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Notes for Lectures 12–14

1 General One-Way and Trapdoor Functions

In this section, we will try to generalize what we’ve seen so far. For example, we now how to build
a secure encryption out of RSA, but what exactly is RSA itself? In modern terms, it is a trapdoor
permutation family, which we define below.

1.1 One-Way Functions

Let us first introduce one-way functions. We’ve actually seen concrete examples of them before;
this is just a generalization, so we can talk of a one-way function f independent of its particular
implementation.

Definition 1. A function f : {0, 1}∗ → {0, 1}∗ is one-way if
1. it is polynomial-time computable;

2. it is hard to invert, i.e., for all probabilistic polynomial-timeA there exists a negligible function
negl such that, for all k, Pr[f(A(f(x), 1k)) = f(x)] ≤ negl(k), where the probability is taken
over a random choice of k-bit string x and cointosses of A.

Note that it’s important that we are not requiring A to find x; rather, any inverse of f(x) is fine.
Of course, if f is a permutation (i.e., a bijective function), then it would be equivalent to require
A to find x, because x is the only inverse of f(x).

Note also the importance of selecting the input to A: the input is not selected uniformly at
random; rather, x is selected uniformly at random, and the input is f(x). Of course, again, if f is
a permutation, then the two are equivalent.

An example is the following f : split the k-bit input into strings a of lentgh �k/2� and b of
length �k/2�, and output c = ab. The inverter A would have to find two large factors of c, which is
believed to be hard. Note that the input c of A is not a uniformly selected integer; in particular,
we know that it has two factors of (nearly) the same length.

The existence of one-way functions is the minimal assumption necessary (though often not
sufficient) for almost anything interesting in cryptography. Note that the assumption that one-way
functions exist is stronger than the assumption that P	=NP (intuitively, because one-way functions
are hard on the average case, where as it could be that NP-complete problems are hard only very
infrequently).

A one-way permutation is a one-way function that is a bijection of {0, 1}k to {0, 1}k for each k.

1.2 One-Way Function Families

The examples we’ve seen in class, such as modular squaring, RSA, and Discrete Logarithm, are
not quite one-way functions by the above definition. Rather, they are one-way function families,
as defined below.

Definition 2. Let I be an index set. A collection of functions {fi : Di → Ri}i∈I is called one-way,
if:
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1. there exists a probabilistic polynomial-time algorithm Gen that, on input 1k, picks i ∈ I;

2. there exists a probabilistic polynomial-time algorithm M that, on input i ∈ I, picks x ∈ Di;

3. given i and x, the value fi(x) is polynomial-time computable;

4. for all probabilistic polynomial-time A there exists a negligible function negl such that, for all
k, if i is chosen by Gen(1k) and x is chosen by M(i), Pr[fi(A(fi(x), i, 1k)) = fi(x)] ≤ negl(k),
where the probability is taken over cointosses of Gen, M and A.

For example, for Discrete Logarithm, the index set I = {(p, g)|p is prime , g is a generator of Z
∗
p},

and for (p, g) ∈ I, D(p,g) = R(p,g) = Z
∗
p and f(p,g)(x) = gx mod p.

A collection of one-way permutations is a collection of one-way functions with the additional
property that fi is a permutation. The discrete logarithm collection is actually a collection of
one-way permutations.

1.3 Tradoor Permutations

A collection of one-way permuationss with the additional property that the (unique) inverse is easy
to obtain with some special information is called a collection of trapdoor permutations.

Definition 3. A collection of one-way permutations {fi : Di → Ri}i∈I is called trapdoor if there
exists a probabilistic polynomial-time algorithm Inv and if Gen, in addition to outputting i∈I,
outputs a value t with the following property: for all x ∈ Di, Inv(t, fi(x)) = x.

For example, RSA is a collection of trapdoor permutations. The index set consists of pairs
(n, e); the trapdoor information t is (n, d); and the domain and the range are Z∗

n.

