
1

Georgetown U.

A Unified Framework
for

Trapdoor-Permutation-Based
Sequential Aggregate Signatures

Craig Gentry Adam O’Neill Leonid Reyzin
IBM Boston U.

2

Motivating Example: Border Gateway Protocol (BGP)

• Q: How do you get from here to there on the internet?
• A: BGP [Rekhter, Lougheed, Li, Hares]

Idea: utilize local knowledge
– Each autonomous system (AS) knows

what IP addresses it owns
– Each AS knows its connections (customer-provider, peer)
– Each AS can talk to its neighbors

3

Border Gateway Protocol (BGP)
Dear AT&T:
to get to 107.20.211.*
come to Georgetown

Georgetown U
AT&T

Comcast

Dear Comcast:
to get to 107.20.211.*,
you can go
AT&T → Georgetown

Boston U

Dear Boston U:
to get to 107.20.211.* ,
you can go
Comcast→AT&T→Georgetown

(owns 107.20.211.*)

4

Border Gateway Protocol (BGP)
Dear AT&T:
to get to 107.20.211.*
come to Georgetown

Georgetown U
AT&T

Comcast

Dear Comcast:
to get to 107.20.211.*,
you can go
AT&T → Georgetown

Boston U

Dear Boston U:
to get to 107.20.211.* ,
you can go
Comcast→AT&T→Georgetown

(owns 107.20.211.*)

S-BGP [Kent-Lynn-Seo2000]: Same but with signatures

Georgetown

Comcast

Georgetown
AT&T

AT&T
Georgetown

5

Sequential Aggregate Signatures (SAS)
• S-BGP requires possibly long signature chains
• Q: Can we compress multiple signatures to save space?
• A: Sequential Aggregate Signatures (SAS)

[Lysyanskaya Micali Reyzin Shacham 04]:

Signer 3Signer 2Signer 1 m2, σ2m1, σ1

σi attests to m1 m2 … mi on behalf of PK1 PK2 … PKi

m3, σ3

• This work: understanding + improving
TDP-based Sequential Aggregate Signatures

• Several prior TDP-based constructions
– Note: [Boneh Gentry Lynn Shacham 2003] allow non-sequential

(even third-party) aggregation post signing, but based on pairings

Outline
• Sequential Aggregate Signatures (SAS)
• Security Definition
• Prior Constructions

– [LMRS]
– [Neven]

• Our General Construction
– History-free variants

6

7

SAS Security
Signer 3Signer 2Signer 1 m2, σ2m1, σ1 m3, σ3

σi attests to m1 m2 … mi on behalf of PK1 PK2 … PKi

• Equivalent to what you get from simply concatenating
individual signatures, without any aggregation

• Adversary model: arbitrary subset of adversarial signers

8

SAS Security
Signer 3Signer 2Signer 1 m2, σ2m1, σ1 m3, σ3

σi attests to m1 m2 … mi on behalf of PK1 PK2 … PKi

• Equivalent to what you get from simply concatenating
individual signatures, without any aggregation

• Adversary model: arbitrary subset of adversarial signers

9

SAS Security
Signer 3Signer 2Signer 1 m2, σ2m1, σ1 m3, σ3

σi attests to m1 m2 … mi on behalf of PK1 PK2 … PKi

• Equivalent to what you get from simply concatenating
individual signatures, without any aggregation

• Adversary model: arbitrary subset of adversarial signers
• Chosen Message-and-Aggregate-so-Far attack

10

SAS Security
Signer 3Signer 2Signer 1 m2, σ2m1, σ1 m3, σ3

σi attests to m1 m2 … mi on behalf of PK1 PK2 … PKi

• Equivalent to what you get from simply concatenating
individual signatures, without any aggregation

• Adversary model: arbitrary subset of adversarial signers
• Chosen Message-and-Aggregate-so-Far attack

11

SAS Security
Signer 3Signer 2Signer 1 m2, σ2m1, σ1 m3, σ3

σi attests to m1 m2 … mi on behalf of PK1 PK2 … PKi

• Equivalent to what you get from simply concatenating
individual signatures, without any aggregation

