
Syndrome Encoding and Decoding of BCH Codes in Sublinear
Time

Excerpted from Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data

Yevgeniy Dodis∗ Rafail Ostrovsky† Leonid Reyzin‡ Adam Smith§

April 19, 2006

We show that the standard decoding algorithm for BCH codes can be modified to run in time polynomial
in the length of the syndrome. This works for BCH codes over any field GF (q), which include Hamming
codes in the binary case and Reed-Solomon for the case n = q − 1. BCH codes are handled in detail in
many textbooks (e.g., [vL92]); our presentation here is quite terse. For simplicity, we only discuss primitive,
narrow-sense BCH codes here; the discussion extends easily to the general case.

The algorithm discussed here has been revised due to an error pointed out by Ari Trachtenberg. Its
implementation is available [HJR].

We’ll use a slightly non-standard formulation of BCH codes. Let n = qm − 1 (in the common binary
case, q = 2). We will work in two finite fields: GF (q) and a larger extension field F = GF (qm). BCH
codewords, formally defined below, are then vectors in GF (q)n. In most common presentations, one indexes
the n positions of these vectors by discrete logarithms of the elements of F∗: position i, for 1 ≤ i ≤ n,
corresponds to αi, where α generates the multiplicative group F∗. However, there is no inherent reason
to do so: they can be indexed by elements of F directly rather than by their discrete logarithms. Thus,
we say that a word has value px at position x, where x ∈ F∗. If one ever needs to write down the entire
n-character word in an ordered fashion, one can choose arbitrarily a convenient ordering of the elements
of F (e.g., by using some standard binary representation of field elements); for our purposes this is not
necessary, as we do not store entire n-bit words explicitly, but rather represent them by their supports:
supp(v) = {(x, px) | px �= 0}. Note that for the binary case, we can define supp(v) = {x | px �= 0},
because px can take only two values: 0 or 1.

Our choice of representation will be crucial for efficient decoding: in the more common representa-
tion, the last step of the decoding algorithm requires one to find the position i of the error from the field
element αi. However, no efficient algorithms for computing discrete logarithm are known if qm is large
(indeed, a lot of cryptography is based on the assumption that such efficient algorithm does not exist). In
our representation, the field element αi will in fact be the position of the error.

∗dodis@cs.nyu.edu. New York University, Department of Computer Science, 251 Mercer St., New York, NY 10012
USA.

†rafail@cs.ucla.edu. University of California, Los Angeles, Department of Computer Science, Box 951596, 3732D
BH, Los Angeles, CA 90095 USA.

‡reyzin@cs.bu.edu. Boston University, Department of Computer Science, 111 Cummington St., Boston MA 02215 USA.
§adam.smith@weizmann.ac.il. Weizmann Institute of Science, Faculty of Mathematics and Computer Science, Re-

hovot 76100, Israel. Currently supported by the Louis L. and Anita M. Perlman Postdoctoral Fellowship. The research reported
here was done while the author was a student at the Computer Science and Artificial Intelligence Laboratory at MIT.

1



Definition 1. The (narrow-sense, primitive) BCH code of designed distance δ over GF (q) (of length n ≥ δ)
is given by the set of vectors of the form

(
cx

)
x∈F∗ such that each cx is in the smaller field GF (q), and the

vector satisfies the constraints
∑

x∈F∗ cxx
i = 0, for i = 1, . . . , δ − 1, with arithmetic done in the larger

field F .

To explain this definition, let us fix a generator α of the multiplicative group of the large field F∗. For
any vector of coefficients

(
cx

)
x∈F∗ , we can define a polynomial

c(z) =
∑

x∈GF (qm)∗
cxz

dlog(x)

where dlog(x) is the discrete logarithm of x with respect to α. The conditions of the definition are then
equivalent to the requirement (more commonly seen in presentations of BCH codes) that c(αi) = 0 for
i = 1, . . . , δ − 1, because (αi)dlog(x) = (αdlog(x))i = xi.

We can simplify this somewhat. Because the coefficients cx are in GF (q), they satisfy cq
x = cx. Using

the identity (x + y)q = xq + yq, which holds even in the large field F , we have c(αi)q =
∑

x �=0 c
q
xxiq =

c(αiq). Thus, roughly a 1/q fraction of the conditions in the definition are redundant: we only need to check
that they hold for i ∈ {1, ..., δ − 1} such that q � |i.

The syndrome of a word (not necessarily a codeword) (px)x∈F∗ ∈ GF (q)n with respect to the BCH
code above is the vector

syn(p) = p(α1), . . . , p(αδ−1), where p(αi) =
∑

x∈F∗
pxx

i.

