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1 Symmetric Cryptography

1.1 Stream Ciphers and Block Ciphers

Cryptographers have long been designing things called “stream ciphers” and “block ciphers.” A stream
cipher (e.g., RC4 [Riv87]) takes an input key (also known as seed) and produces a long (usually unlimited)
stream of random-looking bits. A block cipher (e.g., DES [NIS77]) takes a key and an input, and produces
an output of the same length as the input. For each key, a block cipher is a permutation.

While stream ciphers and block ciphers predate modern cryptographic notions, today people most often
model them as pseudorandom generations and pseudorandom permutations, respectively. Note that stream
ciphers and block ciphers used in practice are not provably pseudorandom generations and functions; rather,
they are believed to have these properties (although some think that this is too strong of an assumption).

We already designed pseudorandom generators that are provably secure under a reasonable assumption.
We will do the same for pseudorandom functions and permutations below (after defining them, of course).
It is therefore legitimate to ask why people use unprovable designs when so many provably secure ones are
available. The answer is mainly speed. As we will see shortly, traditional stream and block ciphers are orders
of magnitude faster than provable ones. Thus, they are preferred for encrypting bulk data, particularly by
computationally weak devices in real time (cell phones, wireless network cards, etc.).

We will spend this and next lecture understanding what pseudorandom generators and functions are and
how to build them (provably!). Note that our provably secure constructions will be of interest mainly as
“feasibility” results: we show that it can be done, but most people will not use our provable constructions.
Instead, in practice they will simply opt for assuming that RC4 is a pseudorandom generator and DES is a
pseudorandom function, even though these assumptions are seemingly stronger than simply assuming that
factoring is hard.

Nonetheless, whether you use a provable pseudorandom generator, such as Blum-Blum-Shub, or a heuris-
tic one, such as RC4, you still need to use it right. Therefore, we will then turn to understanding how to
use pseudorandom generators and functions to accomplish actual goals (privacy and authenticity).

But first, by way of example, we briefly study RC4 and DES.

1.2 RC4

RC4, designed by Rivest, is a stream cipher that takes a key and produces a long stream of random-looking
bits. The key is used to initialize an array S of 256 elements that contains each byte from 0 to 255 exactly
once. The key is also used to initialize two indices, i and j, into the array. We do not describe the
initialization step here. After the initialization, the following steps take place. All operations below are
modulo 256

Repeat for as many times as the number of output bytes needed:
1. i ← i+ 1
2. j ← j + S[i]
3. Swap S[i] and S[j]
4. Output S[S[i] + S[j]]

Thus, this stream cipher outputs 8 bits per 3 byte additions and 3 array lookups. It requires a tiny
amount of memory and code (in fact, it has been implemented in 3 lines of PERL, 4 lines of C, etc.). Its
speed and memory efficiency are amazing when you compare to any of the provably secure PRGs we built.
Unfortunately, you can’t prove much about it, although it has been extensively studied.
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1.3 DES

DES is well-described in many public sources (in particular, the standard itself [NIS77] is quite clear and is
on-line at http://www.itl.nist.gob/fipspubs/), or see p. 218 of the textbook); hence the description is
omitted here.

1.4 Pseudorandom Functions

We now turn to formal definitions again. We already know what pseudorandom generators are. We define
pseudorandom functions.

A pseudorandom function family (PRF) is a collection of efficiently computable functions such that
choosing a random function from the family is as good (with respect to polynomial-time distinguishers) as
choosing a truly random function. The fact that these things exist is remarkable, since most function are
not even computable (let alone efficiently computable), and yet a tiny (in comparison) subset of efficiently
computable collection can be as good as the collection of all functions.

Definition 1. Let i(k) and o(k) be the input and output lengths, respectively, for security parameter k. A
family of functions {Fs}s∈S is pseudorandom if

• There exists a polynomial-time algorithm Gen(1k) that outputs s on input 1k, such that Fs maps
{0, 1}i(k) to {0, 1}o(k).

• There exists a polynomial-time algorithm that outputs Fs(x) given s and x.

