
Verifying Membership in NP-languages,

or How to Avoid Reading Long Proofs

Leonid Reyzin�

April 1, 1996

1 Introduction

1.1 General Overview

The Classes NP, IP, MIP and PCP

The class NP was de�ned by Cook ([Coo71]) and independently by Levin ([Lev73]) as the
class of languages that are accepted in non-deterministic polynomial time. If L 2 NP
and x 2 L, then there is a \proof" that x 2 L which can be veri�ed in deterministic
polynomial time (the \proof" consists merely of the choices made by the non-deterministic
Turing machine). For example, for the problem of satis�ability of a Boolean formula, the
\proof" can be a satisfying truth-assignment. Then it can be veri�ed by simply plugging the
truth-values into the formula.

The class IP is de�ned as the class of languages which have e�cient interactive proofs of
membership, and was introduced in [GMR89] and in [Bab85]. In the IP model for a language
L, given input x, a veri�er V is communicating with a prover P who is trying to convince
V that x 2 L. The Prover can have unlimited computational powers, whereas the Veri�er is
restricted to randomized polynomial-time computations. L 2IP if for all x 2 L, the Veri�er
can be convinced that x 2 L; and if x =2 L, then no Prover P 0 can convince V otherwise
with a non-negligible probability. Building on the ideas of Lund, Fortnow, Karlo� and Nisan
([LFKN92]), Shamir, in [Sha90], proved that IP=PSPACE. That is, the languages for which
the membership can be established in polynomial space (and any amount of time) are the
same as the languages for which membership can be interactively proved in polynomial time.

The IP model lead to the de�nition of the class MIP (for multi-prover interactive proofs)
in [BGKW88]. In the MIP model, two or more provers that cannot communicate with each
other interact with the Veri�er. In [FRS88], MIP was proved equivalent to the following
model.

LetM be a random polynomial-time Turing machine that can interact with an oracle Ox.
The oracle is trying to convince M that x 2 L. An oracle, unlike a prover, is memoryless,

�Harvard University, 426 Quincy Mail Center, Cambridge, MA 02138; reyzin@das.harvard.edu; 617-493-

7669

1



i.e., its responses are �xed ahead of time. Thus, an oracle can be viewed as a written \proof,"
a bit-string any bit of which can be queried by the veri�er. L 2MIP if and only if there is
M such that if x 2 L, then there exists Ox such that M will accept x; and if x =2 L, then for
any oracle O0, M will reject x with high probability. That is, a MIP language is such that
membership proofs for it can be written down and then probabilistically veri�ed (without
any interaction) in polynomial time. Babai, Fortnow and Lund in [BFL91], building on ideas
of [LFKN92], [BF91] and [Sha90], prove that MIP=NEXPTIME (where NEXPTIME is the
class of languages that are acceptable in non-deterministic exponential time). This result
demonstrates the power of randomness: if the polynomial-timeVeri�er is deterministic, then,
by de�nition of NP, it can only verify membership proofs for languages in NP; however, if
we allow the Veri�er to be probabilistic and put up with a small probability of error, it can
verify membership proofs for languages in a bigger class NEXPTIME (NP 6=NEXPTIME, as
shown in [SFM78]).

In this paper, I concentrate on the described oracle model of MIP. Of interest in this
model is the number of random bits used by M and the number of bits that M requests
from the oracle. Hence, PCP(r(k); q(k)) (for probabilistically checkable proofs) model was
introduced in [AS92], which is the same as the model described above, except that M can
use no more than O(r(k)) random bits in its computation, and request no more than O(q(k))
bits from the oracle (where k is the length of the input x). There was much research devoted
to establishing the place for NP in the PCP hierarchy. In [BFLS91], it was proven that
NP=PCP(log k; (log k)c), for a small constant c > 1; moreover, the veri�er of [BFLS91]
runs in polylogarithmic time if the input is provided in a certain error-correcting code.
Independently, in [FGL+91], it was shown that NP�PCP(log k log log k; log k log log k); the
veri�er of [FGL+91] runs in polynomial time. Both papers built on the ideas contained in
the MIP=NEXPTIME result of [BFL91], scaling the result down from NEXPTIME to NP.

The authors of [AS92], building on the previous results and introducing a new idea of
recursive proof checking, showed that NP=PCP(log k;

p
log k); this result was improved upon

in [ALM+92], where it was shown that NP=PCP(log k; 1). This surprising result means that
for any language L 2NP, and for any string x, a proof that x 2 L can be probabilistically
veri�ed by looking at only a constant number of bits from the proof, independent of the length
of x. This result again demonstrates the power of randomness: unless NP-complete problems
are deterministically decidable in subexponential time, a deterministic Veri�er needs to read
polynomially many bits of the proof (otherwise, the Veri�er could, in subexponential time,
generate all the possible proofs by itself to decide if x 2 L). A probabilistic Veri�er, on the
other hand, using O(log k) random bits, needs to read only a constant number of bits of the
proof.

PCP and Approximation Problems

The results about the MIP and PCP models had surprising implications for a number of
NP-approximation problems. Take an NP-complete problem, such as, for example, clique
(computing the size of a maximum complete subgraph for a given graph ([Kar72])), and
ask how hard it is to approximate the result. The connection between PCP and the NP-
approximation problems was �rst established in [FGL+91]. The authors showed that ap-

2



proximating clique is \almost NP-complete." The authors of [ALM+92] (more speci�cally,
Mario Szegedy and Madhu Sudan) extended the result a to whole class of problems known as
MAXSNP ([PY91]), showing that they do not have polynomial-time approximation schemes
unless P=NP.

A lower characterization of NP in the PCP hierarchy would improve some of these non-
approximability results. However, it is unlikely that NP�PCP(o(log k); 1). Indeed, if that
is the case, the Veri�er can only possibly come up with 2o(logk) � o(k) di�erent random
strings, and for each string, it will read a constant number of bits from the proof. Thus, the
number of relevant bits of the proof is o(k), which means that all the possible proofs can be
generated in 2o(k) time and each can be then deterministically veri�ed in polynomial time
(since to verify a proof deterministically, we could just generate all the o(k) random strings
and do the veri�cation for each string in polynomial time). Thus, this would imply that
languages in NP can be deterministically decided in subexponential time.

To get better non-approximability results, a number of people worked on reducing the
constants in the PCP(log k; 1) protocol and looking at other characteristics of these protocols,
such as the proof length, reliability, and the so-called \free bits". They also developed new
techniques for getting the non-approximability results. A host of papers followed: [BGLR93,
BS92, Zuc93, FK94, BS94, LY94, KLS93, BGS95] and others. See [BGS95] for a good
survey and some new results. Due to this work, for many NP-approximation problems the
gap between the upper and lower bounds is closing.

1.2 Focus of This Paper

This paper brings together the ideas that lead up to the proof in [ALM+92] of the following
theorem:

Theorem 1 NP=PCP(log k; 1).

However, due to time and space constraints, I do not present the proof of one of the
steps needed to prove Theorem 1 (namely, a result of [ALM+92] that NP�PCP(poly(k); 1)),
although I do show how to prove Theorem 1 assuming the missing step. Therefore, the lowest
characterization of NP achieved in this paper is somewhat higher in the PCP hierarchy. It
is due to [AS92] and [ALM+92]:

Theorem 2 NP=PCP(log k;polylog log k).

The presentation combines the ideas of [BFL91, BFLS91, FGL+91, AS92, ALM+92]. In
Section 2, I present some simple facts whose understanding is a prerequisite for understanding
the rest of the paper. Section 3 is devoted to a technique due to [LFKN92], augmented
by [BFL91], that was crucial to the MIP=NEXPTIME proof and its scaling down to NP.
Understanding the basic ideas of this technique is necessary to get a clear picture of the non-
recursive veri�cation procedure, described in Section 4. The technique of recursive proof
checking is described in Section 5, and requires an understanding of Section 4. While the
result of Section 6 is necessary for the procedures to work and also of value as an independent
result, the rest of the paper can be understood without knowing the ideas of Section 6|hence
it is presented at the end.

3



2 Preliminaries

2.1 De�nition of PCP

The following is the de�nition of PCP given by [AS92].
Let M be a random polynomial-time Turing machine that has random access to a string

�, known as \the membership proof"|M can query any bit of �. We will call M a veri�er,
or a randomized oracle machine.

