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Notes for Lectures 1–2

As far back as 1883, Kerckhoffs suggested that all one can hope to keep secret in a
cryptosystem is a key. The algorithms and designs should be assumed to be publicly known.
His insight is true to this day, as multiple recent examples demonstrate: publicly known
security technologies receive more scrutiny, and hence it is more likely that any problems
will be uncovered at early stages. Deploying a secret system and waiting for it to be broken
is generally a poor strategy. In this class we will always assume that the adversary knows
the entire design of the system.

The first formal definition of encryption was given by Shannon in his 1949 paper [Sha49].

Definition 1 (encryption scheme a.k.a. cryptosystem). Let M and K be finite sets,
and Enc, Dec be two algorithms (Enc may be randomized). We say that (M,K,Enc,Dec)
is an encryption scheme if for all m ∈ M and k ∈ K, m = Deck(Enck(m)) (if Enc is
randomized, this equation should hold with probability 1 over the random choices made by
Enc).

Note that this definition says nothing about security, it’s purely functional. We now address
security separately.

Shannon in [Sha49] defined the notion of perfect security as follows. Suppose that there is
some a priori probability distribution DM on the space of possible messages M (for instance,
if the space of messages consists of possible military commands, then some commands are
more likely than others). In particular, if the adversary has a guess g for what message is sent,
and then Bob picks a message to send, the probability of correctness of the adversary’s guess
is Prm∈DM

[m = g]. Now imagine that the adversary first sees a ciphertext c of message chosen
by Bob. That defines an a posteriori probability distribution on what the message can be,
given that its encryption is c. Now, if the adversary has a guess g for what the message is, the
probability of the guess being correct, conditioned on c, is Prm∈Dm,k∈K [m = g|Enck(m) = c].
What the definition says is that the a priori and the a posteriori probabilities are equal.

Definition 2 (perfect secrecy). An encryption scheme (M,K,Enc,Dec) satisfies perfect
security with respect to a distribution DM on M , if for every message g ∈ M and for every
ciphertext c,

Pr
m∈Dm,k∈K

[m = g|Enck(m) = c] = Pr
m∈Dm

[m = g],

An encryption scheme satisfies perfect security if for ever DM it satisfies perfect security with
respect to DM .

We can also consider another notion of security: no matter what message you encrypt,
the probability of getting a particular ciphertext is the same. (Intuitively, therefore, the
adversary knows nothing about the message from seeing the ciphertext). We will call this
definition “Shannon secrecy.”

Definition 3 (Shannon secrecy). An encryption scheme (M,K,Enc,Dec) satisfies Shan-
non secrecy if for every two messages m1,m2 ∈ M and for every ciphertext c,

Pr
k∈K

[Enck(m1) = c] = Pr
k∈K

[Enck(m2) = c] .
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Note that both of these definitions consider only the issue of encrypting a single message
once. They do not say what happens if we encrypte two or more messages with the same
key, for example.

In [Sha49], Shannon proves that the two definitions are equivalent, which is a good
sign: if we have two definitions that both seem intuitively right, then the fact that they
are equivalent gives some level of assurance that that our formalizations were correct. (In
particular, because these definitions are equivalent, and because Shannon, being modest,
never gave the second one a name, you may see the terms “Shannon secrecy” and “perfect
secrecy” used interchangably for the two definitions. In these notes, we use the term “perfect”
for the same definition as what Shannon called “perfect” in his paper.)

Theorem 1. A cryptosystem (M,K,Enc,Dec) satisfies Shannon secrecy if and only if it
satisfies perfect secrecy.

Proof. First, the “only if” direction. Let DM be a distribution on M , let g ∈ M , and let

c be a ciphertext. Then Prm,k[m = g|Enck(m) = c] =
Prm,k[Enck(m)=c∧m=g]

Prm,k[Enck(m)=c]
(by definition

of conditional probability). Note that Prm,k[Enck(m) = c ∧ m = g] = Prm,k[Enck(g) =
c ∧ m = g] (we just substituted m for g in the encryption, which we can do, because
the condition requires m = g). Now, note that the events Enck(g) = c and m = g are
indepedent (because g is fixed, so in the first event the outcome depends entirely on the
choice of k, and in the second event the outcome depends entirely on the choice of m).
Hence, we get Prm,k[Enck(g) = c ∧ m = g] = Prk[Enck(g) = c] Prm[m = g]. Finally, note
that by Shannon secrecy, the probability that an encryption of g is c is the same as that the
encryption of a random message is c: Prm,k[Enck(m) = c] =

∑
m∈DM

Pr[m] Prk[Enck(m) =
c] =

∑
m∈Dm

Pr[m] Prk[Enck(g) = c] = Prk[Enck(g) = c]
∑

m∈Dm
Pr[m] = Prk[Enck(g) = c].