• For every probabilistic polynomial time oracle machine A? there exists a negligible function η such
that ∣

∣
∣
∣

Pr
f random function {0,1}i(k)→{0,1}o(k)

[Af (1k) → 1]− Pr
s←Gen(1k)

[AFs(1k) → 1]
∣
∣
∣
∣
≤ η(k).

The value s is usually called the seed.

The above definition and the following construction are due to Goldreich, Goldwasser and Micali [GGM86].
While many believe that things like DES approximates PRFs, it’s good to convince ourselves that such things
exist by building them out of reasonable assumptions.

To build a PRF, let G be a length-doubling PRG: given s of length k, G outputs y of length 2k. Let
G0(s) be the first k bits of y, and G1(s) be the last k bits of y. Define Fs(x), for a k-bit seed and k-bit input
x = x1x2 . . . xk, where xi is a bit, to be Fs(x) = Gxk

(Gxk−1
(Gkk−2

(. . . Gx1(s)))). In other words, build a tree
of height k defined as follows:

• The seed value s is contained at the root

• The left child of a node containing α contains G0(α)

• The right child of a node containing α contains G1(α)

Then on input x output the value stored at the leaf number x.
The proof that it’s a PRF is done by a hybrid argument on the levels of the tree; we omit it here.
There are more efficient constructions of PRFs, e.g., [NR97, NRR01], but we will not study them for

lack of time.
One way to think of a PRF Fs is to think of it as a PRG on the seed s with exponentially long

output (simply concatenate all output values for all possible x’s into one). Since no one can read or
write exponentially long values, we simply give the distinguisher random access to the output (rather than
sequential access given in the case of PRG).
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PRFs vs. Random Oracles We note while PRFs are indistinguishable from truly random functions,
they cannot be used as public random oracles. This is because indistinguishability holds only with respect
to oracle access: i.e., the adversary is allowed to ask questions x and receive answers Fs(x), but does not
know how to compute Fs herself. If the adversary knows the seed s, then the function no longer looks
random. When we needed random oracles for signature schemes, we needed everyone to be able to evaluate
the random oracle, so we would have to make the seed public, so it would no longer look random.

1.5 Pseudorandom Permutations

Pseudorandom permutations (PRPs) are defined the same way as pseudorandom functions, with the fol-
lowing additional properties: i(k) = o(k), Fs is a permutation, and there exists an algorithm that, given
s and y, computes x = F−1

s (y). Since block cipher satisfy these additional properties and appear to have
pseudorandomness properties, many believe that it is appropriate to model secure block ciphers as PRPs.

However, we should convince ourselves that such things really exist based on some plausible assumptions
(just like we did for PRFs). First, how can it be that a permutation looks indistinguishable from a random
function: a random functions has a lot of collisions. Well, since our distinguisher is only allowed polynomially
many queries, a random permutation and a random function actually look the same, since the likelihood of
a collision for polynomially many inputs is negligible.

To build PRPs, we start with PRFs, and apply the following idea (called the Feistel permutation since
the time when DES was designed [Fei73, FNS75], but actually due to Notz and Smith according to [Cop00]).

Let Fs1 be a PRF mapping k bits to k bits. Let x be a 2k-bit quantity; write it as x = (L,R), where L
and R are k bits each; define Ψs1(L,R) = (R,S) where S = L⊕ Fs1(R). Note that Ψs1(x) is a permutation
that is easy to invert: simply apply Fs1 to the first part of the output, and exclusive-or it with the second.
Thus, we built a permutation on 2k bits out of a PRF on k bits.

Is this permutation pseudorandom? Of course not: half the output bits are the same as half of the
input bits. Well, what if we compose (chain) such permutations: pick another seed s2 and apply Ψs2 to
(R,S) to get (S, T ), where T = R ⊕ Fs2(S). The result—Ψs1 ◦ Ψs2—is of course a permutation, but is
still not pseudorandom (consider what happens to S when the adversary asks two queries with the same
R but different L). Let’s try again: pick another seed s3 and apply Ψs3 to (S, T ) to get (T, V ), where
V = S ⊕Ψs3(T ). Turns out that this is pseudorandom.