De�nition 1 A language L is in PCP(r(k); q(k)) if there exists a veri�er M such that:

� If given an input x of length k, M uses no more than O(r(k)) random bits and queries
no more than O(q(k)) bits from �.

� If x 2 L, then there is a proof �x such that M accepts with probability 1.

� If x 2 L, then for any �xed proof �0, M rejects with probability greater than 1=2.

Note that by de�nition, NP=PCP(0; poly(n)). Also note that the value of 1=2 for a rejec-
tion probability is not crucial|it could as well be 1=4, for example. To get the probability of
rejection greater, and thus improve the reliability of the Veri�er, just repeat the Veri�cation
procedure a number of times. More speci�cally, to get rejection probability 1��, just repeat
the procedure log(1=�) times.

It is clear from the de�nition of NP that

PCP(log k;poly(k)) � NP:

Indeed, if L 2PCP(log k;poly(k)), then the randomized veri�cation procedure for x 2 L can
be simulated in deterministic polynomial time by coming up with all the possible values of
the random bits, thus giving us a deterministic, polynomial-time veri�cation procedure for
x. Hence, from this point on, it is all right to state that NP=PCP(r(k); q(k)) whenever it
is proven that NP�PCP(r(k); q(k)), as long as r(k) 2 O(log k) (q(k) is always polynomial,
since the Veri�er can only take polynomial time).

2.2 Multivariate Lagrange Interpolation

Unless explicitly stated otherwise, by \degree" of a multivariate polynomial I mean its max-
imum degree in each variable.

Suppose we are given a �eld F , its subset H � F , and a function f : Hm ! F for some
m. Let h = jHj � 1.

De�nition 2 An m-variable polynomial f̂ : Fm ! F is called a degree-h extension of f if
f̂ is of degree at most h and f agrees with f̂ on jHjm.

Lemma 1 Every function f : Hm ! F has a unique degree-h extension f̂ (where h =
jHj�1). Given f , f̂(y) is computable in O(m(h+1)m+1) operations over F for any arbitrary
y 2 Hm.

4



Proof This lemma is a simple extension of the well-known univariate Lagrange interpo-
lation. Indeed, if m = 1, this lemma is the univariate Lagrange interpolation.

For u 2 H, let Lu be the univariate polynomial of degree h such that Lu(u) = 1 and
Lu(y) = 0 for y 2 H � fug:

Lu(y) =

0
@ Y
v2H�fug

(y � v)

1
A
,0
@ Y

v2H�fug

(u� v)

1
A :

Note that for an arbitrary y 2 F , Lu(y) takes O(h) operations over F to compute (simply
using the de�ning formula).

Then, for u1; u2; : : : ; um 2 H, let Mu1;u2;:::;um be the m-variable polynomial of degree h
such that Mu1;u2 ;:::;um(u1; u2; : : : ; um) = 1 and Mu1 ;u2;:::;um(y1; y2; : : : ; ym) = 0 on the rest of
Hm:

Mu1;u2 ;:::;um(y1; y2; : : : ; ym) =
mY
i=1

Lui(yi):

Note that for a given m-tuple (y1; y2; : : : ; ym) 2 Fm, Mu1;u2 ;:::;um(y1; y2; : : : ; ym) takes O(mh)
operations over F to compute (using the de�ning formulas for Lu and Mu1 ;u2;:::;um).

De�ne f̂ as follows:

f̂(y1; y2; : : : ym) =
X

u1;u2;:::;um2H

f(u1; u2; : : : ; um)Mu1;u2;:::;um(y1; y2; : : : ; ym):

Clearly, f̂ is a degree-h extension of f . To compute f̂ (y) for arbitrary y 2 Fm, we need
(h+1)m multiplications and evaluations ofMu1;u2;:::;um , so it takes O(mh(h+1)m) operations
over F .

Uniqueness of f̂ can be proved by a simple induction on m. Suppose, for m = 1, there
are two degree-h extensions of f : g1 and g2. Then g1�g2 is a univariate polynomial of degree
at most h which has at least jHj = h+1 roots, which is impossible unless g1� g2 = 0. Thus,
g1 = g2.

Suppose, degree-h extensions are unique for m = k. Then, for m = k + 1, let g1
and g2 be two degree-h extensions of f . If g1 6= g2, then for some y1; y2; : : : ; ym 2 F ,
g1(y1; y2; : : : ; ym) 6= g2(y1; y2; : : : ; ym). Let f 0, g01 and g02 by the k-variable polynomials ob-
tained from f , g1 and g2, respectively, by �xing the m-th variable to ym. We have that
g01 6= g02, since g

0
1(y1; y2; : : : ; ym�1) 6= g02(y1; y2; : : : ; ym�1). But g01 and g02 are both degree-h

extensions of f 0, hence, by the inductive hypothesis, g01 = g02, which is a contradiction. Hence,
g1 = g2. 2

In particular, the above theorem implies that a function over f0; 1gm can be extended to
a multi-linear (of degree 1 in each variable) function over any �eld F .

Remark 1 The result of Lemma 1 can be trivially extended to a function f de�ned on
H1 �H2 � : : :�Hm, where Hi � F and jHij = h+ 1 for 1 � i � m.

5



2.3 Distance Between Functions

De�nition 3 Given a �nite �eld F and two functions, f : Fm ! F and g : Fm ! F , the
distance � between them is de�ned as

�(f; g) =
jfx 2 Fmjf(x) 6= g(x)gj

jFmj :

That is, �(f; g) is the fraction of the points on which f and g di�er. Two functions f and
g are �-close if �(f; g) � �. De�ne �h(f) as the distance from f to the nearest polynomial
of degree at most h.

Clearly, � is a metric. A lemma due to Schwartz ([Sch80]) states that for two m-variable
polynomials f and g of degree at most h, �(f; g) � 1 �mh=jF j. Hence, if we pick a �eld
jF j > 2mh, then two polynomials cannot be :5-close. Hence, by triangle inequality, if for a
function f , �h(f) < :25, then there is a unique polynomial within :25 of f .

I will sometimes use the informal statement \f and g are close" to indicate that that
they are �-close for a small enough �.

3 Vanishing Test

This section presents a result that plays a pivotal role in the veri�cation procedure of Sec-
tion 4. Suppose, we are given a polynomial f in m variables x1; x2; : : : ; xm over a �eld F ;
suppose further that the degree of the polynomial in each variable is no greater than d. We
would like to verify that this polynomial vanishes on some subset of Fm. More speci�cally,
let H � F ; we would like to present a probabilistically checkable proof that shows that if
x1; x2; : : : ; xm 2 H, then f(x1; x2; : : : ; xm) = 0.

3.1 Sum-Check

First, I will describe a protocol to check a weaker condition. Namely, it will check that the
sum over Hm of the values of f is equal to some number c 2 F . While it may not seem
useful at �rst, it is the major ingredient of the Vanishing Test.

The protocol itself was designed in [BFL91], and relies on the ideas contained in [LFKN92]
(a similar protocol, although for a di�erent purpose, was designed by [Sha90], and also relies
on the ideas of [LFKN92]). This particular form of the protocol appears in [BFLS91] and
[AS92].

Theorem 3 Let F be a �nite �eld, let f : Fm ! F be a polynomial in m variables of degree
at most d, and let H � F . Suppose further that jF j > 2md. Then there exists a randomized
oracle machine that, given f and c 2 F , veri�es the statementX

x12H

X
x22H

: : :
X

xm2H

f(x1; x2; : : : ; xm) = c:

The machine uses m log jF j random bits, receives m(d + 1) log jF j bits of information from
the proof, and uses O(jHjmd) operations over F .

6



Remark 2 A more precise de�nition of what we mean by \given f" is necessary. As we
will see, the Veri�er needs only one value of f , at one randomly chosen point. Thus, f can
be provided in any way as long as the Veri�er can reliably compute its value at one random
point in the time allotted.