1.4 Generalizing Results

To obtain a pseudorandom generator, both the Blum-Micali and the Blum-Blum-Shub generators
simply selected a one-way permutation from a family, and iterated it multiple times on a random
initial seed, each time outputting a bit that’s hard to predict. It is natural to ask whether for any
one-way permutation (family) there is such a bit. The following theorem of Goldreich and Levin
answers this question in the affirmative. We state it somewhat informally, and do not prove it here.

Theorem 1 ([GL89]). Let f be a one-way function (the same also holds for families of one-way
functions). Let r be a random k-bit value. Then, for a random k-bit x, the bit r · x is hard to
compute with probablility greater than 1/2, given f(x) and r. (Here c · x = r1x1 ⊕ r2x2 ⊕ . . . rkxk,
the inner-product modulo 2 of r and x.)

Therefore, our constructions of pseudorandom generators extend to any one-way permutation
f (and, similarly, one-way permutation family). We simply take our seed to be (x, r), let x0 =
x, xi = f(xi−1), and output the bits bi = xi · r.

Hence, we get

Theorem 2. If one-way permutations (or families) exist, then so do pseudorandom generators.

However, one-way functions are a weaker assumption, and it would be nice to know if pseu-
dorandom generators can be based on just one-way functions, not permutations. The following
theorem of H̊astad, Impagliazzo, Levin and Luby shows that one-way functions suffice. It is quite
difficult to prove.
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Theorem 3 ([HILL99]). Pseudorandom generators exist if and only of one-way functions exist.

Thus, one-way functions suffice for symmetric encryption. However, they do not suffice for
public-key encryption: you really need the trapdoor to be able to go back. Note also that by
generalizing our previous two bit-by-bit constructions, we know that trapdoor permutations suffice.

Finally, I want to mention two constructions of Levin’s [Lev87, Lev03] that address the existence
of one-way functions. In both, he constructs a single function U with the following property: U is
one-way if one-way functions exist. U is known as the universal one-way function. The question of
whether one-way functions exist reduces to the question of whether this specific single funicton is
one-way.

2 Diffie-Hellman Key Exchange

A great surge of academic interest in modern cryptography started with the work of Diffie, Hellman,
and Merkle, and the publication of “New Directions in Cryptography” by Diffie and Hellman
[DH76]. In this work, Diffie and Hellman proposed the idea of public-key encryption and digital
signatures. Although they didn’t have an implementation of public-key encryption, they did suggest
something close, called “key agreement.”

Here is the idea. Suppose there is a fixed prime p and generator g of Z∗
p known to everyone.

Alice and Bob want to agree on a secret they can both use for some symmetric encryption scheme.
To do so, Alice selects a random a ∈ Z

∗
p and sends ga mod p to Bob. Bob similarly selects a random

b ∈ Z
∗
p and sends gb mod p to Alice. Now Alice can compute K = gab by raising gb to the power a,

and Bob similarly can compute K by raising ga to the power b. It is believed that gab is hard to
compute from just g, ga and gb. More formally, this is known as the Computational Diffie-Hellman
Assumption.

Assumption 1. For any poly-time algorithm A, there exists a negligible function negl such
that, if you generate random k-bit prime p and its generator g, and select a random a, b ∈ Z

∗
p,

Pr[A(p, g, ga mod p, gb mod p) = (gab mod p)] ≤ negl(k).
Note that if p and g are not known to both parties in advance, Alice can simply send both to Bob
together with ga.

3 A Bit More History

In 1977, the RSA cryptosystem [RSA78] appeared in Scientific American, helping generate public
interest in the subject.