To be precise, the result of Luby and Rackoff [LR88] states the following. Given a PRF {Fs}s∈S where
i(k) = o(k) = k, consider the following family of permutations. To generate a seed, run Gen(1k) three times
to get seeds s1, s2, s3. Then let Φs1s2s3(L,R) = Ψs3(Ψs2(Ψs1(L,R))) = (T, V ), where

S = L⊕ Fs1(R)
T = R⊕ Fs2(S)
V = S ⊕ Fs3(T ).

Then {Φs1s2s3} is a pseudorandom permutation family.
Incidentally, since we are speaking of permutations, one can consider what happens if the adversary is

given access to the inverse direction (i.e., the adversary has to distinguish a random permutation from a
pseudorandom one when given access to both forward and inverse direction). A permutation family that
passes this test is called super pseudorandom. Turns out that the above construction fails (with only three
queries from the adversary!). However, adding one more round Ψs4 makes it secure against this stronger
adversary.

Remarkably, the Feistel permutation idea was first used to turn functions into permutations well before
modern notions of pseudorandomness. Namely, the round function of Lucifer (the precursor cipher to DES)
was a permutation, so Lucifer was invertible. But the round function of DES was not a permutation. To
make DES invertible, two of the DES designers, Notz and Smith, proposed to split the input into two halves,
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apply the function to only one half, and use the XOR operation. This is exactly what each of the 16 rounds
of DES does. It is quite surprising that this idea actually works provably to turn to pseudorandom functions
into pseudorandom permutations.

1.6 Symmetric Encryption

1.6.1 Definition

Syntactically, secure symmetric encryption is defined similarly to secure public-key encryption, except that
there is a single key.

Definition 2. A symmetric cryptosystem is a triple of polynomial-time algorithms (Gen,Enc,Dec). Gen(1k)
is a (randomized) key-generation algorithm that outputs a keyK when given a security parameter k as input.
Enc is a (randomized) encryption algorithm that, on input K and message m, outputs ciphertext c. Dec
is a (usually deterministic) decryption algorithm, that, on input K and c, outputs m. For a key K, a
cryptosystem has to specify a set of allowed messages MK (ultimately the goal will be to have M be all
binary strings regardless of K; however, we have to allow for less general encryption schemes at first). We
require that the following holds: if K is produced by Gen(1k), then for all m ∈ MK , m = DecK(EncK(m))
(this requirement can be relaxed to say “with probability 1− η(k)”).

When we defined secure public-key encryption, the adversary Eve had to distinguish between encryptions
of two messages. While in real life Eve could have seen encryptions of other messages, too, they could
not have been helpful, because she could have produced those encryptions herself (all she needs to produce
encryptions is the public key, which she has). This is not the case for symmetric encryption: perhaps she
may gain something by seeing encryptions of other messages, since she can’t produce them herself. Moreover,
in real life, she may well have access to some ciphertexts (and perhaps even know, or be able to influence,
their corresponding plaintexts). So to get a meaningful definition, we should at least give Eve oracles access
to the encryption oracle, so that she can input plaintexts and see corresponding ciphertexts. This is called
a “chosen-plaintext attack” (CPA). Note that in the case of public-key encryption, Eve gets the public key,
and hence gets CPA automatically, without any oracles.

We define security, as usual, using two experiments. The adversary in these experiments is a distinguisher
D that runs in two stages and is allowed to keep state between stages.

exp-m0(k)
1. K ← Gen(1k)
2. (m0,m1) ← DEncK(·)(1k); if |m0| �= |m1|, abort
3. c ← EncK(m0)
4. Output DEncK(·)(c)

The second experiment exp-m1 is the same, except in line 3, which changes to c ← EncK(m1).

Definition 3. A symmetric cryptosystem is polynomially-secure under CPA if for all polynomial time D?

there exists a negligible function η(k) such that

|Pr[exp-m0(k) outputs 1]− Pr[exp-m1(k) outputs 1]| ≤ η(k).

