A Unified Framework
for
Trapdoor-Permutation-Based
Sequential Aggregate Signatures

Craig Gentry Adam O’Neill Leonid Reyzin
IBM Georgetown U. Boston U.

Motivating Example: Border Gateway Protocol (BGP)

* Q: How do you get from here to there on the internet?
 A: BGP [Rekhter, Lougheed, Li, Hares]

Idea: utilize local knowledge

— Each autonomous system (AS) knows
what IP addresses it owns

— Each AS knows its connections (customer-provider, peer)
— Each AS can talk to its neighbors

Border Gateway Protocol (BGP)

Dear AT&T:
to getto 107.20.211.*
AT&T come to Georgetown

GeorgetownU
(owns 107.20.211.%)

@- o

Dear Comcast:
to getto 107.20.211.%,
you can go _

Dear Boston U:
AT&T — Georgetown to getto 107.20.211.*,

you can go

Comcast—AT&T—Georgetown

@
Comcast

Boston U

Border Gateway Protocol (BGP)

Dear AT&T:
to getto 107.20.211.*
AT&T come to Georgetown

GeorgetownU
(owns 107.20.211.%)

eorgetown
0- Skl °
Dear Comcast:
to getto 107.20.211.%,
you can go _
Dear Boston U:
AT&T — Georgetown to getto 107.20.211.*
Georgetown you can go
AT&T Comcast—AT&T—Georgetown P
Comcast Georgetown Boston U
P, 0oSton
Comcast

S-BGP [Kent-Lynn-Seo 2000]: Same but with signatures

Sequential Aggregate Signatures (SAS)

» S-BGP requires possibly long signature chains
» Q: Can we compress multiple signatures to save space?

* A: Sequential Aggregate Signatures (SAS)
[Lysyanskaya Micali Reyzin Shacham 04

Signer 1
|

Si 3
0, attests to m, m, ... m;on behalfof PK, PK, ... PK,

mla 0-1

o Several prior TDP-based constructions

— Note: [Boneh Gentry Lynn Shacham 2003] allow non-sequential
(even third-party) aggregation post signing, but based on pairings

» This work: understanding + improving
TDP-based Sequential Aggregate Signatures

Outline

 Sequential Aggregate Signatures (SAS)
&_Security Definition >

* Prior Constructions
— [LMRS]
— [Neven]

* Qur General Construction
— History-free variants

SAS Security

Slg;er 1 mp, G4 S»i?er 2 ’ >. ms, O3 >
0, attests to m, m, ... m;on behalf of PK, PK, ... PK,

» Equivalentto what you get from simply concatenating
individual signatures, without any aggregation

» Adversary model: arbitrary subset of adversarial signers

SAS Security

Signer 1 S Signer 2 m, o, Signer 3 s, G

1> Y1 »' V_@ ’ >
0, attests to m, m, ... m;on behalf of PK, PK, ... PK,

» Equivalentto what you get from simply concatenating
individual signatures, without any aggregation

» Adversary model: arbitrary subset of adversarial signers

SAS Security

Signer1 Signer 2 Signer 3

nm,, o0, ns, O3

I>» Y1 »' > >
0, attests to m, m, ... m;on behalf of PK, PK, ... PK,

» Equivalentto what you get from simply concatenating
individual signatures, without any aggregation

» Adversary model: arbitrary subset of adversarial signers
» Chosen Message-and-Aggregate-so-Farattack

SAS Security

Signer 1 n“/llagl Signer 2 %2’ -, Signer 3 %3)23

g | > >
0, attests to m, m, ... m;on behalf of PK, PK, ... PK,

» Equivalentto what you get from simply concatenating
individual signatures, without any aggregation

» Adversary model: arbitrary subset of adversarial signers
» Chosen Message-and-Aggregate-so-Farattack

SAS Security

Signer 1 n“/llagl Signer 2 n‘f‘zz, -, Signer 3 n“%g

g | >) >
0, attests to m, m, ... m;on behalf of PK, PK, ... PK,

» Equivalentto what you get from simply concatenating
individual signatures, without any aggregation