Proof For 0 � i � m, de�ne a partial sum

fi(x1; x2; : : : ; xi) =
X

xi+12H

X
xi+22H

: : :
X

xm2H

f(x1; x2; : : : ; xm):

Thus, f = fm and the task is to verify that f0 = c. Note that for 0 � i < m,

fi(x1; x2; : : : ; xi) =
X
h2H

fi+1(x1; x2; : : : ; xi; h)

Also note that fi(a1; a2; : : : ; ai�1; xi) can be viewed as a univariate degree-d polynomial in
xi. The proof is required to contain the coe�cients of all such polynomials. Of course, the
Prover can be dishonest, and put incorrect coe�cients in the proof. Let gi(a1; a2; : : : ; ai�1; xi)
be the polynomial that the Prover puts in place of fi(a1; a2; : : : ; ai�1; xi). De�ne g0 = c (g0
need not be part of the proof since it is given as the input to the Veri�er).

The protocol is as follows. The Veri�er picks m random elements r1; r2; : : : ; rm of F . The
veri�cation procedure takes m+ 1 rounds. For 0 � i < m, the Veri�er tests that

gi(r1; r2; : : : ; ri) =
X
h2H

gi+1(r1; r2; : : : ; ri; h):

In the last round, the Veri�er performs the �nal test:

gm(r1; r2; : : : ; rm) = f(r1; r2; : : : ; rm):

The Veri�er accepts if and only if all the tests passed.
Clearly, if the sum is indeed c and the Prover is honest, the Veri�er will accept. Now,

suppose the sum is not c. That is, suppose g0 6= f0. Then, in order for the �rst round to
pass, the polynomial g1(x1) cannot be equal to f1(x1). If g1 6= f1, then, as two polynomials of
degree d, they cannot agree on more than d points. Thus, with probability at least 1�d=jF j,
f1(r1) 6= g1(r1). But in that case, in order for the second round to pass, the polynomials
g2(r1; x2) and f2(r1; x2) cannot be equal. By the same reasoning, if gi�1(r1; r2; : : : ; ri�2; xi�1)
is not equal to the polynomial fi�1(r1; r2; : : : ; ri�2; xi�1), then with probability at least 1 �
d=jF j, gi�1(r1; r2; : : : ; ri�2; ri�1) 6= fi�1(r1; r2; : : : ; ri�2; ri�1), and therefore, in order for the
i'th round to pass, the polynomials gi(r1; r2; : : : ; ri�1; xi) and fi(r1; r2; : : : ; ri�1; xi) can not be
equal. Thus, a lie in each round most likely leads to a lie in the next round, and therefore if
the rounds 0 through m�1 pass, with probability at least 1� (m�1)d=jF j, the polynomials
gm(r1; r2; : : : ; rm�1; xm) and fm(r1; r2; : : : ; rm�1; xm) are not equal. But this will be discovered
with probability at least 1 � d=jF j by the �nal test (because fm(r1; r2; : : : ; rm�1; xm) and
gm(r1; r2; : : : ; rm�1; xm) cannot agree on more than d points). Thus, the total probability of
discovering an error is at least 1�md=jF j > 1�md=(2md) = 1=2.

Random bits are used to come up with m random elements of F , and hence we need
m log jF j of them. The query bits are used for coe�cients of m degree-d polynomials, so

7



m(d + 1) log jF j of them are needed. The veri�cation consists of computing jHj + 1 values
of each of the polynomials (and jHj � 1 additions for each of the �rst m rounds), and hence
takes O(jHjmd) operations over jF j. 2

Note that as the protocol is described above, the number of random bits the Veri�er needs
grows with the size of F . Since this is sometimes undesirable, I will modify the protocol
slightly to make the number of random bits independent of jF j. Namely, the Veri�er chooses
a subset I � F such that H � I and jIj = 2md + 1. The random choices r1; r2; : : : ; rm are
made from I rather than all of F . The rest of the proof works with no changes.

Corollary 1 In Theorem 3, the number of random bits used can be changed to m log(2md+
1) 2 O(m logmd).

Remark 3 If, for 1 � i � m, Hi � F , the protocol can be trivially extended to test thatX
x12H1

X
x22H2

: : :
X

xm2Hm

f(x1; x2; : : : ; xm) = c:

3.2 From Sum-Check to Vanishing Test

Now, knowing the sum-check protocol, I describe how to verify that a polynomial f vanishes
over H. There has been a number of ways proposed to turn the above protocol into a
Vanishing Test. If working over the integers or the rationals, one could just perform the
Sum-Check test for the polynomial f2|ifX

x12H

X
x22H

: : :
X

xm2H

(f(x1; x2; : : : ; xm))
2 = 0;

then f vanishes over H (this idea appears in [BFL91]). However, it does not work over �nite
�elds. The following is due to [BFL91], with slight modi�cations by [BFLS91].

Here is the rough idea. Suppose, f is not identically 0 on Hm. Let R = fRtg be a family
of polynomials. Pick a random polynomial from this family. If the family is well-chosen, it
is likely that X

x2Hm

Rt(x)f(x) 6= 0

(since for at least one x 2 Hm, f(x) is non-zero). If all the polynomials in R are of degree at
most d1 in each variable, then the degree of Rf is at most d+ d1, and the protocol from the
previous section can be applied to Rf if we replace d by d + d1. Of course, the proof-string
would have to contain the proof for each possible choice of Rt by the Veri�er.

So, we need to �nd such a family R. Assume for now that H = [0::h � 1]. Then
x = (x1; x2; : : : ; xm) can be viewed as a number base h. Let E be an extension of the �eld
F of size at least 4hm. Consider the polynomial

g(t) =
X

x2Hm

f(x)tx:

The polynomial is of degree at most hm, so unless it is identically 0, for at least three quarters
of t 2 E, g(t) 6= 0. If we check that g(t) = 0 at a random location, we can be assured with
probability at least 3=4 that f(x) = 0 for all x 2 Hm.

8



We now need to exhibit a polynomial Rt : Fm ! E that agrees with the function tx for
x 2 Hm. By multivariate Lagrange interpolation, there is such a polynomial, and it can be
made of degree at most h� 1 in each variable. The problem is that Lagrange interpolation
takes too many operations to compute (and in the sum-check protocol, the Veri�er needs
to compute a value of the polynomial). But tx is a special function, and happens to have a
faster interpolation method.

More speci�cally, given t 2 E, let ti = th
i

. Then

tx =
m�1Y
i=1

t
xm�i
i :

Let Lu be the degree-(h� 1) univariate Lagrange interpolation polynomial over H: namely
Lu(v) = 0 if v 6= u and Lu(v) = 1 if v = u. Then the above can be re-written as

tx =
m�1Y
i=1

 
h�1X
v=0

tviLv (xm�i)

!
:

Thus, the protocol is as follows. The �eld E � F is chosen in advance. The Veri�er
chooses a random t 2 E and then uses the sum-check protocol for the (h � 1 + d)-degree
polynomial f(x)Rt(x) (where

Rt(x) =
m�1Y
i=1

 
h�1X
v=0

tviLv (xm�i)

!

and is de�ned over all of E).
An error in testing can come from a bad pick of t or from the error in the sum-check

protocol. The probability of a bad pick of t is at most 1=4; to get the overall error probability
under 1=2, in the sum-check protocol, the random values are selected from a subset of F of
size at least 4m(h� 1 + d) + 1 (rather than 2m(h� 1 + d) + 1, as required by Corollary 1).

Note that t does not need to be chosen from all of E, but only from a large enough subset
of it, of size 4hm. The choice of t thus requires m log 4h random bits; and the sum-check
protocol requires m log(4m(h � 1 + d) + 1) random bits; thus, the total number of random
bits is in O(m logm(d+ h)).

Since the values of the polynomial are now in the �eld E, the number of bits queried
from the proof is m(d+h) log jEj. Note that the value of Rt(x) can be computed in O(mh2)
operations over E.

What happens if H 6= [0::h� 1]? Let jHj = h. Let � : [0::h� 1]! H be a bijection; let
� = ��1. Then in the formula for Rt, replace Lv with L�(v). The same proof works, since

Rt(x1; x2; : : : ; xm) computes t�(x1)�(x2):::�(xm).
Thus, I have proved the following theorem.

Theorem 4 Let F be a �nite �eld, let f : Fm ! F be a polynomial in m variables of degree
at most d, and let H � F . Suppose further that jF j > 4m(jHj � 1 + d). Then there exists a
randomized oracle machine that, given f , veri�es the statement

(8x 2 Hm)f(x) = 0:

9



The machine uses O(m logm(jHj + d)) random bits, reads m(d + jHj) log jEj bits from the
proof, and uses O(m(jHjd+ jHj2)) operations over E (where E is an extension of F of size
at least 4jHjm).