As mentioned above, we do not in fact have to include the values p(αi) such that q|i.
COMPUTING WITH LOW-WEIGHT WORDS. A low-weight word p ∈ GF (q)n can be represented either as
a long string or, more compactly, as a list of positions where it is nonzero and its values at those points. We
call this representation the support list of p and denote it supp(p) = {(x, px)}x:px �=0.

Lemma 1. For a q-ary BCH code C of designed distance δ, one can compute:
• syn(p) from supp(p) in time polynomial in δ, log n, and |supp(p)|, and

• supp(p) from syn(p) (when p has weight at most (δ − 1)/2), in time polynomial in δ and log n.

Proof. Recall that syn(p) = (p(α), ..., p(αδ−1)) where p(αi) =
∑

x �=0 pxx
i. Part (1) is easy, since to

compute the syndrome we only need to compute the powers of x. This requires about δ · weight(p) multi-
plications in F . For Part (2), we adapt Berlekamp’s BCH decoding algorithm, based on its presentation in
[vL92]. Let M = {x ∈ F∗|px �= 0}, and define

σ(z) def=
∏

x∈M

(1 − xz) and ω(z) def= σ(z)
∑

x∈M

pxxz

(1 − xz)

Since (1 − xz) divides σ(z) for x ∈ M , we see that ω(z) is in fact a polynomial of degree at most |M | =
weight(p) ≤ (δ − 1)/2. The polynomials σ(z) and ω(z) are known as the error locator polynomial and
evaluator polynomial, respectively; observe that gcd(σ(z), ω(z)) = 1.

We will in fact work with our polynomials modulo zδ. In this arithmetic the inverse of (1 − xz) is∑δ
	=1(xz)

	−1, that is

(1 − xz)
δ∑

	=1

(xz)	−1 ≡ 1 mod zδ.
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We are given p(α	) for � = 1, ..., δ. Let S(z) =
∑δ−1

	=1 p(α	)z	. Note that S(z) ≡ ∑
x∈M px

xz
(1−xz)

mod zδ. This implies that
S(z)σ(z) ≡ ω(z) mod zδ.

The polynomials σ(z) and ω(z) satisfy the following four conditions: they are of degree at most (δ−1)/2
each, they are relatively prime, the constant coefficient of σ is 1, and they satisfy this congruence. In fact,
let w′(z), σ′(z) be any nonzero solution this congruence, where degrees of w′(z) and σ′(z) are at most
(δ − 1)/2. Then w′(z)/σ′(z) = ω(z)/σ(z). (To see why this is so, multiply the initial congruence by σ′()
to get ω(z)σ′(z) ≡ σ(z)ω′(z) mod zδ. Since the both sides of the congruence have degree at most δ − 1,
they are in fact equal as polynomials.) Thus, there is at most one solution σ(z), ω(z) satisfying all four
conditions, which can be obtained from any σ′(z), ω′(z) by reducing the resulting fraction ω′(z)/σ′(z) to
obtain the solution of minimal degree with the constant term of σ equal to 1.

Finally, the roots of σ(z) are the points x−1 for x ∈ M , and the exact value of px can be recovered from
ω(x−1) = px

∏
y∈M,y �=x(1 − yx−1) (this is only needed for q > 2, because for q = 2, px = 1). Note that

it is possible that a solution to the congruence will be found even if the input syndrome is not a syndrome
of any p with weight(p) > (δ − 1)/2 (it is also possible that a solution to the congruence will not be found
at all, or that the resulting σ(z) will not split into distinct nonzero roots). Such a solution will not give
the correct p. Thus, if there is no guarantee that weight(p) is actually at most (δ − 1)/2, it is necessary to
recompute syn(p) after finding the solution, in order to verify that p is indeed correct.

Representing coefficients of σ′(z) and ω′(z) as unknowns, we see that solving the congruence requires
only solving a system of δ linear equations (one for each degree of z, from 0 to δ−1) involving δ+1 variables
over F , which can be done in O(δ3) operations in F using, e.g., Gaussian elimination. The reduction of the
fraction ω′(z)/σ′(z) requires simply running Euclid’s algorithm for finding the g.c.d. of two polynomials of
degree less than δ, which takes O(δ2) operations in F . Suppose the resulting σ has degree e. Then one can
find the roots of σ as follows. First test that σ indeed has e distinct roots by testing that σ(z)|zqm − z (this
is a necessary and sufficient condition, because every element of F is a root of zqm − z exactly once). This
can be done by computing (zqm

mod σ(z)) and testing if it equals z mod σ; it takes m exponentiations of a
polynomial to the power q, i.e., O((m log q)e2) operations in F . Then apply an equal-degree-factorization
algorithm (e.g., as described in [Sho05]), which also takes O((m log q)e2) operations in F . Finally, after
taking inverses of the roots of F and finding px (which takes O(e2) operations in F), recompute syn(p) to
verify that it is equal to the input value.