» Adversary model: arbitrary subset of adversarial signers
» Chosen Message-and-Aggregate-so-Farattack

» Even after such an attack,
adversary can'’t “frame” the honestparties

— Adversary can't output any (m¥, m3, m3, o3) that verifies
as long as Signer 2 never signed m5

Outline

» Sequential Aggregate Signatures (SAS)
o Security Definition

& Prior Constructions >

- [LMRS]
— [Neven]

e Qur General Construction
— History-free variants

Review: Full-Domain Hash Signatures

[Bellare-Rogaway 93]
Trapdoor permutation publickey PK=f, secret key SK=f"1
Hash (random oracle) function H (output range equals domain of 1)

Steps of the Signer:
* y=H (m)

cx=f"1(y) m—»@l» 1

Steps of the Verifier:

*y=H (m)

) ?
¥/ (x) s = o e

LMRS Aggregate Signature Scheme
[Lysyanskaya-Micali-R-Shacham 04]

LMRS Aggregate Signature Scheme

[Lysyanskaya-Micali-R-Shacham 04]
Steps of Signer 2:
» Check that PK, = £, specifies a permutation

» Verify x, using PK,m,

PKI—P V1 fl_l > X,

» 0,=H (PK,, PK,, m{, m,) n—
_ v
*N=8 %X PK’;;IPHI%H £, 022, ;e

=KL ()

Steps of Signer 3:
» Check that PK,=f,, PK, = f, specify permutations

* Verify x, using PK, PK,, m,, m,

LMRS Aggregate Signature Scheme

[Lysyanskaya-Micali-R-Shacham 04]
Steps of Signer 2:

» Check that PK, = £, specifies a permutation

» Verify x, using PK,m,

PKI—P V1 fl_l > X,
* 8= H (PK,, PK;, my, m,) S |
*N=8 %X PKy, PKy,—> g_2,i)y_2, 1 |y
my, my—» f2 ‘2
* =51 ()
| PK,, PK,, PK3—>@ N R B
Steps of Signer 3: my, my mz—*

» Check that PK,=f,, PK, = f, specify permutations

* Verify x, using PK, PK,, m,, m,

LMRS Aggregate Signature Scheme
[Lysyanskaya-Micali-R-Shacham 04]
Steps of Signer 2:
< Check that PK, = f; specifies a permutation>

* Verify x, using PK, m,

* &= H (PK,, PKy, my,my) getting certified TDPs takes work:

¢ Y=g, @ X, for RSA, either extra proofs
o [Goldberg-Reyzin-Sagga-Baldimtsi 18]
* = () [Auerbach-Poettering 18]

or long verification exponents

Steps of Signer 3: L

« Check that PK,=f, PK, = f, specify permutations—
* Verify x, using PK, PK,, m,, m,

LMRS Aggregate Signature Scheme

[Lysyanskaya-Micali-R-Shacham 04]
Steps of Signer 2:

» Check that PK, = £, specifies a permutation

» Verify x, using PK,m,

PKI—P V1 fl_l > X,
* 8= H (PK,, PK;, my, m,) S |
*N=8 %X PKy, PKy,—> g_2,i)y_2, 1 |y
my, my—» f2 ‘2
* =51 ()
| PK,, PK,, PK3—>@ N R B
Steps of Signer 3: my, my mz—*

» Check that PK,=f,, PK, = f, specify permutations

* Verify x, using PK, PK,, m,, m,

LMRS Aggregate Signature Scheme

[Lysyanskaya-Micali-R-Shacham 04]

Q: What happensif £; is not a permutation?

PKI—P V1 f_l > X,

mg—-» 1 ‘
82 v y

PKy, PKo—> 224, @ 22, 71 X,

my, ni,—»» 2 ‘
83 v y

PKI,PKz, PKT’IE—V@ —3>]%_1 —> X3

>

my, ny nis

LMRS Aggregate Signature Scheme
[Lysyanskaya-Micali-R-Shacham 04]
Q: What happensif £; is not a permutation?

