Leo Reyzin. BU CAS CS 538. Fall 2003. 1

Notes for Lectures 21-24

1 Wrap-Up of Public-Key Infrastructure Discussion

To finish up the discussion of public-key infrastructure from the previous lecture, we talked a bit
about why we all use passwords instead of certificates. Partly it’s because of historical reasons
and entrenched mentality, and partly it’s because of business reasons. Businesses don’t want to
trust other to verify identities of their clients. It’s also much easier to explain the need for a
password to a user than the need for a certificate (not mention the procedures needed to create and
install a personal certificate in one’s browser). However, passwords are making us all less secure,
particularly because most of us use the same password on many sites (thus, a single untrustworthy
site can pretend to be you and log in into any other site where you have an account with the same
password).

We started asking “but how do we authenticate a user to a bank without a user certificate” and
gave the example of encrypting a string that includes the password and username and instructions
to transfer money to a friend. This doesn’t work, because encryption doesn’t provide authenticity
and adversary could change the instructions to transfer money to his own account without changing
the authentication. What you need here is so-called “non-malleable” encryption, which we haven’t
really studied (but FYI, the so-called OAEP scheme [BR94], which is now a PKCS #1 [RSA02] is
non-malleable in the random oracle model based on the RSA assumption).

It would be much easier if each user had a certificate. However, banks for various reasons don’t
like to do that. Even here at BU we use a password-based authentication system known as Kerberos
(which uses old symmetric techniques). We gave the example of a university using user certitifcates,
and the advantages it gives: one can give a third party for example, a cable TV provider for the
dorms, a proof that some people are university students without revealing the (private) list of all
students. This is done as follows: when students need to sign up for cable service, they contact
the cable company and sign their request using their certificate (i.e., using the secret key whose
corresponding public key is certified by the university). They include the certificate with signature.
The cable company only finds out about students who choose to contact it, and all the university
needs to give the cable company is university’s public key with which to verify certificates. Privacy
of the students who are not signing up for cable service is not violated.

It would be nice to have a large-scale system for certifying users (a.k.a. Public-Key Infrastruc-
ture, or PKI), but the lack of unique names presents a serious problem. On a smaller scale, such
as bank or a university, you can use account number or student id numbers, but what do you use
on a worldwide scale?

2 Stream Ciphers and Block Ciphers

We now change topics completely and talk about symmetric cryptography.

Cryptographers have long been designing things called “stream ciphers” and “block ciphers.”
A stream cipher (e.g., RC4 [Riv87]) takes an input key (also known as seed) and produces a long
(usually unlimited) stream of random-looking bits. A block cipher (e.g., DES [NIS77]) takes a key
and an input, and produces an output of the same length as the input. For each key, a block cipher
is a permutation.

Leo Reyzin. BU CAS CS 538. Fall 2003. 2

While stream ciphers and block ciphers predate modern cryptographic notions, today people
most often model them as pseudorandom generations and pseudorandom permutations, respec-
tively. Note that stream ciphers and block ciphers used in practice are not provably pseudorandom
generations and functions; rather, they are believed to have these properties (although some think
that this is too strong of an assumption).

We already desgined pseudorandom generators that are provably secure under a reasonable
assumption. We will do the same for pseudorandom functions and permutations below (after
defining them, of course). It is therefore legitimate to ask why people use unprovable designs when
so many provably secure ones are available. The answer is mainly speed. As we will see shortly,
traditional stream and block ciphers are orders of magnitude faster than provable ones. Thus, they
are preferred for encrypting bulk data, particularly by computationally weak devices in real time
(cell phones, wireless network cards, etc.).

We will spend this and next lecture understanding what pseudorandom generators and functions
are and how to build them (provably!). Note that our provably secure constructions will be of
interest mainly as “feasibility” results: we show that it can be done, but most people will not use
our provable constructions. Instead, in practice they will simply opt for assuming that RC4 is a
pseudorandom generator and DES is a pseudorandom function, even though these assumptions are
seemingly stronger than simply assuming that factoring is hard.

Nonetheless, whether you use a provable pseudorandom generator, such as Blum-Blum-Shub,
or a heuristic one, such as RC4, you still need to use it right. Therefore, we will then turn
to understanding how to use pseudorandom generators and functions to accmoplish actual goals
(privacy and authenticity).

