Leo Reyzin. Notes for BU CAS CS 538. 1

4 Working with composite moduli and the Blum-Blum-Shub generator

4.1 Chinese Remainder Theorem

Let p # ¢ be two primes. The Chinese Remainder Theorem (CRT) says that working modulo n = pgq
is essentially the same as working modulo p and modulo ¢ at the same time: more formally (for those
comfortable with abstract algebra), that the ring Z, is isomorphic to the product ring Z, x Z,. (Actually,
this is the “light” version of CRT, which is all we need for this course. The full-fledged version says that
working modulo ajas . ..ax, where a; are pairwise relatively prime, is the same as working simultaneously
modulo ay, ag, ..., ag.)

Here is an example. Consider all the values modulo 35. They are in one-to-one correspondence with
values modulo 5 and modulo 7.

0 1 2 3 5 6
00 15 30 10 25 5 20
21 1 16 31 2 6
2|7 2 2 17 32 12 27
3 (28 8 23 3 18 33 13
4114 29 9 24 4 19 34

Observe that if you want to add, say, 17 and 29 (underlined in the table), is the same as adding 3 (which
is 17 mod 7) and 1 (which is 29 mod 7) modulo 7 to get 4; adding 2 (which is 17 mod 5) and 4 (which is
29 mod 5) modulo 5 to get 1; and then looking up the value corresponding to coordinates 4 and 1 in the
table to get 11 (in a box in the table). Thus, we can do addition coordinatewise. Same for multiplication.

We now formally state and prove the observations above, generalized to p and ¢ instead of 5 and 7.

Theorem 1. Let p # q be primes, n = pq. For each a € Zy,, b € Zg, there is unique ¢, 0 < ¢ < n such that
c=a (modp)andc=>b (mod q).

Proof. Let r = p~' mod ¢ and s = ¢~ ! mod p. Let ¢ = rpb+ sqa. Then ¢ =rpb+sqa=r-0-b+1-a=a

(mod p), and ¢ =rpb+sqga=1-b+s-0-a=>b (mod q). Let ¢ = ¢ mod pg. Then pq|(c— '), so p|(c—),
soc=c (mod p). Similarly, c = ¢ (mod ¢). Hence, ¢ satisfies all the conditions: 0 < ¢ < n, and ¢ = a
(mod p) (because ¢ = ¢ = a (mod p)), and ¢ = b (mod ¢q) (because ¢ = ¢ = b (mod ¢)). Thus, for
every pair (a,b) there is a ¢. There are pg = n possible pairs, and n possible values of ¢, so for each pair

there must be exactly one value of ¢, so it’s unique for each (a,b). O

Denote by crt(a,b) the unique value of ¢ given by the above theorem. Then crt(a,b) = ¢ if an only if
(a,b) = (¢ mod p,c mod q). Let ¢; = crt(ay,b1), ca = crt(ag, b2), and c3 = ¢1 + c2 mod n. Then ¢ mod p =
(c1 + c2) mod p = (a1 + az) mod p (because n divides c¢3 — ¢; — c2, and therefore so does p) and similarly
c3 mod g = (b1 + b2) mod g. Hence ¢35 = crt(ay + ag, by + b2). Same for multiplication. Thus, we can look at
addition and multiplication modulo n coordinatewise: modulo p and modulo g.

We will denote by Z; the set of values in Z,, that are relatively prime to n. Note that the “coordinates”
of Zy, are in Z; and Z;, and that Z, has (p —1)(g — 1) elements.

Note that the above proof is constructive: that is, ¢ is efficiently (and, in fact, quite easily) computable
given a and b. Thus, it is often more efficient to work modulo p and ¢ separately and the reconstruct the
value modulo n when it is needed.

4.2 Squares and Square Roots

Let p > 2 be a prime. Let QR, denote the set of squares in Zj. Recall from HW2 that for a € Z,, if
a € QR,, then a®?D/2 =1 and if a ¢ QR,, then aP~1/2 = 1,

Leo Reyzin. Notes for BU CAS CS 538. 2

Suppose p =3 (mod 4). Take s € Zj. It has two roots: r and —r. Exactly one of these two roots is
itself in QR,. Indeed, consider rP~1)/2 and (—r)P=1/2. Since (p —1)/2 is odd (because p = 4k + 3 for some
k), (—r)P~D/2 = — (y(°=1)/2)) "50 one is 1 and the other is —1.

Hence, if we let f,(z) : QR, — QR, be the map = +— x2 mod p, we see that for each s € QR,, there
exists a unique inverse r € QR,, such that f(r) = s (namely, r is the square root of s that is itself a square).
So fp of = is a permutation of QR,. Note that f, is easy to compute (just squaring) and easy to invert (as
shown on HW2, it’s easy to compute square roots modulo p).