• Adversary model: arbitrary subset of adversarial signers
• Chosen Message-and-Aggregate-so-Far attack
• Even after such an attack,

adversary can’t “frame” the honest parties
– Adversary can’t output any (m1, m2, m3, σ3) that verifies

as long as Signer 2 never signed m2*
* * * *

Outline
• Sequential Aggregate Signatures (SAS)
• Security Definition
• Prior Constructions

– [LMRS]
– [Neven]

• Our General Construction
– History-free variants

12

13

Review: Full-Domain Hash Signatures

f −1y xm H

[Bellare-Rogaway 93]
Trapdoor permutation public key PK=f, secret key SK=f−1

Hash (random oracle) function H (output range equals domain of f)

• y = H (m)

• x= f −1 (y)

Steps of the Signer:

f
y xm H

• y = H (m)

• y = f (x)

Steps of the Verifier:

? ?
=

14

LMRS Aggregate Signature Scheme

x1

[Lysyanskaya-Micali-R-Shacham 04]

f −1y1
m1

PK1 HSigner 1: 1

15

LMRS Aggregate Signature Scheme

x1

f −1y2 x2m1, m2
⊕PK1, PK2 H

[Lysyanskaya-Micali-R-Shacham 04]

• g2 = H (PK1, PK2, m1, m2)

• x2= f −1 (y2)

• Verify x1 using PK1,m1

• Check that PK1 = f1 specifies a permutation
Steps of Signer 2:

f −1y1
m1

PK1 H

• Verify x2 using PK1, PK2, m1, m2

• Check that PK1= f1, PK2 = f2 specify permutations
Steps of Signer 3:

…

g2• y2 = g2 ⊕ x1

2

2

1

16

LMRS Aggregate Signature Scheme

x1

f −1y2 x2m1, m2
⊕PK1, PK2 H

[Lysyanskaya-Micali-R-Shacham 04]

• g2 = H (PK1, PK2, m1, m2)

• x2= f −1 (y2)

• Verify x1 using PK1,m1

• Check that PK1 = f1 specifies a permutation
Steps of Signer 2:

f −1y3 x3m1, m2, m3
⊕PK1, PK2, PK3 H

f −1y1
m1

PK1 H

• Verify x2 using PK1, PK2, m1, m2

• Check that PK1= f1, PK2 = f2 specify permutations
Steps of Signer 3:

…

g2

g3

• y2 = g2 ⊕ x1

2

2

1

3

17

LMRS Aggregate Signature Scheme
[Lysyanskaya-Micali-R-Shacham 04]

• g2 = H (PK1, PK2, m1, m2)

• x2= f −1 (y2)

• Verify x1 using PK1,m1

• Check that PK1 = f1 specifies a permutation
Steps of Signer 2:

• Verify x2 using PK1, PK2, m1, m2

• Check that PK1= f1, PK2 = f2 specify permutations
Steps of Signer 3:

…

• y2 = g2 ⊕ x1

2

getting certified TDPs takes work:
for RSA, either extra proofs
[Goldberg-Reyzin-Sagga-Baldimtsi 18]
[Auerbach-Poettering 18]
or long verification exponents

18

LMRS Aggregate Signature Scheme

x1

f −1y2 x2m1, m2
⊕PK1, PK2 H

[Lysyanskaya-Micali-R-Shacham 04]

• g2 = H (PK1, PK2, m1, m2)

• x2= f −1 (y2)

• Verify x1 using PK1,m1

• Check that PK1 = f1 specifies a permutation
Steps of Signer 2:

f −1y3 x3m1, m2, m3
⊕PK1, PK2, PK3 H

f −1y1
m1

PK1 H

• Verify x2 using PK1, PK2, m1, m2

• Check that PK1= f1, PK2 = f2 specify permutations
Steps of Signer 3:

…

g2

g3

• y2 = g2 ⊕ x1

2

2

1

3

19

LMRS Aggregate Signature Scheme

x1

f −1y2 x2m1, m2
⊕PK1, PK2 H

[Lysyanskaya-Micali-R-Shacham 04]

f −1y3 x3m1, m2, m3
⊕PK1, PK2, PK3 H

f −1y1
m1

PK1 H

g2

g3

2

1

3

Q: What happens if f1 is not a permutation?