But first, by way of example, we briefly study RC4 and DES.

2.1 RC4

RC4, designed by Rivest, is a stream cipher that takes a key and produces a long stream of random-
looking bits. The key is used to initialize an array S of 256 elements that contains each byte from
0 to 255 exactly once. The key is also used to initialize two indices, ¢ and j, into the array. We do
not describe the initilization step here. After the initialization, the following steps take place. All
operations below are modulo 256

Repeat for as many times as the number of output bytes needed:
l.i+—3+1
2. j—j+S[i]
3. Swap S]i] and S[j]
4. Output S[S[i] + S[j]]

Thus, this stream cipher outputs 8 bits per 3 byte additions and 3 array lookups. It requires a tiny
amount of memory and code (in fact, it has been implemented in 3 lines of PERL, 4 lines of C,
etc.). Its speed and memory efficiency are amazing when you compare to any of the provably secure
PRGs we built. Unfortunately, you can’t prove much about it, although it has been extensively
studied.

2.2 DES

DES is well-described in many public sources (in particular, on p. 218 of the textbook); hence the
description is omitted here.

Leo Reyzin. BU CAS CS 538. Fall 2003. 3

3 Pseudorandom Functions

We now turn to formal definitions again. We already know what pseudorandom generators are.
We define pseudorandom functions.

A pseudorandom function family (PRF) is a collection of efficiently computable functions such
that choosing a random function from the family is as good (with respect to polynomial-time
distinguishers) as choosing a truly random function. The fact that these things exist is remarkable,
since most function are not even computable (let alone efficiently computable), and yet a tiny
(in comparison) subset of efficiently computable collection can be as good as the collection of all
functions.

Definition 1. Let i(k) and o(k) be the input and output lengths, respectively, for security param-
eter k. A family of functions {F;}scs is pseudorandom if

e There exists a polynomial-time algorithm Gen(1%) that outputs s on input 1¥, such that Fj
maps {0,1}*) to {0,1}°0%),

e There exists a polynomial-time algorithm that outputs Fy(x) given s and .

e For every probabilistic polynomial time oracle machine A’ there exists a negligible function
negl such that

T ATy = 11— Pr [AF(1%) = 1) < negl(k).
f random function {0,1}:(*)—{0,1}o(*) (1% } s<—Gen(1k)[(1% J| = negl()

The value s is usually called the seed.

The above definition and the following construction are due to Goldreich, Godlwasser and Micali
[GGMS86]. While many believe that things like DES approximates PRFs, it’s good to convince
ourselves that such things exist by building them out of reasonable assumptions.

To build a PRF, let G be a length-doubling PRG: given s of length k, G outputs y of length 2k.
Let Gy(s) be the first k bits of y, and G1(s) be the last k bits of y. Define Fi(z), for a k-bit seed
and k-bit input x = x122 ... zx, where z; is a bit, to be Fs(x) = G4, (Ga,_,(Gr,_, (... G4, (s)))). In
other words, build a tree of height & defined as follows:

e The seed value s is contained at the root
e The left child of a node containing « contains Go(«)
e The right child of a node containing a contains G («)

Then on input x output the value stored at the leaf number x.

The proof that it’s a PRF is done by a hybrid argument on the levels of the tree; we omit it
here.

One way to think of a PRF Fj is to think of it as a PRG on the seed s with exponentially long
output (simply concatenate all output values for all possible z’s into one). Since no one can read
or write exponentially long values, we simply give the distinguisher random access to the output
(rather than sequential access given in the case of PRG).

Leo Reyzin. BU CAS CS 538. Fall 2003. 4

3.1 PRFs vs. Random Oracles

We note while PRFs are indistinguishable from truly random functions, they cannot be used as
public random oracles. This is because indistinguishability holds only with respect to oracle access:
i.e., the adversary is allowed to ask questions x and receive answers Fs(z), but does not know how
to compute Fy herself. If the adversary knows the seed s, then the function no longer looks random.
When we needed random oracles for signature schemes, we needed everyone to be able to evaluate
the random oracle, so we would have to make the seed public, so it would no longer look random.