A: Adversary can control input to £, and thus attack signer 2!

“
PKI—P V1 fl_l > X,

mg—-» ‘

Y
PKI,PK2_> gi’i)y_Z’ f—l _>x2
ml, mz—P 2 ‘

v
®

PKI,PKz, PKT’@&V y—3> f;l —> X3

my, ny nis g

LMRS Aggregate Signature Scheme
[Lysyanskaya-Micali-R-Shacham 04]
Q: What happensif £; is not a permutation?

A: Adversary can control input to £, and thus attack signer 2!

Q: What happens if £ s an PK 3 1 }0 Tk
adversarial permutation? mi—>» 1 ‘
Q: Verify-before-sign {
PK,, PK & Yy [o
meansadversaryhas "2 JIHIT O 5
no control over x; I
®

PKI,PKz, PKT’@&V y—3> f;l —> X3

my, my mis ’

L MRS Verification

Verifier knows: last signature x;,
MesSSages m, NUORUE

PK,, PK,, PK;—"
my, My my—*

@—»@ el

/5

X3

L MRS Verification

Verifier knows: last signature x;,
MeSSages my,nm,,ny

PK,, PKy—> 152, ¢ 42 f X
my, ni,—»» T

|
PK,, PKy, PKi)2 0 - £, le—nx,
my, my mz—

L MRS Verification

Verifier knows: last signature x;,
MeSSages my,nm,,ny

‘?
})[<1—> &l izl— _fl +— X
m—» T
PK,, PKy—> g—2>e|a%/2— fy le—x
my, ni,—»» 2 Tz
|
PKI,PKz,PKj)'_’[EgiV@ X3— ﬁi — X3

my, my mis g

To sum up: scheme works because @ can be undone,
but requires certified trapdoor permutations

Outline

» Sequential Aggregate Signatures (SAS)
o Security Definition

* Prior Constructions
— [LMRS]: requires certified TDPs

<—{Neven]: works even adversary gives nonpermutafionsSl—

e Qur General Construction
— History-free variants

[Neven08] Aggregate Signhature Scheme

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, /)

. , y
Steps of Signer 1: P{fﬁ @ p >@—1' fil
1

[Neven08] Aggregate Signhature Scheme

Hash function H (short outputs), G (full domain outputs)

Signature has two components: (x, /)
Steps of Signer 2: First, verify (x,, 4,) using PK,, m,

PK—» ,@L, T e,
m— h,

[Neven08] Aggregate Signhature Scheme

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, /)
Steps of Signer 2: First, verify (x,, 4,) using PK,, m,

* n,= H (PK,, PK,, x|, my, m,)

* hy,=n,9®h,
* ¥,= G(hy) ®x
* = [(02)

PKl »@L fl_l _>x1
m1—> 1
PK,.PK, v v ’ y
ml m-, [E—b@ ﬂ@—V@A fz_l —> X
h,

[Neven08] Aggregate Signhature Scheme

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, /)

Steps of Signer 2: First, verify (x,, &) using PK,, m,

* 11,= H (PK,, PK,, x;, m;, m,)

* hy=n,®h, P§11_> >@L’ Si!l
G(h,) @ x, ! & |

* Vo=

PK,.PK, v
* X2 _f2 0’2) my m, I@Zé‘)—b@]—bé& fz_l —> X
PI<1>P[<29PI<3_> (& Cj—)_p Gi_Dy_:;» -1 |—»
my, ny, m; —» lh3 I X3

Steps of Signer 3: First, verify (x, #,) using PK,, PK,, m,, m,

[Neven(08] Aggregate Signhature Scheme
Hash function H (short outputs), G (full domain outputs)

Signature has two components: (x, /)

PK1_>

? m— h,

° PK,,PK, ¢,72 y
mljl’nz :I@—b@—b

PK,, PK,, PK; —>| 5_.’73 5,
my, my, my —» lh3

Q: How do even verify?