Until 1976, research in cryptography was mostly done in classified research labs, such as the
National Security Agency in the United States, for military and intelligence purposes. Documents
declassified by the UK in the late 1990s and now available on the web [Ell87] showed that public-key
cryptography in general, and Diffie-Hellman and RSA specifically, were discovered in the classified
community before their discovery in academia. Specifically, in 1970, James H. Ellis [Ell70] proposed
the idea of public-key cryptography, which he termed “non-secret encryption”; in 1973, Clifford C.
Cocks [Coc73] proposed RSA (although Cocks suggested using specific public exponent n, equal to
the modulus, rather than a more general public exponent); and in 1974, Malcolm J. Williamson
[Wil74, Wil76] proposed what we know as Diffie-Hellman. It’s worth noting that the discoveries
of RSA and Diffie-Hellman occurred in reverse order in the classified community, and that neither
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preceeded the academic discoveries by more than a few years. It seems (according to what we know)
that there wasn’t much interest in public-key encryption in the military and intelligence community.
One possible reason is that with rigid command structures such as those in the military, it is easy
enough to establish shared secret keys (public-key ideas are of great help when people who have
never seen each other before want to talk; this doesn’t happen too much in the military). The
second commonly cited reason is that the state of computers in the 1970s did not allow for such
expensive operations as modular exponentation to be easily carried out “in the field.”

4 Man-in-the-middle attack against Diffie-Hellman

Imagine now that an adversary Eli is capable of not only intercepting messages between Alice and
Bob, but also stopping them and substituting his own messages instead. Then Eli can do the
following: pick his own random e ∈ Z

∗
p, and compute ge mod p. Then intercept ga that Alice sends

to Bob, and substitute ge instead. Note that Bob doesn’t notice any difference (because, after all,
both ga and ge are random elements of Z

∗
p), and dutifully replies with gb. Eli interecepts gb, and

sends ge to Alice instead. This way, Alice ends up thinking that she is sharing K1 = gea with
Bob, while Bob ends up thinking that he is sharing K2 = geb with Alice. Note that, in fact, they
are both sharing a key with Eli, who can compute gea and geb. Now whenever Bob tries to send
something to Alice, he’ll presumably encrypt (and/or authenticate) it using K2. Eli can intercept
it, decrypt with K2, reencrypt with K1, and send it on to Alice. So Bob and Alice will never realize
they aren’t sharing a key with each other.

This is known as “man-in-the-middle” attack, and is just one of the reasons why key agreement
is a difficult problem. In fact, satisfactory formal definitions for key agreement took about a decade
and a half longer to appear than definitions for encryption and signature. We will not study key
agreement in this class. We will, however, use Diffie-Hellman below.

5 ElGamal Encryption

Taher ElGamal [ElG85] proposed the following way to make Diffie-Hellman into an ecnryption
scheme. Alice publishes p, g, ga mod p, as a public key, and keeps a as the secret key. To encrypt
a message m ∈ Z∗

p , Bob picks b ∈ Z∗
p at random, computes gb mod p, K = gab mod p, and c =

mK mod p, and outputs (c, gb mod p). To decrypt, Alice computes K using gb and a, and recovers
m from mK by dividing.

The scheme as described above is not semantically secure, because there exists a distinguisher
D with good probability of success. Here is how D works: it outputs two messages m0 and m1,
such that m0 ∈ QRp and m1 /∈ QRp. Then, upon receiving the ciphertext (c, gb mod p), D checks
if c ∈ QRp (by checking whether c(p−1)/2 mod p is 1 or −1). If so, it outputs 1; else it outputs 0.
Note that K ∈ QRp if and only if ab is even, i.e., with probability 3/4. Therefore, if m ∈ QRp,
then mK ∈ QRp with probability 3/4; if m /∈ QRp, then mK ∈ QRp with probability 1/4 (because
a non-square times a non-square is a square, but a non-square times a square is a non-square).
Hence, the difference of the probabilities of D’s output being 1 on encryption of m0 and encryption
of m1 is 3/4− 1/4 = 1/2, which is not negligible.

However, ElGamal scheme can be fixed if we restrict our attention not the entire group Z∗
p ,

but rather to the subgroup of squares QRp. If this subgroup is of prime order (i.e., if (p − 1)/2 is
a prime), then p is often called a safe prime (and (p − 1)/2 a Sophie Germain prime). Then the
following assumption is believed to hold.
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Assumption 2. For any poly-time algorithm A, there exists a negligible function negl such that,
if you generate random k-bit safe prime p = 2q+1 for prime q, and select a random generator g of
QRp, and random integers a, b and c between 1 and q,

|Pr[A(p, g, ga mod p, gb mod p, gab mod p) = 1]−
Pr[A(p, g, ga mod p, gb mod p, gc mod p) = 1]| ≤ negl(k).