4 Pseudorandom Permutations

Pseudorandom permutations (PRPs) are defined the same way as pseudorandom functions, with
the following additional properties: i(k) = o(k), Fs is a permutation, and there exists an algorithm
that, given s and y, computes = F, !(y). Since block cipher satisfy these additional properties
and appear to have pseudorandomness properties, many believe that it is appropriate to model
secure block ciphers as PRPs.

However, we should convince ourselves that such things really exist based on some plausible
assumptions (just like we did for PRFs). First, how can it be that a permutation looks indis-
tinguishable from a random function: a random functions has a lot of collisions. Well, since our
distinguisher is only allowed polynomially many queries, a random permutation and a random
function actually look the same, since the likelihood of a collision for polynomially many inputs is
negligible.

To build PRPs, we start with PRF's, and apply the following idea (called the Feistel permutaiton
since the time when DES was designed [Fei73, FNS75], but actually due to Notz and Smith according
to [Cop00]).

Let Fs, be a PRF mapping k bits to k bits. Let x be a 2k-bit quantity; write it as z = (L, R),
where L and R are k bits each; define ¥y, (L,R) = (R,S) where S = L @& Fs,(R). Note that
U, (z) is a permutation that is easy to invert: simply apply Fs, to the first part of the output, and
exclusive-or it with the second. Thus, we built a permutation on 2k bits out of a PRF on k bits.

Is this permutation pseudorandom? Of course not: half the output bits are the same as half
of the input bits. Well, what if we compose (chain) such permutations: pick another seed sy and
apply ¥s, to (R,S) to get (S,T"), where T' = R & F,(S). The result—W¥,, o ¥y,—is of course a
permutation, but is still not pseudorandom (consider what happens to S when the adversary asks
two queries with the same R but different L). Let’s try again: pick another seed s3 and apply Vs,
to (S,T) to get (T,V), where V. =5 @& ¥, (T). Turns out that this is pseudorandom.

To be precise, the result of Luby and Rackoff [LR88] states the following. Given a PRF {F}ses
where i(k) = o(k) = k, consider the following family of permutations. To generate a seed, run
Gen(1*) three times to get seeds s1, s2,53. Then let @, g5, (L, R) = Uy, (Y, (Vg (L, R))) = (T, V),

where

S = L& Fs(R)

T = R®F(S)

V = S& F,(T).
Then {®s, 5,54} is a pseudorandom permutation family.

Incidentally, since we are speaking of permutations, one can consider what happens if the
adversary is given access to the inverse direction (i.e., the adversary has to distinguish a random

Leo Reyzin. BU CAS CS 538. Fall 2003. 5

permutation from a pseudorandom one when given access to both forward and inverse direction).
A permutation family that passes this test is called super pseudorandom. Turns out that the above
construction fails (with only three queries from the adversary!). However, adding one more round
W, makes it secure against this stronger adversary.

Remarkably, the Feistel permutation idea was first used to turn functions into permutations well
before modern notions of pseudorandomness. Namely, the round function of Lucifer (the precursor
cipher to DES) was a permutation, so Lucifer was invertible. But the round function of DES was
not a permutation. To make DES invertible, two of the DES designers, Notz and Smith, proposed
to split the input into two halves, apply the function to only one half, and use the XOR operation.
This is exactly what each of the 16 rounds of DES does. It is quite surprising that this idea actually
works provably to turn to pseudorandom functions into pseduroandom permutations.

5 Symmetric Encryption

5.1 Definition

Syntactically, secure symmetric encryption is defined similarly to secure public-key encryption,
except that there is a single key.

Definition 2. A symmetric cryptosystem is a triple of polynomial-time algorithms (Gen, Enc, Dec).
Gen(1¥) is a (randomized) key-generation algorithm that outputs a key K when given a security
parameter k as input. Enc is a (randomized) encryption algorithm that, on input K and message
m, outputs ciphertext c¢. Dec is a (usually deterministic) decryption algorithm, that, on input K
and ¢, outputs m. For a key K, a cryptosystem has to specify a set of allowed messages Mg
(ultimately the goal will be to have M be all binary strings regardless of K; however, we have
to allow for less general encryption schemes at first). We require that the following holds: if K is
produced by Gen(1%), then for all m € My, m = Decy (Encg(m)) (this requirement can be relaxed
to say “with probability 1 — negl(k)”).

