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Notes for Lectures 1–2

We consider the following scenario: Alice is sending Bob off on an important mission. Prior to
Bob’s leaving, Alice gives him secret instructions on how to communicate back to her secretly so that
no eavesdropper Eve can intercept their communication.

The first question to ask is what part of the instructions should we consider secret. To be on the
safe side, we must assume that Eve knows as much as possible, and still ensure secrecy under such
an assumption.

As far back as 1883, Kerckhoffs [Ker83] suggested that all one can hope to keep secret in a cryp-
tosystem is a key. The algorithms and designs should be assumed to be publicly known. His insight
is true to this day, as multiple recent examples demonstrate: publicly known security technologies
receive more scrutiny, and hence it is more likely that any problems will be uncovered at early stages.
Deploying a secret system and waiting for it to be broken is generally a poor strategy. In this class
we will always assume that the adversary knows the entire design of the system.

It is imperative to ask what constitutes a secure system—in other words, what is our goal? Note
that, unlike an attack on a system, security cannot be demonstrated by example. Hence, popular
perception often holds that “human ingenuity cannot concoct a cipher which human ingenuity cannot
resolve” (this quote is from Edgar Allan Poe, who, in addition to being a writer, was an amateur
cryptogapher [Poe65]). We will not be satisfied with this design-then-break approach to security.
Rather, we will define what constitutes a secure system and then prove that a particular construction
is secure, thus guaranteeing security.

The first formal definition of encryption was given by Shannon in his 1949 paper [Sha49].

Definition 1 (encryption scheme a.k.a. cryptosystem). Let M and K be finite sets, and Enc,
Dec be two algorithms (Enc may be randomized). We say that (M,K,Enc,Dec) is an encryption
scheme if for all m ∈ M and k ∈ K, m = Deck(Enck(m)) (if Enc is randomized, this equation should
hold with probability 1 over the random choices made by Enc).

Note that this definition says nothing about security, it’s purely functional. We now address security
separately.

Shannon in [Sha49] defined the notion of perfect security as follows. Suppose that there is some a
priori probability distribution DM on the space of possible messages M (for instance, if the space of
messages consists of possible military commands, then some commands are more likely than others).
In particular, if the adversary has a guess g for what message is sent, and then Bob picks a message to
send, the probability of correctness of the adversary’s guess is Prm∈DM

[m = g]. Now imagine that the
adversary first sees a ciphertext c of message chosen by Bob. That defines an a posteriori probability
distribution on what the message can be, given that its encryption is c. Now, if the adversary has
a guess g for what the message is, the probability of the guess being correct, conditioned on c, is
Prm∈Dm,k∈K [m = g|Enck(m) = c]. What the definition says is that the a priori and the a posteriori
probabilities are equal.

Definition 2 (perfect secrecy). An encryption scheme (M,K,Enc,Dec) satisfies perfect security
with respect to a distribution DM on M , if for every message g ∈ M and for every ciphertext c,

Pr
m∈Dm,k∈K

[m = g|Enck(m) = c] = Pr
m∈Dm

[m = g] .

(In the above, and from now on, k is chosen uniformly from the space of all keys.) An encryption
scheme satisfies perfect security if for ever DM it satisfies perfect security with respect to DM .
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We can also consider another notion of security: no matter what message you encrypt, the
probability of getting a particular ciphertext is the same. (Intuitively, therefore, the adversary knows
nothing about the message from seeing the ciphertext). We will call this definition “Shannon secrecy.”

Definition 3 (Shannon secrecy). An encryption scheme (M,K,Enc,Dec) satisfies Shannon secrecy
if for every two messages m1,m2 ∈ M and for every ciphertext c,

Pr
k∈K

[Enck(m1) = c] = Pr
k∈K

[Enck(m2) = c] .

Note that both of these definitions consider only the issue of encrypting a single message once.
They do not say what happens if we encrypt two or more messages with the same key, for example.

In [Sha49], Shannon proves that the two definitions are equivalent, which is a good sign: if we
have two definitions that both seem intuitively right, then the fact that they are equivalent gives some
level of assurance that that our formalizations were correct. (In particular, because these definitions
are equivalent, and because Shannon, being modest, never gave the second one a name, you may see
the terms “Shannon secrecy” and “perfect secrecy” used interchangeably for the two definitions. In
these notes, we use the term “perfect” for the same definition as what Shannon called “perfect” in
his paper.)

Theorem 1. A cryptosystem (M,K,Enc,Dec) satisfies Shannon secrecy if and only if it satisfies
perfect secrecy.