>|:|—>y1 fl_l —>.X|31
@—»Ggy—z» L

h, |
@@& g

[Neven08] Aggregate Signhature Scheme

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, /)

The transformation from (x,, /,) to (vs, &) Is invertible!
X, = G(h3) @ y3

Eﬁ.fh_. CLVL

[Neven08] Aggregate Signhature Scheme

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, /)

The transformation from (x,, /,) to (vs, &) Is invertible!

X, = G(h3) @ s
hy= H(x,) © hy

i@”i» Th? l)fi

[Neven08] Aggregate Signhature Scheme

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, /)

The transformation from (x,, /,) to (vs, &) Is invertible!

X, = G(h3) © y;

h,= H(x,) ® h, - This is just 2 rounds of (unbalanced) Feistel

" Tz

E&Th—» 1)&

[Neven08] Aggregate Signhature Scheme

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, /)

The transformation from (x,, /,) to (vs, &) Is invertible!
X, = G(h3) @ y3
hy=H(x,) © hy

So verifier can compute y;=f;(x3), get to (x,, /,), and repeat

X2

* \

- This is just 2 rounds of (unbalanced) Feistel

h,

E”L»@—» 1)& £ e
"

[Neven(08] Aggregate Signhature Scheme
Hash function H (short outputs), G (full domain outputs)

Signature has two components: (x, /)

PK1_>

? m— h,

° PK,,PK, ¢,72 y
mlij :I@—b@—b

PK,, PK,, PK, —>| 5_.’73 AR
my, my, my —» lh3

>|:|—>y1 fl_l —>.X|:1
@—»Ggy—z» L

h, |
@@& g

[Neven08] Aggregate Signhature Scheme

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, /)

o
PK—> @L. i e,
? m— h, |

° PK\.PK, v v ’ v,
nm,nm S —> O =—=» fil —>x
h, \
} }
PK,. PK,, PK, —>| I3 (‘ > Y3 N
17;’11,77%;,7’”33—7 D —> D = f31 _>x3

Q: Why no certified TDP? What f £, is nota TDP?

[Neven08] Aggregate Signhature Scheme

Hash function H (short outputs), G (full domain outputs)
Signature has two components: (x, /)

o
PK—> @L. i e,
? m— h, |

@®
>
PK,, PK,, PK; —>| 5_.’73 5,
my, my, my —» lh3

Q: Why no certified TDP? What f £, is nota TDP?
A: Adversary can't control y,, because now x, gets hashed before®

y—2> f2_1 —> x2

LAEEN f3—1 _>x3

Outline

» Sequential Aggregate Signatures (SAS)
o Security Definition

* Prior Constructions

— [LMRS]: requires certified TDPs
— [Neven]: works even adversary gives nonpermutations!

«_Qur General Construction >

— History-free variants

Our Aggregate Signature Scheme

LMRS:
(certified TDPs)

Neven:

PK,,PK,

mi my

>

>

PKI,PKz—V >
ml, m2—>

X

X1

.

D —>

< 1
h

é_.”z "
2

1!

—» Xy

—> X3

Our Aggregate Signature Scheme

X1
LMRS: PKnlf; sz:: _>@¢a_, 1
(certified TDPs) i
X1

>
PK, PK h, l
Neven: i mﬁ%ﬁ,é_. 320 1 ey,
2 2

X1 —>

ThisWork: K=(PK,, PK,, m,, my)—> /2!

—>x2

Our Aggregate Signature Scheme

X1
LMRS PKDPKZ—’ —pé_y f2—1 —> X,
pe ml, m2—>
(certified TDPs)
X1
< >
PK,,PK, I l
Neven: m, my : 2 th—r ® 22> 1
2
: Xp—» 1 V2 1 X
This Work: K=(PK,,PK,,m,, m)—s 7 | LJa |75

sz is an ideal cipher (keyed public random permutation, like AES)
7z can't be AES, because need bigger domain (at least for /= RSA)

But: 7z can be built from random oracle via 8-round Feistel

[Coron, Holenstein, Kunzler, Patarin, Seurin, Tessaro;
Dachman-Soled, Katz, Thiruvengadam; Dai-Steinberger 16]