Because m log q = log(n+ 1) and e ≤ (δ− 1)/2, the total running time is O(δ3 + δ2 logn) operations
in F ; each operation in F can done in time O(log2 n), or faster using advanced techniques.

One can improve this running time substantially. The error locator polynomial σ() can be found in
O(log δ) convolutions (multiplications) of polynomials over F of degree (δ − 1)/2 each [Bla83, Section
11.7] by exploiting the special structure of the system of linear equations being solved. Each convolution
can be performed asymptotically in time O(δ log δ log log δ) (see, e.g., [vzGG03]), the total time required to
find σ gets reduced to O(δ log2 δ log log δ) operation in F . This replaces the δ3 term in the above running
time.

While this is asymptotically very good, Euclidean-algorithm-based decoding [SKHN75], which runs
in O(δ2) operations in F , will find σ(z) faster for reasonable values of δ (certainly for δ < 1000). The
algorithm finds σ as follows:

set Rold(z) ← zδ−1, Rcur(z) ← S(z)/z, Vold(z) ← 0, Vcur(z) ← 1.
while deg(Rcur(z)) ≥ (δ − 1)/2:

divide Rold(z) by Rcur(z) to get quotient q(z) and remainder Rnew(z);
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set Vnew(z) ← Vold(z) − q(z)Vcur(z);
set Rold(z) ← Rcur(z), Rcur(z) ← Rnew(z), Vold(z) ← Vcur(z), Vcur(z) ← Vnew(z).

set c ← Vcur(0); set σ(z) ← Vcur(z)/c and ω(z) ← z ·Rcur(z)/c

In the above algorithm, if c = 0, then the correct σ(z) does not exist, i.e., weight(p) > (δ − 1)/2. The
correctness of this algorithm can be seen by observing that the congruence S(z)σ(z) ≡ ω(z) (mod zδ) can
have z factored out of it (because S(z), ω(z) and zδ are all divisible by z) and rewritten as (S(z)/z)σ(z) +
u(z)zδ−1 = ω(z)/z, for some u(z). The obtained σ is easily shown to be the correct one (if one exists at all)
by applying [Sho05, Theorem 18.7] (to use the notation of that theorem, set n = zδ−1, y = S(z)/z, t∗ =
r∗ = (δ − 1)/2, r′ = ω(z)/z, s′ = u(z), t′ = σ(z)).

The root finding of σ can also be sped up. Asymptotically, detecting if a polynomial over F =
GF (qm) = GF (n + 1) of degree e has e distinct roots and finding these roots can be performed in
time O(e1.815(log n)0.407) operations in F using the algorithm of Kaltofen and Shoup [KS95], or in time
O(e2 + (logn)e log e log log e) operations in F using the EDF algorithm of Cantor and Zassenhaus1.
For reasonable values of e, the Cantor-Zassenhaus EDF algorithm with Karatsuba’s multiplication algo-
rithm [KO63] for polynomials will be faster, giving root-finding running time of O(e2 + elog2 3 logn) oper-
ations in F . Note that if the actual weight e of p is close to the maximum tolerated (δ − 1)/2, then finding
the roots of σ will actually take longer than finding σ.

A DUAL VIEW OF THE ALGORITHM. Readers may be used to seeing a different, evaluation-based formu-
lation of BCH codes, in which codewords are generated as follows. Let F again be an extension of GF (q),
and let n be the length of the code (note that |F∗| is not necessarily equal to n in this formulation). Fix
distinct x1, x2, . . . , xn ∈ F . For every polynomial c over the large field F of degree at most n − δ, the
vector (c(x1), c(x2), . . . c(xn)) is a codeword if and only if every coordinate of the vector happens to be in
the smaller field: c(xi) ∈ GF (q) for all i. In particular, when F = GF (q), then every polynomial leads to
a codeword, thus giving Reed-Solomon codes.