The authors of [FGL+91] suggest using a projection of tx 2 E into F in order to avoid
working in a larger �eld E. They do not provide the details of their construction, however.

4 The Procedure

In this section, I prove the following theorem:

Theorem 5 NP=PCP(log k; log3 k= log log k)

My proof combines the ideas of [BFLS91, FGL+91, AS92]. In Section 4.5, I show how to
extend the result of Theorem 5 using the ideas of [BFLS91]. A part of the extended result
is essential for the recursive proof checking, described in Section 5.

4.1 Arithmetization of Boolean Formulas

As was noticed in [BF91] and [Sha90], it is often bene�cial to consider Boolean formulas as
arithmetic, rather than Boolean, expressions. This often allows us to rely on properties of
polynomials when verifying statements about formulas. In particular, [BF91] and [Sha90]
use arithmetization of Boolean formulas to prove that IP=PSPACE, and [BFL91] uses it to
prove that MIP=NEXPTIME.

The authors of [BFL91] de�ne arithmetization as follows:

De�nition 4 A polynomial f(x1; : : : ; xn) is said to be an arithmetization of a Boolean func-
tion B : f0; 1gn ! f0; 1g if on all (0; 1)-substitutions, the (Boolean) value of B and the
(arithmetic) value of f agree.

The advantage of this de�nition is that if a Boolean function is given by a Boolean
formula, it is easy to arithmetize: �rst one needs to eliminate disjunctions using DeMorgan's
laws, then replace every conjunction with a multiplication and every negation of a subformula
of the form :s with (1�s). It is clear that the result satis�es the de�nition. Moreover, if the
original Boolean formula was of length l, then the resulting polynomial is of total degree at
most l=2 (since the total degree is no more than the number of conjunctions and disjunctions
plus one). I will use this method of arithmetization later, in Section 4.5.

For now, however, I will need a di�erent method of representing Boolean formulas with
arithmetic ones. The reason is that De�nition 4 only allows us to representB as a polynomial
of n variables. Thus, computations with it will have to take at least n operations. It is
unlikely to work when we are trying to produce algorithms that have sub-linear constraints.

This problem is addressed in similar ways in [BFLS91] and [FGL+91]. The following is
the observation of [FGL+91].

Let ' be a 3-CNF formula of no more than n clauses and no more than n variables. Then
every clause and every variable can be represented by numbers from [0::n� 1], or by log n

10



bits. Let m = log n. The formula, then, can be completely described by the following family
of functions: �j : f0; 1g2m ! f0; 1g takes two m-digit numbers, c and v, in binary notation,
and outputs 1 if and only if the variable number v is the j-th variable of the clause number
c; sj : f0; 1gm ! f0; 1g takes a number c in binary notation and outputs 1 if and only if the
j-th variable of clause c is unnegated (since we are dealing with a 3-CNF, j = 1; 2; 3).

Thus, through a sort of indirect referencing of variables and clauses, we described the for-
mula completely with 6 functions of O(log n) Boolean variables each. Now, let A : f0; 1gm !
f0; 1g be a truth assignment: it takes v and assigns 0 or 1 to the variable number v. Then
A satis�es ' if and only if for all c; v1; v2; v3 2 f0; 1gm,

3Y
j=1

�j(c; vj)(sj(c)�A(vj)) = 0:

By Lemma 1, the functions �j; sj and A can be extended to multi-linear polynomials over

any �eld F . Let their extensions be �̂j; ŝj and Â. We can then consider the polynomial in
4m variables over F , of degree at most 6 in each variable:

'A(c; v1; v2; v3) =
3Y

j=1

�̂j(c; vj)(ŝj(c)� Â(vj))

(c; v1; v2 and v3 are vectors of m elements each).
We have thus reduced the question of A being a satisfying assignment for a formula to the

question of whether a certain low-degree multivariate polynomial in log n variables vanishes
on all f0; 1g substitutions. We can now apply the result of Section 3 in order to test if 'A

indeed vanishes on f0; 1g4m, provided we are able to compute 'A and one random point over
F 4m. We have to pick F to be of size greater than 4 � 4m � (2� 1 + 6) = 112 log n, and E to
be its extension of size at least 4 �24m = 4n4. The protocol will use O(log n log log n) random
bits and O(log2 n) bits from the proof.

4.2 Using Systems Other than Binary

The reduction performed in the previous section was possible because we used binary nota-
tion to name clauses and variables in a Boolean formula. The authors of [BFLS91] suggested
using a di�erent base for the encoding.

Let h and m be such that (h + 1)m � n (where n is still the number of variables and
clauses in '). In the previous section, h was equal to 1 and m was equal to log n. We
de�ne the functions �j(c; v), sj(c) and A(v) just as before, except that instead of taking
log n f0; 1g-variables to identify c and v, they now take using m [0::h]-variables. Then, by
multivariate Lagrange interpolation they can be extended to any �eld F (jF j > h) to become
polynomials �̂j, ŝj and Â of degree h (we have to identify some subset of F with [0::h]). If we

de�ne 'A(c; v1; v2; v3) as above in terms of �̂j, ŝj and Â, we will get that 'A is a polynomial
in 4m variables of degree at most 6h. It vanishes on all [0::h] substitutions if and only if A
is a satisfying assignment for '.

Just as above, we can apply the result of Section 3 in order to test if 'A indeed vanishes
on [0::h]4m, provided we are able to compute 'A and one random point over F 4m. We have

11



to pick F to be of size greater than 4 � 4m � ((h + 1) � 1 + 6h) = 112mh, and E to be its
extension of size at least 4 � h4m � 4n4. The protocol will use O(m logmh) random bits and
O(mh log n) bits from the proof.

Varying m and h allows some 
exibility in the size of F and the number of random and
query bits. In particular, if we setm = log n= log log n and h = log n (in which case (h+1)m >
(log n)logn= log logn = n), we will need only O(log n) random bits and O(log3 n= log log n) query
bits.

4.3 The Protocol

Given a language L 2 NP , we need to construct a Veri�er that, for a given x, veri�es the
proof that x 2 L. Without loss of generality we can assume that the alphabet for L is f0; 1g
and hence x 2 f0; 1gk. Let x1; x2; : : : ; xk be the bits of x.

From the proof of the Cook-Levin Theorem ([Coo71], [Lev73]), it follows that for every
k, there exists a polynomial-time constructible 3-CNF formula 'k(z1; z2; : : : ; zn) such that
x 2 L if and only if there exists a truth assignment A such that

A(z1) = x1; A(z2) = x2; : : : ; A(zk) = xk

and

'k(A(z1); A(z2); : : : ; A(zn)) = 1

(note that n is polynomial in k).
We can view A as a function A : [0::h]m ! f0; 1g. We require the prover to provide the

table of values of Â. Suppose, the prover instead provides the table of a function B : Fm ! F
(if the prover is honest, then B = Â). Then, we need to verify three things:

1. B is equal to a degree-h polynomial Â over F

2. 'A vanishes on [0::h]4m

3. Â(i)� xi = 0 for 1 � i � k

We need the �rst condition in order to be able to apply the result of Section 3 for the
veri�cation of the second condition (because the result relies on polynomiality of 'A which
relies on polynomiality of Â). Clearly, however, the �rst condition is impossible to verify
without reading the entire table for B (since an error in a single entry could make B not
equal to a degree-h polynomial), which takes too long. We need a better version of the
condition.

Note that we will use the table of values of B only three times in the veri�cation of
the second condition|in order to evaluate 'A at one random point. Thus, if up to 10% of
the values of B are incorrect, the chance of getting the correct value for 'A is still at least
70%. Hence, if 'A does not vanish, the Vanishing Test will still detect it with probability at
least 35%. Running the Vanishing Test a small constant number of times (or increasing the
reliability of the test by making F bigger), we can get any desired constant reliability.

In view of the above, we can replace the �rst condition with the following:

12



1. �h(B) � :1

This can be veri�ed by the so-called \Low-Degree" test, which is the subject of Section 6.1.
The third condition can be veri�ed similarly to the second one. If we assume that

k = (h + 1)l for some l, and view x as a function x : [0::h]l ! f0; 1g, then we can construct
its degree-h extension x̂ over F l. In that case, the veri�cation that Â(i)� xi = 0 is merely
a vanishing test for a polynomial in l variables of degree h in each. If k 6= (h+ 1)l for some
l, then let l = dlogh+1 ke and pad x with zeroes to get the length of (h+ 1)l.