Equivalently, we could have considered a random experiment where a bit b gets chosen random, mb gets
encrypted, and D has to output a guess g for the bit b. Security requires that the probability b = g be
negligibly greater than 1/2.
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1.6.2 Left-or-Right Definition

An alternative definition is to give Eve oracle access to the encryption oracle with one twist: she has to give
two messages (of the same length) for each query, and we will pick which one gets encrypted in each pair
(the choice will be the same for all pairs, but unknown to Eve). She will have to decide which of the two
messages we are consistently choosing. Notice that Eve is allowed to have two messages in a pair be the
same message m, the ensuring that she will see an encryption of m. (However, if her goal is to distinguish,
then she will have to give different messages at some point.) This definition was proposed by Bellare, Desai,
Jokipii and Rogaway [BDJR97]; its equivalence to other notions (including the above definition and a version
of semantic security for symmetric encryption) is proven in [BDJR97], as well.

Definition 4 ([BDJR97]). A symmetric cryptosystem is polynomially-secure against adaptive chosen-
plaintext attack (CPA) if for all polynomial time E? there exists a negligible function η(k) such that

∣
∣
∣
∣

Pr
K←Gen(1k)

[EEncK(LR(·,·,0))(1k) → 1]− Pr
K←Gen(1k)

[EEncK(LR(·,·,1)) → 1]
∣
∣
∣
∣
≤ η(k),

where LR(m0,m1, b)
def
= mb if |m0| = |m1| and ε otherwise. The probabilities above are taken over the

random choices made by Gen to generate K, by Enc in answering oracle queries, and by E.

1.6.3 Constructions

Observe that the adversary is allowed to query its encryption oracle to get encryptions of both m0 and
m1. Thus, secure symmetric encryption must be probabilistic or stateful, to ensure that, at the very least,
encryption of m0 comes out different each time (otherwise, it would be easy to distinguish: simply check if
challenge ciphertext c matches the output of the oracle on m0).

One-Time Pad We’ll start from a construction we already know: the one-time pad. Let Gen(1k) simply
output a k-bit random key K; letMK = {0, 1}|K|. To encrypt m, let c = m⊕K; to decrypt c, let m = c⊕K.
If D? is not allowed any queries to its oracle, then D? cannot distinguish: the probability of receiving any
ciphertext c if m0 gets encrypted is the same as the probability of receiving it if m1 gets encrypted (by
perfect secrecy). Hence, the view of D? is the same, and it cannot distinguish.

However, clearly, if D is allowed to query the oracle, then it can get the key K. That’s why it’s called
the one-time pad, after all.

We can extend one-time pad to l-time pad, by outputting K of length lk, and using subsequent portions
of it for each query (thus, this encryption scheme would be stateful, because Enc and Dec would be required
to know what message number they are one; Dec could be made stateless if Enc output the message number
together with the ciphertext). This would be secure up to l − 1 queries, but not beyond.

Stream Cipher Encryption Now modify the l-time pad by having Gen output K as a seed for a PRG
G with unlimited output length (all PRGs that we studied have unlimited output length, anyway). Then
keep track of how many bits you’ve encrypted so far. If you’ve encrypted t bits so far and need to encrypt
n bits now, simply exclusive-or the message with the bits t + 1, t + 2, . . . , t + n of G(K) to get c and
output (t+ 1, c). Update t ← t+ n. This give secure stateful encryption (only the encryptor needs to keep
state, since the decryptor gets t + 1). We give no formal proof here, but it simply formalizes the following
intuition: a pseudorandom pad better be as good as a truly random pad, because otherwise we could build
a distinguisher for the PRG. But a truly random pad of unbounded length is secure, as we said above.
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PRF-based encryption Let Gen output a seed s for a PRF Fs with k-bit inputs and k-bit outputs.
Then to encrypt a k-bit message m, choose a random x and output c = (x,m⊕ Fs(x)). Clearly, if Fs were
a truly random function, this would be secure (since it’s essentially a new one-time pad for every message,
unless you hit the same x twice, which is extremely unlikely). By the same reasoning as for stream ciphers,
this ought to be secure for PRFs, since otherwise you could distinguish PRFs from truly random functions.

