scalability

For scalable software design we employed three concepts
as our core building blocks:

Events: All activity in the system software can be
viewed as requests that induce short-lived events.
The event is created at the beginning of a system re-
quest and does not block for IO. The event satisfies
the request by traversing and potentially manipulat-
ing system data structures. All long-lived work is
programmed by continuations.

Locality Domains: Virtual processors and memory
pools are associated with physical processors and
memory modules. Events are bound to virtual pro-
cessors and memory pools.

Object Decomposition: We have observed that there is
a similarity between the runtime structure result-
ing from an object-oriented design and the runtime
structure of scalable system software. Object ori-
entation can result in a runtime where each unique
software resource instance has a unique identifier
and separate memory allocation, and is dynamically
created. These properties can be leveraged to con-
struct software that has a natural model for scaling
with increases in workload and hardware resources.

These concepts are further accompanied by the fol-
lowing four mechanisms. These mechanisms were im-
plemented and evaluated in the K42 research operating
sytem [2, 7].

Protected Procedure Call : A client-server model is
used in K42 to represent and service the demand
or load on the system. A system service is placed
within an appropriate protection domain (address
space) and clients make requests to the service via a
Protected Procedure Call (PPC). Like the Tornado
PPC [5], a call from a client to a server acts like a
procedure call that crosses from one address space
to another and then back with the following proper-
ties:

1. client requests are always serviced on their lo-
cal processor,

2. clients and servers shared the processor in a
manner similar to handoff scheduling, and

3. there are as many threads of control in the
server as the client request.

Locality Aware Dynamic Memory Allocation : Dy-
namic memory allocation is extensively used in the
construction of K42 services to ensure that mem-
ory resources grow with demand both in size and

2



location. The K42 memory allocators employ per-
processor pools to ensure that memory allocations
can be localized to the processors on which the al-
locations will be accessed to service the requests of
those processors.

Object Decomposition : K42 uses an object-based soft-
ware architecture to construct it services. The
model encourages the developers to construct ser-
vices that scale with demand by design. A service is
structured as a set of dynamic interconnected object
instances that are lazily constructed to represent the
resources that a unique set of requests require. For
example, the mapping of a portion of a processes
address space to a file would result in the construc-
tion of several objects unique to that process, file
and mapping. As such page faults by that process to
the address range would result in execution of meth-
ods only on the objects constructed for that process,
mapping and file. Other mappings would result in
other independent objects being constructed. The
object architecture acts as a natural way of leverag-
ing the locality aware dynamic memory allocation.
Objects are created on demand on the processors on
which the requests they are required for occur and
as such consume memory local to those processors
and are accessed with good locality.

Clustered Objects : A unique SMMP object model is
used in K42, specifically designed to further encour-
age and enable the construction of scalable soft-
ware services. Each object a developer constructs
can be optimized with respect to the concurrent ac-
cess patterns expected. For example, a multi-thread
application such as a web server or a parallel sci-
entific application will cause concurrent access to
the Process object instance, representing the appli-
cation, as its threads on different processors page
fault. As such the Clustered Object model pro-
vides a standard way for implementing the Process
Object using distribution, replication and partition
in its data structures and algorithms, in a manner
that is on demand in nature. The Clustered Object
model and infrastructure also incorporates standard
object oriented features such as inheritance, poly-
morphism, and specialization. Additionally it in-
corporates runtime features such as multi-threaded
safe hot-swapping and semi-automatic garbage col-
lection.

Software designed for locality on an SMMP uses par-
titioning, distribution, and replication of data to control
concurrent access. Doing so provides fine-grain control
over memory accesses and control over the associated
communication. For example, using a distributed imple-

mentation of a performance counter, where each proces-
sor is assigned its own local padded sub-counter, ensures
that updates to the counter result only in local communi-
cation.

It is worth noting that there are two forms of commu-
nication associated with a memory access: (i) utilization
of the interconnect fabric to bring the data from storage
into the processor’s caching system, and (ii) utilization
of the interconnect for the associated cache coherency
messages. On large-scale machines, with complex dis-
tributed interconnection networks, non-uniform memory
access (NUMA) effects increase the benefit of localiz-
ing memory accesses by avoiding remote delays. Addi-
tionally, localizing memory accesses restricts communi-
cation to local portions of a complex hierarchical inter-
connect, and thereby avoids the use (and thus congestion)
of the global portions of the memory interconnect.