20

LMRS Aggregate Signature Scheme

x1

f −1y2 x2m1, m2
⊕PK1, PK2 H

[Lysyanskaya-Micali-R-Shacham 04]

f −1y3 x3m1, m2, m3
⊕PK1, PK2, PK3 H

f −1y1
m1

PK1 H

g2

g3

2

1

3

Q: What happens if f1 is not a permutation?
A: Adversary can control input to f2 and thus attack signer 2!

21

LMRS Aggregate Signature Scheme

x1

f −1y2 x2m1, m2
⊕PK1, PK2 H

[Lysyanskaya-Micali-R-Shacham 04]

f −1y3 x3m1, m2, m3
⊕PK1, PK2, PK3 H

f −1y1
m1

PK1 H

g2

g3

2

1

3

Q: What happens if f1 is not a permutation?
A: Adversary can control input to f2 and thus attack signer 2!
Q: What happens if f1 is an

adversarial permutation?
Q: Verify-before-sign

means adversary has
no control over x1

22

LMRS Verification

f3
y3 x3m1, m2, m3
⊕PK1, PK2, PK3 H

g3

Verifier knows: last signature x3,
messages m1,m2,m3
public keys PK1=f1, PK2=f2, PK3=f3

23

LMRS Verification

f2
y2 x2m1, m2
⊕PK1, PK2 H

f3
y3 x3m1, m2, m3
⊕PK1, PK2, PK3 H

g2

g3

Verifier knows: last signature x3,
messages m1,m2,m3
public keys PK1=f1, PK2=f2, PK3=f3

24

LMRS Verification

x1

f2
y2 x2m1, m2
⊕PK1, PK2 H

f3
y3 x3m1, m2, m3
⊕PK1, PK2, PK3 H

f1
g1

m1
PK1 H

g2

g3

Verifier knows: last signature x3,
messages m1,m2,m3
public keys PK1=f1, PK2=f2, PK3=f3

y1=
?

To sum up: scheme works because ⊕ can be undone,
but requires certified trapdoor permutations

Outline
• Sequential Aggregate Signatures (SAS)
• Security Definition
• Prior Constructions

– [LMRS]: requires certified TDPs
– [Neven]: works even adversary gives nonpermutations!

• Our General Construction
– History-free variants

25

26

h1
x1

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, h)

Steps of Signer 1: f −1
m1

PK1 H 1G
y1

[Neven08] Aggregate Signature Scheme

27

h1
x1

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, h)

First, verify (x1, h1) using PK1,m1Steps of Signer 2:

f −1
m1

PK1 H 1G
y1

[Neven08] Aggregate Signature Scheme

28

h1
x1

f −1⊕
y2 x2m1, m2

 η2

h2
⊕

PK1,PK2
H G

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, h)

• η2 = H (PK1, PK2, x1, m1, m2)
• h2=η2 ⊕h1

• y2 = G(h2) ⊕ x1

• x2= f −1(y2)2

First, verify (x1, h1) using PK1,m1Steps of Signer 2:

2

f −1
m1

PK1 H 1G
y1

[Neven08] Aggregate Signature Scheme

29

h1
x1

f −1⊕
y2 x2m1, m2

 η2

h2
⊕

PK1,PK2
H G

f −1⊕
y3

m1, m2, m3

 η3
⊕PK1, PK2, PK3 H G

h3
x3

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, h)

• η2 = H (PK1, PK2, x1, m1, m2)
• h2=η2 ⊕h1

• y2 = G(h2) ⊕ x1

• x2= f −1(y2)2

First, verify (x1, h1) using PK1,m1Steps of Signer 2:

First, verify (x2, h2) using PK1, PK2, m1, m2Steps of Signer 3:
…

2

3

f −1
m1

PK1 H 1G
y1

[Neven08] Aggregate Signature Scheme

30

h1
x1

f −1⊕
y2 x2m1, m2

 η2

h2
⊕

PK1,PK2
H G

f −1⊕
y3

m1, m2, m3

 η3
⊕PK1, PK2, PK3 H G

h3
x3

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, h)

2

3

f −1
m1

PK1 H 1G
y1

?

Q: How do even verify?