Remark 4 Note that Â is meant to be an extension of a Boolean function over [0::h]m.
However, there is no need to verify that its values are Boolean on [0::h]m. Indeed, if Â(v) =2
f0; 1g for some v 2 [0::h]m, and 'A still vanishes on [0::h]m, then the assignment A is
satisfying regardless of the value of the variable v (a simple examination of the construction
of 'A shows this).

4.4 Complexity of the Protocol

In order for the Low-Degree Test of the �rst condition to work, we need F to be of the size at
least c(m2h3) for some constant c (see Section 6.1 for details). This F will also work for the
Vanishing Tests of the second and third conditions (since it only needs to be of size bigger
than 112mh for the Vanishing Test of 'A and even less for the Vanishing Test of Â(i)� xi.
In order for the Vanishing Tests to work, we pick E to be an extension of F of size at least
4n4.

Then, the protocol uses O(m logmh) random bits for the two Vanishing Tests and the
same for the Low-Degree Test. Each Vanishing Test requires O(mh log n) bits of the proof;
the Low-Degree test requires only O(mh log jF j) = O(mh logmh) bits.

Aside from computing the value of the function at a random point, each Vanishing Test
uses O(mh2) operations over E; the Low-Degree test also uses poly(mh)) operations. It is
computing the values of 'A and Â(i) � x̂(i) at a random point that takes the most time.
Indeed, if we are given just the input x and the functions �j and sj, we needO(m(h+1)m+1) =
O(mhn) operations to compute their extensions at one random point.

In order to get Theorem 5, just set m = log n= log log n and h = log n, and remember
that n is polynomial in the length of input k.

4.5 Making the Procedure Faster

Note that most of the time in the veri�cation procedure is spent computing extensions of
functions. The authors of [BFLS91] address this problem. Their method used to reduce the
time is based on the following observations:

� If a Boolean function is given by a Boolean formula, then it is easy to arithmetize it
according to De�nition 4.

� If a function over Hm is given by a polynomial formula, it is easy to compute its
extension over F .

13



� The input x is only used to construct its extension x̂.

The speci�cs of how to apply these observation are described below.
For now, I will again be using the binary system to encode the names of variables and

clauses in ' (i.e., h = 1 and m = log n). As described above, the formula ' and hence the
functions �j and sj depend only on the language L and the length k of the input x. Note
that if we are using the binary system, then �j and sj are Boolean functions of O(log k)
variables (since n is polynomial in k). Suppose that the language L is such that the Boolean
formulas for �j and sj can be computed in time polylogarithmic in k. Then the formulas
are of length at most polylogarithmic in k; hence, they can be arithmetized by the method
of De�nition 4 to become polynomials p�j and psj of total degree at most polylogk.

Thus, the functions �j and sj are given over f0; 1g2m by polynomial formulas. Then their
extensions over F are also given by these polynomial formulas, except that the extensions are
of degree at most polylogk in each variable rather than multi-linear. Using these extensions
rather than �̂j and ŝj slows down the Vanishing and the Low-Degree tests, but speeds up
the computation of the extensions dramatically.

Now we go back to working in base h+ 1. We will have to assume h+ 1 is a power of 2,
i.e., h + 1 = 2l for some l. In that case, every base-(h + 1) digit d 2 [0::h] is representing l
binary digits. Let �j(d) (1 � j � l) be equal to the j-th digit in the binary representation
of d. Then �j(d) can be represented by a univariate degree-h polynomial, whose value at a
point is computable in time O(h2) (simply by univariate Lagrange interpolation).

Then, sj(v1; v2; : : : ; vm) (where vi 2 [0::h]) is equal to

psj (�1(v1); �2(v1); : : : �l(v1); �1(v2); �2(v2); : : : ; �l(v2); : : : ; �1(vm); �2(vm); : : : ; �l(vm)):

We thus represented sj explicitly by a polynomial of degree at most hpolylogk. We can now
use this polynomial to extend sj over all of F , except that the extension is not of degree h,
but rather of degree hpolylogk. However, it takes only O(h2 log k + polylogk) operations to
compute its value at a point (O(h2) operations each for �j(vi), and there are log n = O(log k)
of those; plus the number of operations required to compute psj ).

The same method works for �j. However, it does not work for computing x̂ if we are
given just x. But if we stipulate that the input be provided as its extension x̂ rather than x,
then we do not need to construct x̂. In fact, we do not even need to read the whole input,
since it is only used to evaluate x̂(i) at a few random points. If the input is not trustworthy,
we can �rst use the Low-Degree Test to verify that it di�ers from a polynomial on no more
than, say, 10% of the points (in which case such a polynomial is unique|see Section 2.3).
In fact the extension of the input can be stored as a part of the proof, in which case the
Veri�er, after running the Low-Degree Test, is assured that there is a unique string x such
that x̂ di�ers on more that 10% of the points from what is stored in the proof. Since both
the Vanishing Test and the Low-Degree Test use only a constant number of values of x̂, the
whole procedure will only read a constant number of values of the input (note, however, that
each value takes more than a constant (namely, log jF j) number of bits).

Thus, we can use the same protocol as above, except that we work with p�j and psj
rather than �̂j and ŝj. Of course, the �eld F would have to be bigger in order for the Low-
Degree and Vanishing Test to work (E can stay the same as long as it is still an extension

14



of F ). The protocol will then use O(m log(mh log k)) random bits for each of the Vanishing
Tests and the Low-Degree Tests; the number of bits from the proof is O(m(hpolylogk) log n)
for the the Vanishing Tests and O(m(hpolylogk) log(mh log k)) for the Low-Degree Tests.
Aside from computing the value of 'A at one random point, the Vanishing Tests will use
O(mh2polylogk) operations over E, and the Low-Degree Tests will use O(poly(mh log k))
operations. Computing a value of 'A now takes only O(h2polylogk) operations.

If we now set m = log n= log log n, and h = log n (and remember that n is polynomial in
k), we get the following extension of Theorem 5.

Theorem 6 If the input x is given to the Veri�er as its degree-h extension x̂, then the
Veri�er needs to read only a constant number of the values of the input. Suppose further
that L is such that given the length k of x, the reduction to 3-SAT (in the form of the
Boolean formulas for �j and sj) can be computed in time polylogarithmic in k. Then the
Veri�cation procedure runs in time polylogarithmic in k. The number of query bits goes up
to O(polylogk).

5 Recursive Proof Checking

The idea of recursive proof checking was introduced in [AS92], and generalized in [ALM+92].
In this section I present it along the lines of [ALM+92].

5.1 The Idea of Recursion

In the veri�cation procedure of Section 4 the bits of proof that are being queried depend
only on the random bits selected by the Veri�er (i.e., the locations of the bits queried do not
depend on the results of the previous queries). That is, once a random string r is selected by
the Veri�er, the Veri�er can query the appropriate bits of the proof, get a string yr, perform
a polynomial-time computation on x, r and yr and then decide whether to accept or reject.
Thus, for each x and r, we can consider a language Lx;r of all such yr that the Veri�er will
accept. The idea of recursion is to run a veri�cation procedure for Lx;r rather than for L.

The question of membership in Lx;r is in P, since the computation involving the query
bits is polynomial in their number. Hence, Lx;r 2NP, and hence there is a proof for it that
can be veri�ed with O(log(jyrj)) random bits and O(polylog(jyrj)) query bits. Note that
jyrj = O(polylogjxj), so the number of random and query bits is small. The new (recursive)
proof will contain, for each possible random string r selected by the Veri�er, the degree-h
extension ŷr of yr as well as the proof that yr 2 Lx;r. Then the Veri�er selects a random
string r, chooses the appropriate segment of the new proof, and veri�es (using the protocol
of Section 4.5) that indeed yr 2 Lx;r

One problem with the above method is that there is nothing forcing the Prover to present
yr's that are consistent with each other. That is, in the non-recursive proof, yr1 and yr2 can
have some bits in common. In the recursive version as presented above, however, the proofs
for r1 and r2 are disjoint, and hence yr1 and yr2 can be inconsistent. It is thus possible for
the Prover to \fool" the Veri�er by presenting a recursive \proof" for each r, even though
no non-recursive proof exists. This problem is addressed below.