Proof. First, the “only if” direction. Let DM be a distribution on M , let g ∈ M , and let c be

a ciphertext. Then Prm,k[m = g|Enck(m) = c] =
Prm,k[Enck(m)=c∧m=g]

Prm,k[Enck(m)=c]
(by definition of conditional

probability). Note that Prm,k[Enck(m) = c ∧ m = g] = Prm,k[Enck(g) = c ∧ m = g] (we just
substituted m for g in the encryption, which we can do, because the condition requires m = g). Now,
note that the events Enck(g) = c and m = g are independent (because g is fixed, so in the first event
the outcome depends entirely on the choice of k, and in the second event the outcome depends entirely
on the choice of m). Hence, we get Prm,k[Enck(g) = c ∧ m = g] = Prk[Enck(g) = c] Prm[m = g].
Finally, note that by Shannon secrecy, the probability that an encryption of g is c is the same as that
the encryption of a random message is c: Prm,k[Enck(m) = c] =

∑
m∈DM

Pr[m] Prk[Enck(m) = c] =
∑

m∈Dm
Pr[m] Prk[Enck(g) = c] = Prk[Enck(g) = c]

∑
m∈Dm

Pr[m] = Prk[Enck(g) = c]. Putting it all

together, we get Prm,k[m = g|Enck(m) = c] =
Prm,k[Enck(m)=c] Prm[m=g]

Prm,k[Enck(m)=c]
= Prm[m = g], which is perfect

secrecy.
Now the “if” direction. Fix any two messages m1,m2 and ciphertext c. Pick any distribution

DM that has non-zero probabilities for m1 and m2. Then, just like before (except using m1 for

g), we get Prm,k[m = m1|Enck(m) = c] = Prk[Enck(m1)=c] Prm[m=m1]
Prm,k[Enck(m)=c]

, and we know that it’s equal, by

perfect secrecy, to Prm[m = m1]. Canceling Prm[m = m1] (it’s non-zero because that’s how we

chose DM), we get
Prk[Enck(m1)=c]
Prm,k[Enck(m)=c]

= 1. Same for m2:
Prk[Enck(m2)=c]
Prm,k[Enck(m)=c]

= 1. Because the fractions are

equal for m1 and m2 and the denominators are the same, the numerators must be equal as well:
Prk[Enck(m1) = c] = Prk[Enck(m2) = c].

Consider now the following scheme that satisfies Shannon secrecy for M = {0, 1}: the key space
is the space of the two permutations of {0, 1}, and encryption is defined as Enck(m) = k ⊕ m. The
proof that it satisfies Shannon secrecy is quite simple, because there are only two messages and two
ciphertexts: Prk[Enck(0) = 0] = Prk[Enck(1) = 0] = Prk[Enck(0) = 1] = Prk[Enck(1) = 1] = 1/2.
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We now generalize this scheme for longer messages by repeating the scheme for one-bit messages.
The result is known as the one-time-pad, or the Vernam cipher (patented by Vernam in 1919 [Ver19]
and published in 1926 [Ver26], for use with punch-tape in telegraph transmission). For any integer
n, let M = K = {0, 1}n, and let Enck(m) = m ⊕ k. Let Deck(c) = c ⊕ k. It’s easy to see that for
any fixed m ∈ M and c ∈ {0, 1}n, Prk∈K [Enck(m) = c] = Prk∈K [k = m ⊕ c] = 2−n. Hence, for any
m1 ∈ M,m2 ∈ M, c, Prk[Enck(m1) = c] = Prk[Enck(m2) = c].

This is a very computationally efficient scheme: exclusive-or is a simple operation, and multiple
bits can be encrypted independently in parallel. Its main drawback is that it requires a very long
key, which can be used only once. Next time we need to encrypt a message, we need to select a
new random key (otherwise, the adversary could, for example, compute the exclusive-or of the two
messages encrypted).

Shannon showed that, unfortunately, it’s the best one can do. The following theorem is known
as the Shannon bound.

Theorem 2. If (M,K,Enc,Dec) satisfies perfect secrecy, then |K| ≥ |M |.
Proof. Let c be a possible ciphertext—i.e., fix some message m1 ∈ M , and let c be such that
Pr[Enck1(m1) = c] > 0. Suppose there is some m2 ∈ M such that for all k ∈ K, Deck(c) �= m2.
Then, by definition of encryption scheme m2 would never get encrypted to c (because otherwise you
couldn’t decrypt it). So Pr[Enck1(m2) = c] = 0, so Pr[Enck1(m1) = c] �= Pr[Enck1(m2) = c], which
violates perfect secrecy. In other words, c must be decryptable to all plaintexts in M . Hence, for
each m2 ∈ M , there exists k ∈ K such that Deck(c) = m2. So there must be at least as many k ∈ K
as m2 ∈ M , so |K| ≥ |M |.

This pretty much ends our discussion of information-theoretic cryptography: we have an effi-
cient encryption scheme, and a proof that you can’t do better. We will have to limit adversary’s
computational power if we want anything more efficient.
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