[Neven08] Aggregate Signature Scheme

31

x2
h2

⊕
y3 η3
⊕H G

h3

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, h)

The transformation from (x2, h2) to (y3, h3) is invertible!
x2 = G(h3) ⊕ y3

[Neven08] Aggregate Signature Scheme

32

x2
h2

⊕
y3 η3
⊕H G

h3

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, h)

The transformation from (x2, h2) to (y3, h3) is invertible!
x2 = G(h3) ⊕ y3
h2 = H(x2) ⊕ h3

[Neven08] Aggregate Signature Scheme

33

[Neven08] Aggregate Signature Scheme

x2
h2

⊕
y3 η3
⊕H G

h3

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, h)

The transformation from (x2, h2) to (y3, h3) is invertible!
x2 = G(h3) ⊕ y3
h2 = H(x2) ⊕ h3

This is just 2 rounds of (unbalanced) Feistel

34

[Neven08] Aggregate Signature Scheme

x2
h2

⊕
y3 η3
⊕H G

h3

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, h)

The transformation from (x2, h2) to (y3, h3) is invertible!
x2 = G(h3) ⊕ y3
h2 = H(x2) ⊕ h3

So verifier can compute y3=f3(x3), get to (x2, h2), and repeat

f3 x3

This is just 2 rounds of (unbalanced) Feistel

35

h1
x1

f −1⊕
y2 x2m1, m2

 η2

h2
⊕

PK1,PK2
H G

f −1⊕
y3

m1, m2, m3

 η3
⊕PK1, PK2, PK3 H G

h3
x3

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, h)

2

3

f −1
m1

PK1 H 1G
y1

?

[Neven08] Aggregate Signature Scheme

36

h1
x1

f −1⊕
y2 x2m1, m2

 η2

h2
⊕

PK1,PK2
H G

f −1⊕
y3

m1, m2, m3

 η3
⊕PK1, PK2, PK3 H G

h3
x3

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, h)

2

3

f −1
m1

PK1 H 1G
y1

?

Q: Why no certified TDP? What if f1 is not a TDP?

[Neven08] Aggregate Signature Scheme

37

h1
x1

f −1⊕
y2 x2m1, m2

 η2

h2
⊕

PK1,PK2
H G

f −1⊕
y3

m1, m2, m3

 η3
⊕PK1, PK2, PK3 H G

h3
x3

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, h)

2

3

f −1
m1

PK1 H 1G
y1

?

Q: Why no certified TDP? What if f1 is not a TDP?
A: Adversary can’t control y2, because now x1 gets hashed before ⊕

[Neven08] Aggregate Signature Scheme

Outline
• Sequential Aggregate Signatures (SAS)
• Security Definition
• Prior Constructions

– [LMRS]: requires certified TDPs
– [Neven]: works even adversary gives nonpermutations!

• Our General Construction
– History-free variants

38

Our Aggregate Signature Scheme

h1

x1

f −1y2 x2m1, m2
 η2

h2
⊕

PK1,PK2
H G 2

f −1 x2m1, m2
⊕PK1, PK2 H 2

x1

⊕

LMRS:

Neven:

(certified TDPs)

40

Our Aggregate Signature Scheme

h1

x1

f −1y2 x2m1, m2
 η2

h2
⊕

PK1,PK2
H G 2

This Work:

f −1 x2m1, m2
⊕PK1, PK2 H 2

x1

⊕

f −1
K=(PK1, PK2, m1, m2) 2

x1 𝜋 −1 x2
y2

LMRS:

Neven:

(certified TDPs)

41

Our Aggregate Signature Scheme

h1

x1

f −1y2 x2m1, m2
 η2

h2
⊕

PK1,PK2
H G 2

This Work:

f −1 x2m1, m2
⊕PK1, PK2 H 2

x1

⊕

f −1
K=(PK1, PK2, m1, m2) 2

x1 𝜋 −1 x2
y2

LMRS:

Neven:

𝜋 is an ideal cipher (keyed public random permutation, like AES)
𝜋 can’t be AES, because need bigger domain (at least for f = RSA)

[Coron, Holenstein, Künzler, Patarin, Seurin,Tessaro;
Dachman-Soled, Katz, Thiruvengadam; Dai-Steinberger 16]

But: 𝜋 can be built from random oracle via 8-round Feistel

(certified TDPs)