Even small machines, with flat, high-capacity inter-
connects that do not suffer congestion delays, benefit
from localizing memory accesses. The use of large
multi-layer caches to mitigate the disparities between
processor frequencies and main memory response times
results in NUMA-like behavior. Considerable delays re-
sult when a cache miss occurs. Partitioning, distribu-
tion, and replication help avoid cache misses associated
with shared data access by reducing the use of shared
data on critical paths. For example, a distributed perfor-
mance counter with all sub-counters residing on separate
cache lines eliminates cache coherency actions (invali-
dations to ensure consistency) on updates, thus making
communication delays associated with cache misses less
likely. There is a tradeoff, however: when the value of
the counter is needed, the values of the individual sub-
counters must be gathered and additional cache misses
must be suffered.

Implementations utilizing partitioning, distribution,
and replication require programmers to explicitly con-
trol and express how the data structures will grow with
respect to memory consumption as additional load is ob-
served. For example, consider a distributed table used
to record processes, with an implementation that utilizes
a table per processor that records just the processes cre-
ated on that processor. In such an approach the OS pro-
grammer explicitly manages the required memory on a
per-processor basis. This implementation will naturally
adapt to the size of the machine on which it is running,
and on large-scale machines with distributed memory
banks, data growth can occur in a balanced fashion.

5 Summary
Scaling software to a large number of processor con-
texts requires managing and minimizing inter-processor
communication. While this is a well-known wisdom for
distributed systems with high latency and high overhead

3



communication fabrics, the same is true for shared mem-
ory multiprocessor systems. With the drastically increas-
ing number of processor cores, software needs to ex-
plicitly manage and minimize sharing in order to scale.
Over the last years and a number of projects we inves-
tigated structuring methods within and across software
layers and formalized a number of design principles and
methodologies that enabled us to scale legacy software.

References
[1] Jonathan Appavoo. Clustered Objects. PhD thesis, University of

Toronto, 2005.

[2] Jonathan Appavoo, Marc Auslander, Maria Butrico, Dilma
da Silva, Orran Krieger, Mark Mergen, Michal Ostrowski, Bryan
Rosenburg, Robert W. Wisniewski, and Jimi Xenidis. K42: an
open-source linux-compatible scalable operating system kernel.
IBM Systems Journal, 44(2):427–440, 2005.

[3] Ray Bryant, John Hawkes, and Jack Steiner. Scaling linux to the
extreme: from 64 to 512 processors. In Ottawa Linux Symposium.
Linux Symposium, 2004.

[4] Eliseu M. Chaves, Jr., Thomas J. LeBlanc, Brian D. Marsh, and
Michael L. Scott. Kernel-kernel communication in a shared-
memory multiprocessor. In The Symposium on Experiences with
Distributed and Multiprocessor Systems, Atlanta, GA, March
1991.

[5] Benjamin Gamsa, Orran Krieger, Jonathan Appavoo, and
Michael Stumm. Tornado: Maximizing locality and concurrency
in a shared memory multiprocessor operating system. In Proc. of
the 3rd Symposium on Operating Systems Design and Implemen-
tation, 1999.

[6] Orran Krieger, Marc Auslander, Bryan Rosenburg, Robert W.
Wisniewski, Jimi Xenidis, Dilma Da Silva, et al. K42: Build-
ing a complete operating system. In EuroSys, Leuven, Belgium,
April 2006.

[7] Orran Krieger, Marc Auslander, Bryan Rosenburg, Robert W.
Wisniewski, Jimi Xenidis, Dilma Da Silva, Michal Ostrowski,
Jonathan Appavoo, Maria Butrico, Mark Mergen, Amos Water-
land, and Volkmar Uhlig. K42: Building a real operating system.
In Proceedings of EuroSys’2006, pages 133–145. ACM SIGOPS,
April 2006.

[8] Burton Smith. The Quest for General-Purpose Parallel Com-
puting, 1994. www.cray.com/products/systems/mta/psdocs/nsf-
agenda.pdf.

[9] Volkmar Uhlig. Scalability of Microkernel-Based Systems. PhD
thesis, University of Karlsruhe, Germany, May 2005.

[10] R.C. Unrau, O. Krieger, B. Gamsa, and M. Stumm. Hierarchical
clustering: A structure for scalable multiprocessor operating sys-
tem design. Journal of Supercomputing, 9(1/2):105–134, 1995.

[11] Zvonko Vranesic, Stephen Brown, Michael Stumm, Steve
Caranci, Alex Grbic, Robin Grindley, Mitch Gusat, Orran
Krieger, Guy Lemieux, Kevin Loveless, Naraig Manjikian,
Zeljko Zilic, T. Abdelrahman, Benjamin Gamsa, Peter Pereira,
Ken Sevcik, A. Elkateeb, and Sinisa Srbljic. The NUMAchine
multiprocessor. Technical Report 324, University of Toronto,
April 1995.

[12] Zvonko G. Vranesic, Michael Stumm, David M. Lewis, and Ron
White. Hector: A hierarchically structured shared-memory mul-
tiprocessor. IEEE Computer, 24(1):72–80, January 1991.

4