When we defined secure public-key encryption, the adversary Eve had to distinguish between
encryptions of two messages. While in real life Eve could have seen encryptions of other messages,
too, they could not have been helpful, because she could have produced those encryptions herself
(all she needs to produce encryptions is the public key, which she has). This is not the case for
symmetric encryption: perhaps she may gain something by seeing encryptions of other messages,
since she can’t produce them herself. Moreover, in real life, she may well have access to some
ciphertexts (and perhaps even know, or be able to influence, their corresponding plaintexts). So to
get a meaninful definition, we should at least give Eve oracles access to the encryption oracle, so
that she can input plaintexts and see corresponding ciphertexts. This is called a “chosen-plaintext
attack” (CPA). Note that in the case of public-key encryption, Eve gets the public key, and hence
gets CPA automatically, without any oracles.
We define security, as usual, using two experiments.

exp-mo(K)

1. K « Gen(1%)

2. (mo,my) < DERex O (1F); if |mg| # |my], abort
3. ¢« Encg(myg)

4. Output DFrex()(e)

The second experiment exp-m; is the same, except in line 3, which changes to ¢ < Encg(mq).

Leo Reyzin. BU CAS CS 538. Fall 2003. 6

Definition 3. A symmetric cryptosystem is polynomially-secure under CPA if for all polynomial
time D’ there exists a negligible function negl(k) such that

|Pr[exp-mg(k) outputs 1] — Pr[exp-mi (k) outputs 1]| < negl(k).

Equivalently, we could have considered a random experiment where a bit b gets chosen random,
my gets encrypted, and D has to output a guess g for the bit b. Security requires that the probability
b = g be negligibly greater than 1/2.

5.2 Left-or-Right Definition

An alternative definition is to give Eve oracle access to the encryption oracle with one twist: she has
to give two messages (of the same length) for each query, and we will pick which one gets encrypted
in each pair (the choice will be the same for all pairs, but unknown to Eve). She will have to
decide which of the two messages we are consistently choosing. Notice that Eve is allowed to have
two messages in a pair be the same message m, the ensuring that she will see an encryption of m.
(However, if her goal is to distinguish, then she will have to give different messages at some point.)
This definition was proposed by Bellare, Desai, Jokipii and Rogaway [BDJRI7]; its equivalence
to other notions (including the above definition and a version of semantic security for symmetric
encryption) is proven in [BDJRI7], as well.

Definition 4 ([BDJR97]). A symmetric cryptosystem is polynomially-secure against adaptive
chosen-plaintext attack (CPA) if for all polynomial time E” there exists a negligible function negl(k)
such that

Pr [EErex (PRS0 (kY 1) - pr [EEnex(PRCSD))| < negl(k),
K+—Gen(1F) K+—Gen(1F)
where LR(mg,m1,b) i my, if |mo| = |m1| and € otherwise. The probabilities above are taken over

the random choices made by Gen to generate K, by Enc in answering oracle queries, and by F.

5.3 Constructions

Observe that the adversary is allowed to query its encryption oracle to get encryptions of both
mo and mi. Thus, secure symmetric encryption must be probabilistic or stateful, to ensure that,
at the very least, encryption of mg comes out different each time (otherwise, it would be easy to
distinguish: simply check if challenge ciphertext ¢ matches the output of the oracle on my).

5.3.1 One-Time Pad

We'll start from a construction we already know: the one-time pad. Let Gen(1*) simply output a k-
bit random key K; let My = {0, 1}/Kl. To encrypt m, let ¢ = m@® K to decrypt ¢, let m = c@ K. If
D? is not allowed any queries to its oracle, then D’ cannot distinguish: the probability of receiving
any ciphertext c if mg gets encrypted is the same as the probability of receiving it if m; gets
encrypted (by perfect secrecy). Hence, the view of D’ is the same, and it cannot distinguish.

However, clearly, if D is allowed to query the oracle, then it can get the key K. That’s why it’s
called the one-time pad, after all.

We can extend one-time pad to I-time pad, by outputting K of length [k, and using subsequent
portions of it for each query (thus, this encryption scheme would be stateful, because Enc and Dec

Leo Reyzin. BU CAS CS 538. Fall 2003. 7

would be required to know what message number they are one; Dec could be made stateless if Enc
output the message number together with the ciphertext). This would be secure up to [—1 queries,
but not beyond.