The syndrome in this formulation can be computed as follows: given a vector y = (y1, y2, . . . , yn)
find the interpolating polynomial P = pn−1x

n−1 + pn−2x
n−2 + · · · + p0 over F of degree at most n − 1

such that P (xi) = yi for all i. The syndrome is then the negative top δ − 1 coefficients of P : syn(y) =
(−pn−1,−pn−2, . . . ,−pn−(δ−1)). (It is easy to see that this is a syndrome: it is a linear function that is zero
exactly on the codewords.)

When n = |F| − 1, we can index the n-component vectors by elements of F∗, writing codewords as
(c(x))x∈F∗ . In this case, the syndrome of (yx)x∈F∗ defined as the negative top δ − 1 coefficients of P
such that ∀x ∈ F ∗, P (x) = yx is equal to the syndrome defined following Definition 1 as

∑
x∈F yxx

i for
i = 1, 2, . . . , δ − 1. 2 Thus, when n = |F| − 1, the codewords obtained via the evaluation-based definition
are identical to the codewords obtain via Definition 1, because codewords are simply elements with the zero
syndrome, and the syndrome maps agree.

This is an example of a remarkable duality between evaluations of polynomials and their coefficients:
the syndrome can be viewed either as the evaluation of a polynomial whose coefficients are given by the
vector, or as the coefficients of the polynomial whose evaluations are given by a vector.

1See [Sho05, Section 21.3], and substitute the most efficient known polynomial arithmetic. For example, the procedures de-
scribed in [vzGG03] take time O(e log e log log e) instead of time O(e2) to perform modular arithmetic operations with degree-e
polynomials.

2 This statement can be shown as follows: because both maps are linear, it is sufficient to prove that they agree on a vector
(yx)x∈F∗ such that ya = 1 for some a ∈ F∗ and yx = 0 for x �= a. For such a vector,

P
x∈F yxxi = ai. On the other hand,

the interpolating polynomial P (x) such that P (x) = yx is −axn−1 − a2xn−2 − · · · − an−1x − 1 (indeed, P (a) = −n = 1;
furthermore, multiplying P (x) by x − a gives a(xn − 1), which is zero on all of F∗; hence P (x) is zero for every x �= a).
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The syndrome decoding algorithm above has a natural interpretation in the evaluation-based view. Our
presentation is an adaptation of Welch-Berlekamp decoding as presented in, e.g., [Sud01, Chapter 10].

Suppose n = |F | − 1 and x1, ..., xn are the non-zero elements of the field. Let y = (y1, y2, . . . , yn) be
a vector. We are given its syndrome syn(y) = (−pn−1,−pn−2, . . . ,−pn−(δ−1)), where pn−1, . . . , pn−(δ−1)

are the top coefficients of the interpolating polynomial P . Knowing only syn(y), we need to find at most
(δ − 1)/2 locations xi such that correcting all the corresponding yi will result in a codeword. Suppose that
codeword is given by a degree-(n−δ) polynomial c. Note that c agrees with P on all but the error locations.
Let ρ(z) be the polynomial of degree at most (δ − 1)/2 whose roots are exactly the error locations. (Note
that σ(z) from the decoding algorithm above is the same ρ(z) but with coefficients in reverse order, because
the roots of σ are the inverses of the roots of ρ.) Then ρ(z) · P (z) = ρ(z) · c(z) for z = x1, x2, . . . , xn.
Since x1, .., xn are all the nonzero field elements,

∏n
i=1(z − xi) = zn − 1. Thus,

ρ(z) · c(z) = ρ(z) · P (z) mod
n∏

i=1

(z − xi) = ρ(z) · P (z) mod (zn − 1) .

If we write the left-hand side as αn−1x
n−1 + αn−2x

n−2 + · · · + α0, then the above equation implies
that αn−1 = · · · = αn−(δ−1)/2 = 0 (because the degree if ρ(z) · c(z) is at most n − (δ + 1)/2). Because
αn−1, . . . , αn−(δ−1)/2 depend on the coefficients of ρ as well as on pn−1, . . . , pn−(δ−1), but not on lower
coefficients of P , we obtain a system of (δ − 1)/2 equations for (δ − 1)/2 unknown coefficients of ρ. A
careful examination shows that it is essentially the same system as we had for σ(z) in the algorithm above.
The lowest-degree solution to this system is indeed the correct ρ, by the same argument which was used
to prove the correctness of σ in Lemma 1. The roots of ρ are the error-locations. For q > 2, the actual
corrections that are needed at the error locations (in other words, the light vector corresponding to the given
syndrome) can then be recovered by solving the linear system of equations implied by the value of the
syndrome.
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