42

Our Aggregate Signature Scheme

h1

x1

f −1y2 x2m1, m2
 η2

h2
⊕

PK1,PK2
H G 2

This Work:

f −1 x2m1, m2
⊕PK1, PK2 H 2

x1

⊕

f −1
K=(PK1, PK2, m1, m2) 2

x1 𝜋 −1 x2
y2

LMRS:

Neven:

- Simpler and easier to analyze (proofs in the paper)
- Doesn’t require certified TDPs (same as Neven)
- Aggregate signature has only one component

(shorter than Neven if you believe in ideal ciphers)

(certified TDPs)

Outline
• Sequential Aggregate Signatures (SAS)
• Security Definition
• Prior Constructions

– [LMRS]: requires certified TDPs
– [Neven]: works even adversary gives nonpermutations!

• Our General Construction
– History-free variants

43

Why History-Free?

LMRS, Neven, and our scheme: all require verify-before-sign
Devastating attack if you use your f −1

before verifying what you put into it!

Why History-Free?

LMRS, Neven, and our scheme: all require verify-before-sign
Devastating attack if you use your f −1

before verifying what you put into it!

Why History-Free?

LMRS, Neven, and our scheme: all require verify-before-sign

f −1
K=(PK1, PK2, m1, m2) 2

x1 𝜋 −1 x2
y2

Devastating attack if you use your f −1

before verifying what you put into it!
(Chosen-aggregate attack using a bogus x1 to get a y2 collision)

47

Why History-Free?

LMRS, Neven, and our scheme: all require verify-before-sign
Devastating attack if you use your f −1

before verifying what you put into it!

m1

Comcast

Georgetown

AT&T

m2Georgetown

AT&T
Georgetownm3

Verification requires retrieving current PKs
(out of 85000 ASes on the internet)
If you wait to verify before forwarding,
you’ll delay others (who can anyway verify on their own)
At times of high load, need “lazy (delayed) verification”

Problem with verify-before-sign:

History-Free Variants

f −1
K=(PK1, PK2, m1, m2) 2

x1 𝜋 −1 x2
y2

History-Free Variants

f −1
K=(PK1, PK2, m1, m2) 2

x1 𝜋 −1 x2
y2

History-Free Variants

f −1
K=(PK2, m2) 2

x1 𝜋 −1 x2
y2

Problem: not secure!

Randomized History-Free Variant

f −1
K=(PK2, m2, 2

x1 𝜋 −1 x2
y2

)r2

Just add fresh randomness to the key for 𝜋 [Brogle-Goldberg-Reyzin ‘12]

Drawback: final aggregate is r1 r2 … rn xn — not constant size

but still better than n individual sigs because each ri is short

Intuition why it works: Adversary can’t predict y2, so this is like FDH

Deterministic History-Free Variant

f −1
K=(PK2, m2, 2

x1 𝜋 −1 x2
y2

)r2

Deterministic History-Free Variant

f −1
K=(PK2, m2, 2

x1 𝜋 −1 x2
y2

)r2

Deterministic History-Free Variant

f −1
K=(PK2, m2

2
x1 𝜋 −1 x2

y2
)

tag = H(PK2, m2)

Use “tag-based TDP” (tag is a public input that defines a fresh TDP)

Tag-based TDP can be built on a variant of strong RSA
[Kiltz-Mohassel-O’Neill ‘10]

Intuition why it works: chosen message attack will hit the wrong tag

Outline
• Sequential Aggregate Signatures (SAS)
• Security Definition
• Prior Constructions

– [LMRS]: requires certified TDPs
– [Neven]: works even adversary gives nonpermutations!

• Our General Construction
– History-free variants (randomness or stronger assumption)

55

56

Conclusion

This Work: f −1
K=(PK1, PK2, m1, m2) 2

x1 𝜋 −1 x2
y2

- Simpler and easier to analyze
- Unfortunately, current techniques for building 𝜋

have a large security loss, so parameters not practical
(while [Neven 08] is practical assuming RO)

- Let’s build ideal ciphers with good parameters!
- Question: if you build 𝜋 using RO, you need 8 rounds of Feistel.

Neven works with 2 rounds of Feistel, but ends up with longer sigs.
Do you really need an ideal cipher for the shorter sigs?