Putting it all together, we get Prm,k[m = g|Enck(m) = c] =
Prm,k[Enck(m)=c] Prm[m=g]

Prm,k[Enck(m)=c]
=

Prm[m = g], which is perfect secrecy.
Now the “if” direction. Fix any two messages m1,m2 and ciphertext c. Pick any distribu-

tion DM that has non-zero probabilities for m1 and m2. Then, just like before (except using

m1 for g), we get Prm,k[m = m1|Enck(m) = c] = Prk[Enck(m1)=c] Prm[m=m1]
Prm,k[Enck(m)=c]

, and we know that

it’s equal, by perfect secrecy, to Prm[m = m1]. Canceling Prm[m = m1] (it’s non-zero be-

cause that’s how we chose DM), we get Prk[Enck(m1)=c]
Prm,k[Enck(m)=c]

= 1. Same for m2:
Prk[Enck(m2)=c]
Prm,k[Enck(m)=c]

= 1.

Because the fractions are equal for m1 and m2 and the denominators are the same, the nu-
merators must be equal as well: Prk[Enck(m1) = c] = Prk[Enck(m2) = c].

Consider now the following scheme that satifies Shannon secrecy for M = {0, 1}: the key
space is the space of the two permutations of {0, 1}, and encryption is defined as Enck(m) =
k⊕m. The proof that it satifies Shannon secrecy is quite simple, because there are only two
messages and two ciphertexts: Prk[Enck(0) = 0] = Prk[Enck(1) = 0] = Prk[Enck(0) = 1] =
Prk[Enck(1) = 1] = 1/2.

We now generalize this scheme for longer messages by repeating the scheme for one-bit
messages. The result is known as the one-time-pad, or the Vernam cipher (patented by
Vernam in 1919 [Ver19] and published in 1926 [Ver26]). For any integer n, let M = K =
{0, 1}n, and let Enck(m) = m ⊕ k. Let Deck(c) = c ⊕ k. It’s easy to see that for any fixed
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m ∈ M and c ∈ {0, 1}n, Prk∈K [Enck(m) = c] = Prk∈K [k = m ⊕ c] = 2−n. Hence, for any
m1 ∈ M,m2 ∈ M, c, Prk[Enck(m1) = c] = Prk[Enck(m2) = c].

This is a very computationally efficient scheme: exclusive-or is a simple operation, and
multiple bits can be encrypted independently in parallel. Its main drawback is that it requires
a very long key, which can be used only once. Next time we need to encrypt a message, we
need to select a new random key (otherwise, the adversary could, for example, compute the
exclusive-or of the two messages encrypted).

Shannon showed that, unfortunately, it’s the best one can do. The following theorem is
known as the Shannon bound.

Theorem 2. If (Enc,Dec) with key space K and message space M satisfies perfect secrecy,
then |K| ≥ |M |.
Proof. Let c be a possible ciphertext—i.e., fix some message m1 ∈ M , and let c be such
that Pr[Enck1(m1) = c] > 0. Suppose there is some m2 ∈ M such that for all k ∈ K,
Deck(c) �= m2. Then, by definition of encryption scheme m2 would never get encrypted to c
(because otherwise you couldn’t decrypt it). So Pr[Enck1(m2) = c] = 0, so Pr[Enck1(m1) =
c] �= Pr[Enck1(m2) = c], which violates perfect secrecy. In other words, c must be decryptable
to all plaintexts in M . Hence, for each m2 ∈ M , there exists k ∈ K such that Deck(c) = m2.
So there must be at least as many k ∈ K as m2 ∈ M , so |K| ≥ |M |.

This pretty much ends our discussion of information-theoretic cryptography: we have
an efficient encryption scheme, and a proof that you can’t do better. We will have to limit
adversary’s computational power if we want anything more efficient.
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