5.3.2 Stream Cipher Encryption

Now modify the I-time pad by having Gen output K as a seed for a PRG G with unlimited output
length (all PRGs that we studied have unlimited output length, anyway). Then keep track of how
many bits you've encrypted so far. If you've encrypted ¢ bits so far and need to encrypt n bits now,
simply exclusive-or the message with the bits ¢t + 1,¢ 4+ 2,....¢t + n of G(K) to get ¢ and output
(t +1,¢). Update t « t + n. This give secure stateful encryption (only the encryptor needs to
keep state, since the decryptor gets ¢ + 1). We give no formal proof here, but it simply formalizes
the following intuition: a pseudorandom pad better be as good as a truly random pad, because
otherwise we could build a distinguisher for the PRG. But a truly random pad of unbounded length
is secure, as we said above.

5.3.3 PRF-based encryption

Let Gen output a seed s for a PRF Fs with k-bit inputs and k-bit outputs. Then to encrypt a
k-bit message m, choose a random z and output ¢ = (z,m @ Fs(z)). Clearly, if Fs were a truly
random function, this would be secure (since it’s essentially a new one-time pad for every message,
unless you hit the same x twice, which is extremely unlikely). By the same reasoning as for stream
ciphers, this ought to be secure for PRFSs, since otherwise you could distinguish PRFs from truly
random functions.

To encrypt longer messages, e.g., a message with [blocks of k bits each, m = mq ...my, pick a
random x and output ¢ = (z,m; @ Fs(x),ma ® Fs(x +1),m3® Fs(x +2),...,m; @ Fs(x +1—1)).
This encryption procedure is known as “counter encryption mode” for block ciphers, and is often
abbreviated CTR. Note that instead of picking a random z each time, one can make encryption
stateful and simply use = 4 [next time as a starting point.

5.3.4 The insecure ECB mode

Note that it would be insecure to simply split up the input message into [blocks and pass each
block through Fs. This encryption is deterministic, and as we already said, determistic encryption
cannot be secure. This mode of encryption is known as ECB [NIS80] for “electronic codebook.”
The name goes back to the times when people carried around codebooks of substitutions rules —
ECB mode simply substitutes blocks of output for blocks of input in a deterministic manner.

5.4 CBC-mode encryption

A common way to encrypt a long message is the following, known as “cipher block chaining” or
CBC (also specified in [NIS80]). Let Fs be a PRF with k-bit inputs and k-bit outputs. To encrypt
m with [blocks of k bits each, m = m;j ... my, pick a random value yg (known as “initialization
vector” or “IV”), and let y1 = Fs(m1 @ yo), y2 = Fs(ma ® y1), ..., yi = Fs(m; @ y;—1). The
ciphertext is yoyi . ..y;. To decrypt it, compute m; = F; ' (y1) @ vo,...,my = F; Y(y;) @yi—1. Note
that decryption can be done in parallel, despite the chaining.

Observe that decryption requires us to be able to compute F; !, which is not specified in the
definition of PRF. In fact, F;"! might not even be well-defined, because Fs may not be one-to-one.

Leo Reyzin. BU CAS CS 538. Fall 2003. 8

Thus, to use CBC mode, one needs pseudorandom permutations, as opposed to just pseudorandom
functions. In fact, one can prove [BDJR97] that it is secure if Fy is a pseudorandom permutation.

6 Message Authentication Codes

6.1 Definition

Message Authentication Codes (MACs) are the symmetric equivalent of signatures. The definition
is essentially the same, except that to have a convincingly strong definition, we need to give the
adversary the power to query not only the signing oracle, but also the verifying oracle, because
(unlike in the public-key case) the adversary cannot verify on its own. Also, a symmetric signature
is traditionally called a “tag.”

Formally, a MAC is a triple of probabilistic polynomial-time algorithms (Gen, Tag, Ver). The
key generation algorithm Gen outputs K when given 1* as input. The tagging algorithm Tag takes
K and m as input, and outputs a tag o. The verification algorithm Ver takes K, m, o as input and
outputs 1 or 0 (or true/false, valid/invalid, etc.). We require that tags produced by Tag verify as
correct by Ver: if K « Gen(1*), then for all m, Very (m, Tag (m)) = 1 (perhaps with probability
1 — negl(k)). We may also restrict the message space to some set M, and instead saying “for all
m,” say “for all m € M.”