15



In Section 5.4 I show how the proof required by the veri�cation procedure of Section 4 can
be transformed into the following form: it will consist of l disjoint segments y1; y2; : : : ; yl,
of size O(polylogk) each, such that the Veri�er reads a constant number of segments in
the veri�cation procedure. Given a random string r, the Veri�er of Section 4 will read the
segments yr;1; yr;2; : : : ; yr;c for some constant c (for notational convenience, when it creates
no ambiguity, I will use y1; y2; : : : ; yc for yr;1; yr;2; : : : ; yr;c).

Also note that the method of encoding the input and making it be a part of the proof,
presented in Section 4.5, can be extended as follows: we can break up the input into a
constant number of pieces x1; x2; : : : ; xc and present the degree-h extension of each of those
pieces separately. Then the Vanishing Test for Â(i)� xi will become c Vanishing Tests: for

Â(i)� x1i ; Â(i)� x2i ; : : : ; Â(i) � xci ; and if we conduct c Low-Degree Tests, one for each x̂j,
then we can be assured that there is a unique collection set of segments x1; x2; : : : ; xc such
that what is stored in the proof is close to their degree-h extensions, and their concatenation
x is in the language L (we may have to conduct those test a small constant number of times
in order to get the failure probability under 1/2).

Using the two observations above, we now make the structure of the recursive proof
as follows. It contains, for each segment yi, 1 � i � l, its degree-h extension ŷi. It also
contains, for each r selected by the Veri�er, the proof that the concatenation of segments
yr;1; yr;2; : : : ; yr;c is in the language Lx;r.

The veri�cation procedure is clear: the veri�er picks a random string r, constructs,
accordingly, the veri�cation procedure for the language Lx;r, and runs it on what the Prover
claims are degree-h extensions of yr;1; yr;2; : : : ; yr;c. An honest Prover will clearly be able to
come up with a proof that is always accepted. Suppose now that x =2 L. Then, for any proof
y, for more than half of the random strings r, the concatenation of yr;1; yr;2; : : : ; yr;c will not
be accepted by the Veri�er of Section 4; i.e., it is not in Lx;r. In that case, the veri�cation
procedure for Lx;r will reject with probability 1=2. Thus, a total probability of rejecting if
x =2 L is 1=4. We can run the veri�cation procedure 3 times to get the probability of rejecting
over 1=2.

5.2 Recursion Generalized

Let us consider again what we need in order for the recursion procedure to work. First
of all, the proof and the veri�cation procedure for the statement x 2 L have to comply
with certain restrictions: the proof has to consist of a number of disjoint segments, each of
which is of size O(q(k)) (where the number of query bits is q(k)); given a random string r,
the Veri�er has to �rst select a constant number of segments to verify (independent of the
contents of the proof), and then perform a computation on the segments, r and x in order
to decide whether to accept or reject. Also, any computation involving the proof segments
has to be polynomial in their size (another way to put it is that the Veri�er can spend
time polynomial in jxj before getting the segments, but can only spend time polynomial in
q(k) afterwards). Let us call the subclass of PCP(r(k); q(k)) for which the proofs and the
veri�cation procedures have this property PCP-SEG(r(k); q(k)) (the authors of [ALM+92]
use OPT(r(k); q(k)) for this subclass).

Second, the language Lx;r, consisting of tuples (y1; y2; : : : ; yc), has to be in PCP(s(k); t(k))

16



(now k is not the length of x, but the length of the tuple). Moreover, if the segments are
provided in a certain encoded form y01; y

0
2; : : : ; y

0
c, there is a way to verify that there are unique

strings y1; y2; : : : ; yc such that y0i is close to ŷi, and (y1; y2; : : : ; yc) 2 Lx;r, without using more
than O(s(k)) query bits and more than O(t(k)) random bits. Also, no more than a constant
number of values of ŷi is read from each segment. Let us call a subclass of PCP that has
this property PCP-ENC(s(k); t(k)).

The recursive veri�cation procedure, thus, takes a language from PCP-SEG, stipulates
that all of its proof segments be encoded, comes up with a random r and uses the PCP-ENC-
type procedure to verify that the string (yr;1; yr;2; : : : ; yr;c) is acceptable for the PCP-SEG
veri�er. Note that the roles of PCP-ENC and PCP-SEG here are di�erent: the procedure
itself runs only a PCP-ENC-type veri�er, and not the PCP-SEG-type. The PCP-SEG-type
veri�er is not run, but only used to construct the PCP-ENC veri�er for the language of
c-tuples. Thus, this is not recursion in the strict sense of the word, since we use di�erent
types of veri�ers, and for di�erent purposes. However, their similarity justi�es the term.

Given a language L 2PCP-SEG(r(k); q(k)), we need that the language Lx;r of c-tuples be
in PCP-ENC(s(l); t(l)), where l is the number of query bits for L. The language is clearly in
P (because of the condition on PCP-SEG that the computation with the query bits be poly-
nomial in their number), hence a su�cient condition would be that P�PCP-ENC(s(l); t(l))
(clearly, P2PCP(0; 0), since no proof is needed at all; however, remember that in PCP-ENC
is a restricted subclass of PCP).

In view of the above, I state the following theorem:

Theorem 7 Suppose, P�PCP-ENC(s(k); t(k)). Let L be in PCP-SEG(r(k); q(k)). Then
there exists a constant d such that L 2PCP(r(k) + s(q(k)d); t(q(k)d)).

Proof Use the recursive procedure, as described above. The only things I need to show
are the polynomiality of the procedure and how to get the bounds on the random and query
bits.

Let x be the input, and r be the random string. De�ne Lx;r as above. We need to
construct, in time polynomial in jxj, a veri�cation procedure for Lx;r (it cannot be \pro-
grammed" in advance, since x can be of any size). There are multiple ways to do so; one of
them is to reduce the question of membership in Lx;r to a question of membership in some
single canonical language, for which the veri�cation procedure is known in advance.

Speci�cally, let K be the language of c+1-tuples such that the �rst element of the tuple
is a c-input circuit C. A tuple (C; y1; y2; : : : ; yc) is in the language if C accepts the inputs
(y1; y2; : : : ; yc). Clearly, the language K is in P; hence, K 2PCP-ENC(s(k); t(k)). Note that
given a veri�cation procedure for L, the question of membership in Lx;r can be answered by
a circuit Cx;r, constructible in time polynomial in jxj (since the veri�cation procedure for
L runs in time polynomial in x). The circuit itself has size polynomial in q(k) (because of
a condition imposed on PCP-SEG). Thus, the question of membership in Lx;r becomes a
question of membership of the tuple (Cx;r; y1; y2; : : : ; yc) in the language K. The size of the
tuple is polynomial in q(jxj), i.e., q(jxj)d for some d.

Therefore, the input to the PCP-ENC-type veri�er is of length q(jxj)d. Recall that by
de�nition k = jxj. Thus, the PCP-ENC-type veri�er uses an order of s(q(k)d) random bits

17



and t(q(k)d) query bits. Also, an order of r(k) random bits are used to select the segments
on which to run the PCP-ENC-type veri�er. 2

In order to be able apply recursion more than once, we need a stronger result: namely,
we need that the resulting procedure also obey the restrictions imposed on PCP-SEG. We
therefore de�ne a class PCP-ENC-SEG, which is a subclass of PCP-ENC that also obeys
the restrictions of PCP-SEG.

Theorem 8 Suppose, P�PCP-ENC-SEG(s(k); t(k)). Let L be in PCP-SEG(r(k); q(k)).
Then there exists a constant d such that L 2PCP-SEG(r(k) + s(q(k)d); t(q(k)d)).

Proof We perform the same procedure as in Theorem 7. Note that the resulting proof
consists of two parts: the encodings of each of the yi's and the PCP-ENC-SEG-type proof
for each Lx;r. The PCP-ENC-SEG-type proofs are already segmented; the encodings of
each of the yi's can be broken up into segments of one value of ŷi each (since only a constant
number of values of ŷi is used during the veri�cation procedure). It is clear that the resulting
procedure obeys the conditions of PCP-SEG. 2

5.3 The Payo�

Now that we have the powerful recursion machinery formalized, we can apply it to get results
about NP.