Our Aggregate Signature Scheme

X1
LMRS: PRy PR3y o & T L,
- mp, my—-» 2
(certified TDPs)
X1
« |
PK,,PK, Y l
Neven: my N, :é&efh—» ® Y2, L
2
X1—» V2

7l Rl e

This Work: K=(PK,, PK,, m;, m,)—>

- Simpler and easier to analyze (proofs in the paper)

- Doesn'trequire certified TDPs (same as Neven)

- Aggregate signature has only one component
(shorter than Neven if you believe in ideal ciphers)

Outline

» Sequential Aggregate Signatures (SAS)
o Security Definition

* Prior Constructions

— [LMRS]: requires certified TDPs
— [Neven]: works even adversary gives nonpermutations!

* Qur General Construction

 History-free variants >

Why History-Free?

LMRS, Neven, and our scheme: all require verify-before-sign

Devastating attack if you use your 7!
before verifying what you put into it!

Why History-Free?

LMRS, Neven, and our scheme: all require verify-before-sign

Devastating attack if you use your 7!
before verifying what you put into it!

Why History-Free?

X1—»

72'_1

)2

=y

K=(PK,, PK;,, m|, my)—>

LMRS, Neven, and our scheme: all require verify-before-sign

Devastating attack if you use your /!

1!

—>x2

before verifying what you put into it!
(Chosen-aggregate attack using a bogus x, to get a y, collision)

Why History-Free?

LMRS, Neven, and our scheme: all require verify-before-sign

Devastating attack if you use your 7!
before verifying what you put into it!

Problem with verify-before-sign: @ Gorgetown L _

Verification requires retrieving current PKs |72 Georgetown
(out of 85000 ASes on the internet) A787

If you wait to verify before forwarding, @ — 4 _

you'll delay others (who can anyway verify on their own) Ef;’;’geww”

At times of high load, need “lazy (delayed) verification” Comecast

History-Free Variants

X1—»

K=(PK,, PK;,, m|, my)—>

)2

—>x2

History-Free Variants

K=(>K‘,PK2,

> m2) i

)2

—>x2

History-Free Variants

X1—»

K:(PK29 mZ) —

)2

Problem: not secure!

—»X)

Randomized History-Free Variant

X1—»

72'_1

)2

=y

K=(PK,, m,, r) —»

1!

—>x2

Just add fresh randomness to the key for 7z [Brogle-Goldberg-Reyzin “12]

Drawback: final aggregateis r, r, ... r, x, — not constant size

but still better than » individual sigs because each r; is short

Intuition why it works: Adversary can't predict y,, so this is like FDH

Deterministic History-Free Variant

X1—»

K=(PK,, m,, r) —»

71)2 15!

—>x2

Deterministic History-Free Variant

'xl—> 1 y2 1
K=(PK,, mz,\&{_> 7 " /2

—>x2

Deterministic History-Free Variant

'xl_> —1 y2 1 X
K=(PK,, m,) —»L " ,_L fa [0

tag — H(PK29 m2)

Use “tag-based TDP’ (tag is a public input that defines a fresh TDP)

Tag-based TDP can be built on a variant of strong RSA
[Kiltz-Mohassel-O'Neill “10]

Intuition why it works: chosen message attack will hit the wrong tag

Outline

» Sequential Aggregate Signatures (SAS)
* Security Definition

* Prior Constructions

— [LMRS]: requires certified TDPs
— [Neven]: works even adversary gives nonpermutations!

* QOur General Construction
— History-free variants (randomness or stronger assumption)

Conclusion

X1 —»

This Work: K=(PK,, PK,, m;, m,)—>

V2

- Simpler and easier to analyze

- Unfortunately, current techniques for building 7z
have a large security loss, so parameters not practical
(while [Neven 08] is practical assuming RO)

- Let's build ideal ciphers with good parameters!

- Question: if you build 7z using RO, you need 8 rounds of Feistel.
Neven works with 2 rounds of Feistel, but ends up with longer sigs.
Do you really need an ideal cipher for the shorter sigs?