Security is defined in terms of the following experiment.

exp-forge(k)

1. K « Gen(1%)

2. (m’ O-) «— ETagK()7verK(v)(1k)

3. If m was not queried by E to its signing oracle and Verg(m, o) = 1, output 1. Else output 0.

Definition 5. We say that a MAC is secure (existentially unforgeable under an adaptive chosen-
message attack) if for all probabilistic polynomial time E there exists a negligible function negl
such that Prlexp-forge(k) — 1] < negl(k).

6.2 Constructions
6.2.1 PRFs

A PRF is a MAC. That is, if {Fs}ses is a PRF with some sufficiently long output length (precisely,
if i(k) is polynomial in k), then a MAC key is simply a PRF seed s, and to tag a message m, simply
compute o = Fg(m); to verify, check if this holds. This works for message of length o(k) (we give
no proof of security here, but it’s quite simple). But what to do for longer messages?

6.2.2 Hashing

Well, one idea is to use collision-resistant hashing to hash the message down to a shorter one, just
like we did for digital signatures. However, collision-resistant hashing is an overkill: it requires
the hash function to be collision-resistant even when the key is known to the adversary. This
is necessary in the public-key case (when the verifier must know the hash key), but not in the
symmetric case, when the hash key can be kept secret. Thus, we need a much simpler primitive,
known as “universal hashing.”

Combining a universal hash function with any secure MAC for short messages (such as PRF)
gives you a secure MAC for long messages.

Leo Reyzin. BU CAS CS 538. Fall 2003. 9

Definition 6. Let i(k) and o(k) be the input and output lengths, respectively, for security param-
eter k. A family of functions {H; };es is a universal hash family if:

e There exists a polynomial-time algorithm Gen(1¥) that outputs i on input 1%, such that H;
maps {0, 1}**) to {0, 1},

e There exists a polynomial-time algorithm that outputs H;(x) given i and z.

e There exists a negligible function negl such that for all &, for all z1,x2 € {0, l}i(k),

Pr [Hi(z1) = Hi(x9)] < negl(k).
chi(m[(1) (z2)] < negl(k)

Unfortunately, we have no time to spend on examples of universal hashing; we will simply say
that it’s very easy construct, and no cryptography is needed (i.e., one need not make complexity-
theoretic assumptions). Simple linear algebra works: for example, if i(k) = m and o(k) = n, then
then letting H; be a random linear transform from GF(2)™ to GF(2)" works.

6.2.3 CBC MAC

Probably the most popular MAC in practice the following: to MAC a message, CBC-encrypt it
with IV= 0, and output the very last block as the tag.

Formally, let {Fs}scs be a PRF. Key generation algorithm just selects the seed s, with Fj :
{0,1} — {0,1}. To tag a message m consisting of n I-bit blocks m = mima ...m,, compute and
output y,, where y; = Fy(m; ® y;_1) and yo = 0'. To verify, repeat the computation and check if
the tag matches.

Turns out this is secure only for fixed-length messages: i.e., if the adversary’s queries and the
eventual forgery have to be the same length. However, if the adversary is allowed to change the
length, then it’s insecure. This can be fixed by prepending (but, surprisingly, not appending!) the
length to the message; or by simply passing y,, through a PRF with an independent seed s (thus,
the key becomes K = (s,s")). See [BKR94, PR0O0] for more on CBC MAC.

Be careful, however, not to assume that just because CBC MAC is secure, CBC encryption also
provides authenticity. It does not.

7 Combining Authentication and Encryption

Often you want to send a message that is both secret and authentic. In the symmetric-key setting
it turns out that, if done properly, this will increase the security of the encryption itself. Namely, if
you encrypt the message using any CPA-secure encryption scheme, and then MAC the ciphertext
using any secure! MAC, then you get CCA2-secure encryption and authenticity. Thus, by simply
adding authentication, you increase the strength of your encryption from chosen-plaintext secure to
chosen-ciphertext secure. (Note that the order of MAC and encrypt matters; see [BN0O] for more.)