Now let p # ¢ be two distinct odd primes, and let n = pq. Let QR,, denote the set of squares in Z,.
Then if s is a square modulo n, it is also a square modulo p and ¢. Since it has two roots £r; modulo p and
two roots £r9 modulo g, it has four roots modulo n: crt(£ry, £r).

Suppose both p and ¢ are congruent to 3 modulo 4. Then exactly one of +7; is a square modulo p, and
exactly one of £r9 is a square modulo ¢, so exactly one of crt(+ry, £r92) is a square modulo n. Hence, if we
let fo(z) : QR, — QR, be the map z +— 22 mod n, we see that f,(x) is a permutation over QR,. Note
that f,(x) is easy to compute. We will argue below that it is hard to invert—as hard as it is to factor n.

4.3 Blum-Blum-Shub Generator

The following construction is due to [BBS86]'. Starting with a sufficiently long random seed, select two
k-bit random primes p, g that are 3 modulo 4, let n = pq, and let = be random element of QR,, (just select
a random element of Z,, check if it’s relatively prime with n, and square it). Let x1 = z,29 = fu(x), 23 =
fu(z2), ..., 21 = fu(z1—1). Output the least significant bit for each ;.

Note that this looks very much like the Blum-Micali generator, with exponentiation mod p replaced
with squaring mod n, and B replaced with least significant bit. The proof is very similar, too. We simply
need three facts: that the function f, is a permutation (already shown above), that computing x from
22 mod n is hard (discussed in the next section), and that computing the least significant bit of = from
22 mod n is as hard as computing all of z (shown in [ACGS88]; an alternative proof is given is in [AGS03];
we will not discuss either here). These three facts correspond, in the Blum-Micali case, to the fact that
modular exponentiation is a permutation of Zj (which is used in the reduction because we have to know
that the permutation has a unique inverse in order to show that the bits the reduction feeds to the adversary
correspond to bits a generator would have generated), to the assumption that discrete logarithm is hard,
and the theorem that B(x) is as hard as to compute from ¢g* mod p as x itself.

This generator is more efficient than Blum-Micali: requires only one modular squaring per bit, instead
of one one modular exponentiation. It is also based on a different (depending on whom you ask, more or
less plausible) assumption: that factoring n is hard. We will show this in the next section.

4.4 Square Roots Modulo a Composite are as Hard as Factoring

We want to justify why we believe it’s hard to compute 2 from z? modulo n. Indeed, let s = 72 mod n.
Then s has four square roots, as discussed above crt(ry,r2), crt(—ry, —ra), crt(ry, —re), crt(—ry,r2). Take
two of these that are not negatives of each other, e.g., r = crt(ry,r2) and ' = crt(ry, —r2). Add them to
get 7 + 1’ = crt(2r1,0). Thus, r + 7' = (mod q), so ¢|(r +). Note also that » + " #Z 0 (mod p),
so p f(r+7'). Hence, ged(r + r’,n) = q. Thus, if you know two such roots, you can factor n, by simply
computing the greatest common divisor (this can be done quickly with Euclid’s algorithm).

Now suppose we have an algorithm A that computes square roots modulo n. We will use it to factor
n as follows: take a random 7 € Z!, compute s = r? mod n, and give s to A. A will return some root r’
of s. Because s has four roots and r was chosen at random (and not given to A), no matter how A works,
Pr[r = '] = 1/2. Hence, in half the cases, ged(r + /,n) will give you a factor p or ¢ of n.

LConference version published in Crypto in 1982.

Leo Reyzin. Notes for BU CAS CS 538. 3

Thus, we just proved (by contradiction and reduction, as usual) that if factoring n is hard, so is computing
square roots modulo n. Hence, the Blum-Blum-Shub generator is secure based on the following assumption:
Assumption 1. For any poly-time algorithm F', there exists a negligible function 7 such that, if you generate

random k-bit primes p and ¢ that are both 3 modulo 4, and let n = pq, Pr[F(n) = p] < n(k).

References

[ACGS88] W. Alexi, B. Chor, O. Goldreich, and C. Schnorr. RSA and Rabin functions: Certain parts are
as hard as the whole. STAM Journal on Computing, 17(2):194—209, April 1988.

[AGS03] Adi Akavia, Shafi Goldwasser, and Muli Safra. Proving hardcore predicates using list decoding.

In 44th Annual Symposium on Foundations of Computer Science, Cambridge, Massachusetts,
October 2003. IEEE.

[BBS86] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number generator.
SIAM Journal on Computing, 15(2):364-383, May 1986.