To encrypt longer messages, e.g., a message with l blocks of k bits each, m = m1 . . .ml, pick a random
x and output c = (x,m1 ⊕ Fs(x),m2 ⊕ Fs(x+ 1),m3 ⊕ Fs(x+ 2), . . . ,ml ⊕ Fs(x+ l − 1)). This encryption
procedure is known as “counter encryption mode” for block ciphers, and is often abbreviated CTR. Note
that instead of picking a random x each time, one can make encryption stateful and simply use x + l next
time as a starting point.

The insecure ECB mode Note that it would be insecure to simply split up the input message into l
blocks and pass each block through Fs. This encryption is deterministic, and as we already said, deterministic
encryption cannot be secure. This mode of encryption is known as ECB [NIS80] for “electronic codebook.”
The name goes back to the times when people carried around codebooks of substitutions rules — ECB mode
simply substitutes blocks of output for blocks of input in a deterministic manner.

CBC-mode encryption A common way to encrypt a long message is the following, known as “cipher
block chaining” or CBC (also specified in [NIS80]). Let Fs be a PRF with k-bit inputs and k-bit outputs.
To encrypt m with l blocks of k bits each, m = m1 . . .ml, pick a random value y0 (known as “initialization
vector” or “IV”), and let y1 = Fs(m1 ⊕ y0), y2 = Fs(m2 ⊕ y1), . . . , yl = Fs(ml ⊕ yl−1). The ciphertext is
y0y1 . . . yl. To decrypt it, compute m1 = F−1

s (y1) ⊕ y0, . . . ,ml = F−1
s (yl) ⊕ yl−1. Note that decryption can

be done in parallel, despite the chaining.
Observe that decryption requires us to be able to compute F−1

s , which is not specified in the definition
of PRF. In fact, F−1

s might not even be well-defined, because Fs may not be one-to-one. Thus, to use CBC
mode, one needs pseudorandom permutations, as opposed to just pseudorandom functions. In fact, one can
prove [BDJR97] that it is secure if Fs is a pseudorandom permutation.

1.7 Message Authentication Codes

1.7.1 Definition

Message Authentication Codes (MACs) are the symmetric equivalent of signatures. The definition is es-
sentially the same, except that to have a convincingly strong definition, we need to give the adversary the
power to query not only the signing oracle, but also the verifying oracle, because (unlike in the public-key
case) the adversary cannot verify on its own. Also, a symmetric signature is traditionally called a “tag.”

Formally, a MAC is a triple of probabilistic polynomial-time algorithms (Gen,Tag,Ver). The key gener-
ation algorithm Gen outputs K when given 1k as input. The tagging algorithm Tag takes K and m as input,
and outputs a tag σ. The verification algorithm Ver takes K,m, σ as input and outputs 1 or 0 (or true/false,
valid/invalid, etc.). We require that tags produced by Tag verify as correct by Ver: if K ← Gen(1k), then
for all m, VerK(m,TagK(m)) = 1 (perhaps with probability 1 − η(k)). We may also restrict the message
space to some set M , and instead saying “for all m,” say “for all m ∈ M .”

Security is defined in terms of the following experiment.

exp-forge(k)
1. K ← Gen(1k)
2. (m,σ) ← ETagK(·),VerK(·,·)(1k)
3. If m was not queried by E to its signing oracle and VerK(m,σ) = 1, output 1. Else output 0.
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Definition 5. We say that a MAC is secure (existentially unforgeable under an adaptive chosen-message at-
tack) if for all probabilistic polynomial timeE? there exists a negligible function η such that Pr[exp-forge(k) →
1] ≤ η(k).