I have shown in Section 4 that NP�PCP(log k; log3 k= log log k). In Section 5.4, it is
shown how to transform the unsegmented proof I presented into a segmented one. The
computation involving the query bits is still polynomial in their number. As a result, we get
that NP�PCP-SEG(log k;polylogk). Using the result of Section 4.5, and applying the same
techniques, we also get that P�NP�PCP-ENC-SEG(log k;polylogk).

Now, applying Theorem 8 we get the Theorem 2; actually, we get a slightly stronger
statement that

NP = PCP � SEG(log k;polylog log k);

We could repeat the recursion, applying Theorem 8 to Theorem 2, to get that

NP = PCP� SEG(log k;polylog log log k);

and keep proceeding in this fashion.
The authors of [ALM+92] achieve an even better result. They show that NP�PCP-

ENC(poly(k); 1), and then apply Theorem 7 to Theorem 2, to get the statement of Theo-
rem 1:

NP = PCP(log k; 1):

5.4 Segmenting the Proof

In this section, I show how to transform the unsegmented proof of Section 4 into a segmented
one. This method is due to [ALM+92]

18



Consider the procedure of Section 4. Let the proof string be y, let l = jyj and let q be the
maximum number of query bits that the Veri�er requests during the procedure. Without
loss of generality, we can assume that the Veri�er always requests q bits. Let Qr be the set
of indices into y that the Verifer requests given a random string r (we assume that the input
to the Veri�er, x, is �xed). We call Qr a query set. Note that jQrj = q.

The idea is to encode y as its degree-h extension, and to represent all the possible query
sets as polynomials; after verifying some polynomial identities, we can just read o� the values
of the relevant query set. The details follow.

Pick m and h such that (h + 1)m > l; thus, y is a map from [0::h]m ! f0; 1g. Pick a
large enough prime p (we will need that p > poly(q log l)). We will be working in the �eld
F = Fp. Let ŷ be the degree-h extension of y over F . Thus, the value of the i-th bit of y is
given by ŷ(i).

For each query set Qr = fb1; b2; : : : ; bqg, we would like to present a polynomial pr such
that pr(i) = ŷ(bi). Then, after verifying that pr indeed agrees with ŷ, all we need to do is read
o� the values of pr to get the query bits. Since for each r, pr can be presented in a separate
segment, the proof will be segmented (provided its other parts are segmented, of course).
For reasons to become apparent later, we will actually need to have jF jm polynomials for
each r: for each � 2 Fm, we will have pr;� such that pr;�(0) = ŷ(�) and pr;�(i) = ŷ(bi) for
1 � i � q.

How to construct such pr;�? First, by interpolation, for each r and �, we can construct
a degree-q curve Cr;� : F ! Fm such that Cr;�(0) = � and Cr;�(i) = bi for 1 � i � q (of
course, each bi is represented as a number base h + 1, i.e. as m elements of F ). Then, by
combining Cr;� with the polynomial for ŷ, we get pr;�(i) = ŷ(Cr;�(i)); pr;� is a univariate
polynomial of degree at most qmh (since Cr;� is of degree q and ŷ is of total degree hm).

The veri�cation procedure is now as follows. The Veri�er stipulates that the proof contain
ŷ together with the proof of its polynomiality (we only care about the total degree of ŷ, not its
degree in each variable), and, for each r and �, the coe�cients of the univariate polynomial
pr;�.

Let Y be the table that the Prover claims is ŷ, and gr;� be the polynomial that the
Prover claims is pr;�. Fix a random string r. The Veri�er �rst checks that Y is close to a
polynomial, using the total-degree test of Section 6.2. Then it picks a random � 2 Fm and
a random t 2 Fp � [0::q]. It computes Cr;�(t), and veri�es that Y (Cr;�(t)) = gr;�(t). If not,
the Veri�er rejects; otherwise it gets gr;�(bi) for 1 � i � q as its query bits, and proceeds
with the Veri�cation procedure of Section 4 using these bits.

Clearly, if Y = ŷ and gr;� = pr;�, the Veri�er will accept.

The polynomiality assures us that Y is �-close to some polynomial P of total degree
mh. Suppose, gr;� 6= pr;�. Then they disagree for at least p � (q + 1) � qmh values of t.
We would be done, except that the Veri�er doesn't directly compute pr;�, but uses Y to
compute it. Note that, for any t > q, if � is uniformly distributed, so is Cr;�(t). Thus,
when the Veri�er computes Y (Cr;�(t)), it most likely (with probability 1 � �) is computing
P (Cr;�(t)). Hence, with probability 1� �, what the veri�er computes is actually pr;�(t) (i.e.,
a degree-qmh univariate polynomial). Therefore, if gr;� 6= pr;�, the Ver�er will catch the
error with probability 1� � � qmh=(p� q � 1).

If we now setm = log n= log log n, and h = log n, and recall that the size of y is polynomial

19



in the size k of the input x, we have shown that

NP � PCP� ENC� SEG(log k;polylogk):

6 Testing for Polynomiality

In this section I present a procedure that, given a function B : Fm ! F as a table of
values held by an oracle, e�ciently veri�es the proof that B is close to a polynomial of
degree at most h over F . The �rst such procedure was presented in [BFL91] and then
improved upon by [BFLS91] and [FGL+91] (although [FGL+91] presents a multinearity test
only). Independently and concurrently with the last two papers, the authors of [GLR+91] and
[RS92] came up with more polynomiality-testing results. The authors of [AS92] improved the
e�ciency of the testers of [BFLS91] and [FGL+91]. I present their test below, in Section 6.1.

An di�erent tester was presented in [ALM+92]. It was based on the work of [RS92] and
[AS92], and is needed for segmentation in recursive proof checking. As opposed to the test of
Section 6.1, it tests the total degree of a multivariate polynomial. I present it in Section 6.2.

6.1 Using O(mh logmh) Queries

We would like to test that B is a polynomial of degree h, i.e., �h(B) = 0. However, this is
impossible without reading all the values of B, because a single incorrect value could make
B non-polynomial. Hence, we allow the Veri�er to accept as long as �h(B) < � for some
small �, but the Veri�er is not obliged to accept unless �h(B) = 0.

Theorem 9 Let h be a natural number, F be a �nite �eld, B : Fm ! F be a function,
and � > 0. Suppose jF j > c(m2h3) (where is c is some �xed constant). Then there exists
a randomized oracle machine that accepts if �h(B) = 0, rejects with probability over 1/2 if
�h(B) > �, and is free to either accept or reject if 0 < �h(B) � �. The machine queries a
constant number of values of B, uses O(m log jF j) random bits and O(mh log jF j) bits from
the proof. It runs in time polynomial in m, h and 1=�.

Proof (sketch) De�ne a line in Fm as the subset of Fm where all but one variables are
�xed. That is, for a1; : : : ; ai�1; ai+1; : : : ; am 2 F , de�ne

L[a1;:::;ai�1;�;ai+1;;:::;am] = f(x1; x2; : : : ; xm)jx1 = a1; : : : ; xi�1 = ai�1; xi+1 = ai+1; : : : ; xm = amg

We say that L[a1;:::;ai�1;�;ai+1;:::;am] is a line in the i-th direction.
Clearly, if B is a polynomial of degree-h in each variable, then its restriction to each

line is a univariate degree-h polynomial. Hence, a restriction can be described by simply
listing its h + 1 coe�cients. We require that the proof contain all such polynomials for all
such lines. Of course, the prover can be dishonest and put an incorrect polynomial. Let
gi[a1;:::;ai�1;ai+1;:::;am] be the polynomial that the prover claims is the restriction of B on the
line L[a1;:::;ai�1;�;ai+1;:::;am].

The veri�cation procedure is as follows:

20



1. Pick d4=�e + 1 random points (a1; a2 : : : ; am) 2 Fm and verify that

B(a1; a2; : : : ; am) = g1[a2;:::;am](a1):

2. Pick O(m=�) random points (a1; a2; : : : ; am) 2 Fm, and for each random point, a
random i 2 [2::m], and verify that

gi[a1;:::;ai�1;ai+1;:::;am](ai) = gi�1[a1; : : : ; ai�2; ai; : : : ; am](ai�1):

Clearly, if �h(B) = 0 and the Prover is honest in presenting g's, then the Veri�er will
accept. The hard part is proving that if �h(B) > �, then the Veri�er will reject.