This is known as the Decision Diffie-Hellman (DDH) assumption, because it states that it’s hard
to decide whether you got gab or gc for a random c. Note that this is a much stronger assumption
than Computational Diffie-Hellman (CDH): CDH states that it’s hard to compute gab, while DDH
states that not only is it hard to compute, it actually looks random. There are many who are
uncomfortable with such a strong assumption.

Let us now reformulate ElGamal encryption to take advantage of DDH. Alice publishes as her
public key p = 2q+1, where q is prime; g of order q, which is a generator of QRp; and ga mod p, for
a random a between 1 and q. She keeps a as her secret key. To encrypt a message m, 1 ≤ m ≤ q,
Bob picks b, 1 ≤ b ≤ q at random, computes gb mod p, K = gab mod p, and c = m2K mod p and
outputs (c, gb mod p). To decrypt, Alice computes K using gb and a, and recovers m2 from m2K
by dividing. She then finds m by taking a square root (note that there are two square roots, but
one is greater than q = (p − 1)/2, so she knows which one is m).

Theorem 4. The above cryptosystem is polynomially secure under the DDH assumption.

The proof, which is not presented in full detail here, is by hybrid argument: one proves that
encryption of any message m is indistinguishable from a random pair (gc, gb). This follows easily
from the DDH assumption. Therefore, encryptions of m0 and m1 are indistinguishable.

6 Semantic Security

Recall that for information-theoretic encryption, we had two definitions of security. Perfect Se-
crecy focused on just two messages, and Shannon Secrecy focused on obtaining information from
encryption of a single messages drawn at random from some distribution. This section defines the
analogue of Shannon Secrecy for public-key encryption.

First of all, because we are interested in computational security, we will not worry about every
single distribution on the message space, but rather only about efficiently samplable ones. Thus,
we will replace a distribution with a probabilistic polynomial-time machine that chooses a message
somehow. Secondly, we can’t say that there is no information about the plaintext in the ciphertext
(of course there is—in fact, the ciphertext, combined with the public key, uniquely determines the
plaintext). Rather, we will say that whatever function of the plaintext you can compute with the
ciphertext you can also compute without it.

More precisely, let M be a machine that generates messages given the security parameter k
(because encryption cannot possibly hide message length, we must require all messages generated
by M to be of the same length). Let f be some function of a message and A a machine that
attempts to compute that function from the ciphertext. We want to say that there is a machine B
that computes the function without the ciphertext at all. Consider the following two experiments.

expA(k)
1. m ← M(1k)
2. (PK,SK)← Gen(1k)
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3. c ← EncPK(m)
4. x ← A(1k, c,PK)
3. Output 1 if f(m) = x and 0 otherwise

expB(k)
1. m ← M(1k)
2. x = B(1k)
3. Output 1 if f(m) = x and 0 otherwise

Note that B gets no information at all, except k. This is exactly the point: without any
information you can compute f just as well as with the ciphertext and the public key.

Definition 4. A public-key encryption scheme (Gen,Enc,Dec) is semantically seucre if for all
functions f and all polynomial-time algorithms M and A, there exists a polynomial-time algorithm
B and a negligible function negl such that

Pr[expA(k)→ 1]− Pr[expB(k)→ 1] ≤ negl(k).

This definition is originally due to [GM84]. There are many variations of it; this particular
version follows [GB01].

Theorem 5 ([GM84]). A cryptosystem is semantically secure if and only if it is polynomially
secure.

The proof is not nearly as simple as in the information-theoretic case (we will not do it here;
see [GM84] for the original proof and [DR98] for a simpler one); in fact, the result is surprising
to many. There are other definitions of security that turn out to be equivalent to this one, which
shows that our understanding of the security of encryption is quite robust.