Note that doing both encryption and MACing is a bit expensive: e.g., if you use CBC MAC,
it’s twice as expensive as encryption itself. There is work on encryption modes that provide both
encryption and authentication at the same cost as just encryption (see, e.g., the OCB mode of
[RBBKO1]).

You need a MAC with a slightly stronger security property: it should be hard not only to forge a tag on a new
message, but also to forge a new tag on an old message. All the MACs we discussed satisfy this property, because
there is only one correct tag for each message.

Leo Reyzin. BU CAS CS 538. Fall 2003. 10

The story is more complicated in the public-key world, because combining encryption and
authentication involves using your own secret key to sign the message, and then encrypting both
the message and the signature with the public key of the recipient. The keys are different, and
procedures for encrypting and signing are very different. In particular, security does not necessarily
automatically increase from CPA to CCA as it does in the symmetric setting. Nonetheless, there
is interesting work there as well. Combinations of signatures and encryption are often called
“signcryption.” See, e.g., [ADRO02] for more.

References

[ADRO2] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature and
encryption. In Lars Knudsen, editor, Advances in Cryptology—EUROCRYPT 2002,
volume 2332 of Lecture Notes in Computer Science. Springer-Verlag, 28 April-2 May
2002.

[BDJRI97] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. In 38th Annual Symposium on Foundations of
Computer Science, Miami Beach, Florida, 20-22 October 1997. IEEE.

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of cipher block chaining. In
Yvo G. Desmedt, editor, Advances in Cryptology—CRYPTO 94, volume 839 of Lecture
Notes in Computer Science, pages 341-358. Springer-Verlag, 21-25 August 1994.

[BNOO] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm. In Tatsuaki Okamoto, ed-
itor, Advances in Cryptology—ASIACRYPT 2000, volume 1976 of Lecture Notes in
Computer Science, pages 531-545, Kyoto, Japan, 3—7 December 2000. Springer-Verlag.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Alfredo De
Santis, editor, Advances in Cryptology—EUROCRYPT 94, volume 950 of Lecture Notes
in Computer Science, pages 92-111. Springer-Verlag, 1995, 9-12 May 1994. Revised
version available from http://www-cse.ucsd.edu/users/mihir/.

[Cop00] Don Coppersmith. Invited lecture: The development of DES. In Mihir Bellare, editor,
Advances in Cryptology—CRYPTO 2000, volume 1880 of Lecture Notes in Computer
Science. Springer-Verlag, 20-24 August 2000.

[Fei73] H. Feistel. Cryptography and computer privacy. Scientific American, 228(5):15-23,
May 1973.

[FNS75] H. Feistel, W. A. Notz, and J. L. Smith. Some cryptographic techniques for machine-
to-machine data communications. Proceedings of the IEEE, 63(11):1545-1554, 1975.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. Journal of the ACM, 33(4):792-807, October 1986.

[LR&S] M. Luby and C. Rackoff. How to construct pseudorandom permutations and pseudo-
random functions. SIAM Journal on Computing, 17(2):373-386, April 1988.

[NIS77] FIPS publication 46: Data encryption standard, 1977. Available from
http://www.itl.nist.gov/fipspubs/.

Leo Reyzin. BU CAS CS 538. Fall 2003. 11

[NIS80]

[PROO]

[RBBKO1]

[Riv87]

[RSA02]

[Sch95]

FIPS publication 81: DES modes of operation, 1980. Available from
http://www.itl.nist.gov/fipspubs/.

Erez Petrank and Charles Rackoff. CBC MAC for real-time data sources. Journal
of Cryptology: the journal of the International Association for Cryptologic Research,
13(3):315-338, 2000.

Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A block-cipher
mode of operation for efficient authenticated encryption. In Eighth ACM Conference
on Computer and Communication Security, pages 196-205. ACM, November 5-8 2001.
Full version available from http://www.cs.ucsdavis.edu/ "rogaway.

Ronald L. Rivest. The RC4 encryption algorithm. Trade secret of RSA Data Security,
Inc.; leaked and subsequently published in [Sch95], 1987.

PKCS #1: RSA encryption standard. Version 2.1, June 2002. Available from
http://www.rsaisecurity.com/rsalabs/pkcs/.

Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C.
John Wiley & Sons, second edition, 1995.