All the functions g1[a2;:::;am] put together de�ne a map from Fm ! F . Call that map g1.

Similarly, de�ne maps g2, g3, and so on. If the Prover is honest, B = g1 = g2 = : : : = gm.
What we are testing is that B is close to g1, g1 is close to g2, : : : , gm�1 is close to gm. Note
that if �(B; g1) > �=2, then with probability greater than 1/2 the �rst part of the test will
fail. We need to show that if �h(g1) > �=2, then the second part of the test will fail with
probability greater than 1/2. Then, if �h(B) > �, it cannot be that both �(B; g1) � �=2
and �h(g1) � �=2 (by triangle inequality). Hence, no matter how the Prover chooses g1, the
test will fail with probability greater than 1=2.

Thus, all I need to show is the following proposition:

Proposition 1 If �h(g1) > �=2, then the second half of the test will fail with probability
greater than 1=2.

Proof (sketch) We can consider each gi as an m � m � : : : � m hypercube of values.
Recall that gi is a polynomial in the i-th variable, which means that all the \rows" in the
i-th direction in this hypercube are polynomials. The following Lemma says that if only
a few of the hyperplanes orthogonal to these rows are close to polynomial, then the whole
hypercube is close to polynomial. It thus allows to infer a global property of gi from its local
properties.

Lemma 2 Let g : Fm ! F be a function. Suppose that, for some i, g restricted to any line in
the i-th direction is a univariate degree-h polynomial. If there are 2h points b1; b2; : : : ; b2h 2 F
such that g restricted to a hyperplane ai = bj is :1-close to a degree-h polynomial in m � 1
variables, then �h(g) � :2.

Given this Lemma, the proof would go by induction as follows. Divide g1 into F hyper-
planes that are orthogonal to the �rst direction. If g1 is too far from a polynomial, then,
by the Lemma, F � 2h of the hyperplanes of g1 have to also be far from polynomials Each
hyperplane represents an m � 1 variable function, so applying the inductive hypothesis to
each hyperplane would yield a large number of inconsistencies.

Unfortunately, the inductive argument is not given in [AS92]. Of the many sketchy
arguments whose details I was able to �ll in in this paper, this one turned out to be more
problematic than expected. The work on it is still ongoing. 2

21



6.2 Using O(h logF ) Queries and a Segmented Proof

In this section, I present the polynomiality test required for segmentation of [ALM+92] to
work (see Section 5.4). I omit the proof of the correctness of the test. As opposed to the
test presented above, this test ensures us that a function B is close to a polynomial of a total
degree h.

The idea is similar to the proof presented above, except that the notion of a line is more
general. More speci�cally, the proof is required to contain, for each �; � 2 Fm, a univariate
degree-h polynomial f�;�(t). The veri�er picks a constant number of random triples (�; �; t)
(where �; � 2 Fm and t 2 F ) and checks that B(t�+ (1� t)�) = f�;�(t).

The statement on which the correctness of the proof rests is the following: if

Pr(B(t�+ (1 � t)�) 6= f�;�(t)) < �

then B is 2�-close to a polynomial of total degree at most h (provided jF j > poly(hm)).
Note that the proof is segmented, as required by Section 5.4.

Acknowledgement

I am greatly indebted to Michael O. Rabin for the many hours of discussion and valuable
insights with which he provided me.

References

[ALM+92] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof veri�cation and hardness of approximation problems. In Proceed-
ings of the 33rd IEEE Symposium on Foundation of Computer Science, pages
14{23, 1992.

[AS92] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs; A new char-
acterization of NP. In Proceedings of the 33rd IEEE Symposium on Foundation
of Computer Science, pages 2{13, 1992.

[Bab85] L�aszl�o Babai. Trading group theory for randomness. In Proceedings of the 17th
ACM Symposium on the Theory of Computing, pages 421{429, 1985.

[BF91] L�aszl�o Babai and Lance Fortnow. Arithmetization: A new method in structural
complexity theory. Computational Complexity, 1(1):41{66, 1991.

[BFL91] L�aszl�o Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential
time has two-prover interactive protocols. Computational Complexity, 1(1):3{40,
1991.

[BFLS91] L�aszl�o Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking
computations in polylogarithmic time. In Proceedings of the 23rd ACM Sympo-
sium on the Theory of Computing, pages 21{31, 1991.

22



[BGKW88] L. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover inter-
active proofs: How to remove intractability. In Proceedings of the 20th ACM
Symposium on the Theory of Computing, pages 113{131, 1988.

[BGLR93] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. E�cient probabilistically
checkable proofs and applications to approximation. In Proceedings of the 25th
ACM Symposium on the Theory of Computing, 1993. See also Errata Sheet in
Proceedings of the 26th ACM Symposium on the Theory of Computing, 1994.

[BGS95] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs
and non-approximability|Towards tight results (Version 3). Technical Re-
port TR95-024, ECCC (Electronic Colloquium on Computational Complexity,
http://www.eccc.uni-trier.de/eccc), 1995. Version 1 appears in Proceed-
ings of the 36th IEEE Symposium on Foundations of Computer Science, 1995.

[BS92] P. Berman and G. Schnitger. On the complexity of approximating the indepen-
dent set problem. Information and Computation, 96:77{94, 1992.

[BS94] Mihir Bellare and Madhu Sudan. Improved non-approximability results. In
Proceedings of the 26th ACM Symposium on the Theory of Computing, 1994.

[Coo71] S. A. Cook. The complexity of theorem proving procedures. In Proceedings of
the 3rd ACM Symposium on the Theory of Computing, pages 151{158, 1971.

[FGL+91] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Approximating
clique is almost NP-complete. In Proceedings of the 32nd IEEE Symposium on
Foundation of Computer Science, pages 2{12, 1991.

[FK94] U. Feige and J. Kilian. Two prover protocols|Low error at a�ordable rates. In
Proceedings of the 26th ACM Symposium on the Theory of Computing, 1994.

[FRS88] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive
protocols. In Proceedings of the 3rd IEEE Symposium on Structure in Complexity
Theory, pages 156{161, 1988.

[GLR+91] Peter Gemmell, Richard Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi
Wigderson. Self-testing/correcting for polynomials and for approximate func-
tions. In Proceedings of the 23rd ACM Symposium on the Theory of Computing,
pages 32{42, 1991.

[GMR89] S. Goldwasser, S. Micali, and C. Racko�. The knowledge complexity of interac-
tive proof systems. SIAM Journal of Computing, 18:186{208, 1989.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller and James W. Thatcher, editors, Complexity of Computer Computations,
pages 85{103. Plenum Press, 1972.

23



[KLS93] S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the
chromatic number. In Proceedings of the Second Israel Symposium on Theory
and Computing Systems, 1993.

[Lev73] Leonid A. Levin. Universal'ny��e pereborny��e zadachi (Universal search problems,
in Russian). Problemy Peredachi Informatsii, 9(3):265{266, 1973. A corrected
English translation appears in an appendix to [Tra84].

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karlo�, and Noam Nisan. Algebraic
methods for interactive proofs systems. Journal of the ACM, 39(4):859{868,
1992.

[LY94] C. Lund and M. Yannakakis. On the hardness of approximating minimization
problems. Journal of the ACM, 41:960{981, 1994.

[PY91] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences, 43:425{440, 1991.

[RS92] Ronitt Rubinfeld and Madhu Sudan. Testing polynomial functions e�ciently and
over rational domains. In Proceedings of the 3rd Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 23{43, 1992.

[Sch80] J.T. Schwartz. Fast probabilistic algorithms for veri�cation of polynomial iden-
tities. Journal of the ACM, 27:701{717, 1980.

[SFM78] J. Seiferas, M. Fischer, and A. Meyer. Separating nondeterministic time com-
plexity classes. Journal of the ACM, 25:146{167, 1978.

[Sha90] Adi Shamir. IP=PSPACE. In Proceedings of the 22nd ACM Symposium on the
Theory of Computing, pages 11{15, 1990.

[Tra84] B. A. Trakhtenbrot. A survey of Russian approaches to Perebor (brute-force
search) algorithms. Annals of the History of Computing, 6:384{500, 1984.

[Zuc93] D. Zuckerman. NP-complete problems have a version that is hard to approxi-
mate. In Proceedings of the 8th IEEE Conference on Structure in Complexity
Theory, 1993.

24