Semantic security helps prove various cryptographic constructs that use encryption. For exam-
ple, in order to encrypt a long message, one often encrypts a symmetric key with a public key, and
then encrypts the message itself with the symmetric key using some symmetric encryption scheme
(which we haven’t studied yet; a PRG used as a one-time pad will work here). The reason for that
is that symmetric encryption tends to be more efficient than public-key encryption. It’s much easier
to prove that this approach is secure based on the semantic security of the underlying public-key
cryptosystem, rather than to try to go directly from polynomial security.

7 Public-key encryption in the real world

Most of encryption that actually happens in daily life is symmetric, not public-key. For example,
banks and ATMs rely mostly on the symmetric cipher DES (which we will discuss eventually, but
only briefly). Even when public-key encryption is used, it is used only to encrypt a symmetric
key, which is then used to encrypt bulk data, because symmetric techniques are much faster than
public-key ones.

As far as algorithms used in practice, the most popular one is by far RSA, and the second is
ElGamal. Neither is used exactly as we studied it.

In fact, the most common way to use RSA until recently has been a standard known as PKCS
#1 version 1.5 [RSA93]. To encrypt a message m, it specifies that one should pad it to the length
of the modulus by prepending a zero byte, byte of value 2, at least eight (and as many as needed)
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random non-zero bytes, followed by another zero byte to separate the pad from the message itself.
The resulting bit string gets exponentiated to the public exponent e modulo n.

There is little one can prove about this scheme, although recently Jonsson and Kaliski [JK02]
proved its security in certain applications under a relatively strong assumption. At some point it
was believed to be not only polynomially secure, but, in fact, secure even against chosen-ciphertext
attacks. However, Bleichenbacher [Ble98] found a reasonably practical chosen-ciphertext attack
against it. At that time, version 2.0 of PKCS #1 was in the works; currently the most recent version
is 2.1. Both 2.0 and 2.1 can be proven not only semantically secure, but also secure against chosen-
ciphertext attacks, in a special (unrealistic) model known as “random oracle model.” Whether a
proof in such a model is actually meaningful is a matter of some debate; we’ll consider this subject
later in the course. It seems that PKCS encryption is the most common standard used today.

Most problems in implementing encryption, however, do not come from considerations of prov-
ability. Rather, they come from we often dismiss as “implementation issues.” I identified three of
them in class

1. Randomness. Computers, cell phones, ATMs, etc., generally do not come equipped with good
sources of random bits that would be unpredictable to the adversary. As we know, though,
secret randomness is necessary for key generation and encryption.

2. Secrets. They are hard to keep secret. Today’s popular operating systems tend not to provide
ways of storing a secret in such a way that it is accessible only to authorized programs and
to no one else. A common approach is store a secret encrypted with a password known only
to the user. Unfortunately, users are terrible and remembering high-entropy passwords; in
addtion, the secret is vulnerable when it’s decrypted and actually used in a computation.

3. Keys. As emphasized above, it’s very important to authentically know the public key of the
person you are sending the message to. There are some approaches to this problem we will
discuss later in the course, but they all have drawbacks.

7.1 A warning about terminology

In the academic world, “public” key and “secret” key usually form a pair. In the commercial world,
the name of the second component is often “private” key (which doesn’t abbreviate nicely, where
as (PK,SK) does). This wouldn’t be too much of a problem, except that the commercial world
also often uses “secret key” to mean “non-public key,” such as DES, one-time-pad, etc. To avoid
confusion, we will call things like DES and the one-time-pad “symmetric” cryptography (because
both parties share the same key). (To further compound the confusion, some people use the term
“private-key cryptography” to mean “symmetric cryptography”.)

8 Man-in-the-middle attack against encryption

Note that man-in-the-middle attack also applies to encryption. If Bob wants to send something to
Alice, and the two never met before, then Alice needs to send Bob her PKA. If Eli intercepts it and
substitutes his own PKE instead, Bob won’t know the difference. He will now encrypt his message
to Alice using PKE , thus allowing Eli to read it.

In other words, while public-key encryption removes the need to share keys secretly, it does not
remove the need for sharing them authentically. Bob need not keep PKA secret, but he does need
to know that it came from Alice. We’ll address this problem in the next lecture.
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