1.7.2 Constructions

PRFs A PRF is a MAC. That is, if {Fs}s∈S is a PRF with some sufficiently long output length (precisely,
if i(k) is polynomial in k), then a MAC key is simply a PRF seed s, and to tag a message m, simply compute
σ = Fs(m); to verify, check if this holds. This works for message of length o(k) (we give no proof of security
here, but it’s quite simple). But what to do for longer messages?

Hashing One idea is to use collision-resistant hashing to hash the message down to a shorter one, just like
we did for digital signatures. However, collision-resistant hashing is an overkill: it requires the hash function
to be collision-resistant even when the key is known to the adversary. This is necessary in the public-key
case (when the verifier must know the hash key), but not in the symmetric case, when the hash key can be
kept secret. Thus, we need a much simpler primitive, known as “universal hashing.”

Combining a universal hash function with any secure MAC for short messages (such as PRF) gives you
a secure MAC for long messages.

Definition 6. Let i(k) and o(k) be the input and output lengths, respectively, for security parameter k. A
family of functions {Hi}i∈I is a universal hash family if:

• There exists a polynomial-time algorithm Gen(1k) that outputs i on input 1k, such that Hi maps
{0, 1}i(k) to {0, 1}o(k).

• There exists a polynomial-time algorithm that outputs Hi(x) given i and x.

• There exists a negligible function η such that for all k, for all x1, x2 ∈ {0, 1}i(k),

Pr
i←Gen(1k)

[Hi(x1) = Hi(x2)] ≤ η(k).

Unfortunately, we have no time to spend on examples of universal hashing; we will simply say that it’s very
easy construct, and no cryptography is needed (i.e., one need not make complexity-theoretic assumptions).
Simple linear algebra works: for example, if i(k) = m and o(k) = n, then then letting Hi be a random linear
transform from GF (2)m to GF (2)n works.

CBC MAC Probably the most popular MAC in practice the following: to MAC a message, CBC-encrypt
it with IV= 0, and output the very last block as the tag.

Formally, let {Fs}s∈S be a PRF. Key generation algorithm just selects the seed s, with Fs : {0, 1}l →
{0, 1}l. To tag a message m consisting of n l-bit blocks m = m1m2 . . .mn, compute and output yn, where
yi = Fs(mi ⊕ yi−1) and y0 = 0l. To verify, repeat the computation and check if the tag matches.

Turns out this is secure only for fixed-length messages: i.e., if the adversary’s queries and the eventual
forgery have to be the same length. However, if the adversary is allowed to change the length, then it’s
insecure. This can be fixed by prepending (but, surprisingly, not appending!) the length to the message; or
by simply passing yn through a PRF with an independent seed s′ (thus, the key becomes K = (s, s′)). See
[BKR94, PR00] for more on CBC MAC.

Be careful, however, not to assume that just because CBC MAC is secure, CBC encryption also provides
authenticity. It does not.
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1.8 Combining Authentication and Encryption

Often you want to send a message that is both secret and authentic. In the symmetric-key setting it turns
out that, if done properly, this will increase the security of the encryption itself. Namely, if you encrypt the
message using any CPA-secure encryption scheme, and then MAC the ciphertext using any secure1 MAC,
then you get CCA2-secure encryption and authenticity. Thus, by simply adding authentication, you increase
the strength of your encryption from chosen-plaintext secure to chosen-ciphertext secure. (Note that the
order of MAC and encrypt matters; see [BN00] for more.)

Note that doing both encryption and MACing is a bit expensive: e.g., if you use CBC MAC, it’s twice
as expensive as encryption itself. There is work on encryption modes that provide both encryption and
authentication at the same cost as just encryption (see, e.g., the OCB mode of [RBBK01]).

The story is more complicated in the public-key world, because combining encryption and authentication
involves using your own secret key to sign the message, and then encrypting both the message and the
signature with the public key of the recipient. The keys are different, and procedures for encrypting and
signing are very different. In particular, security does not necessarily automatically increase from CPA to
CCA as it does in the symmetric setting. Nonetheless, there is interesting work there as well. Combinations
of signatures and encryption are often called “signcryption.” See, e.g., [ADR02] for more.
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