
Leo Reyzin. BU CAS CS 538. Fall 2003. 1

Notes for Lecture 8

1 Chinese Remainder Theorem

Let p �= q be two primes. The Chinese Remainder Theorem (CRT) says that working modulo
n = pq is essentially the same as working modulo p and modulo q at the same time. (Actually, this
is the “light” version of CRT. The full-fledged version says that working modulo a1a2 . . . ak, where
ai are pairwise relatively prime, is the same as working simultaneously modulo a1, a2, . . . , ak.)

Theorem 1. Let p �= q be primes, n = pq. For each a ∈ Zp, b ∈ Zq, there is unique c, 0 ≤ c < n
such that c ≡ a (mod p) and c ≡ b (mod q).

Proof. Let r = p−1 mod q and s = q−1 mod p. Let c′ = rpb + sqa. Then c′ ≡ rpb + sqa ≡
r · 0 · b + 1 · a ≡ a (mod p), and c′ ≡ rpb + sqa ≡ 1 · b + s · 0 · a ≡ b (mod q). Let c = c′ mod pq.
Then pq|(c − c′), so p|(c − c′), so c ≡ c′ (mod p). Similarly, c ≡ c′ (mod q). Hence, c satisfies
all the conditions: 0 ≤ c < n, and c ≡ a (mod p) (because c ≡ c′ ≡ a (mod p)), and c ≡ b
(mod q) (because c ≡ c′ ≡ b (mod q)). Thus, for every pair (a, b) there is a c. There are pq = n
possible pairs, and n possible values of c, so for each pair there must be exactly one value of c, so
it’s unique for each (a, b).

Denote by crt(a, b) the unique value of c given by the above theorem. Then crt(a, b) = c if an
only if (a, b) = (c mod p, c mod q). Let c1 = crt(a1, b1), c2 = crt(a2, b2), and c3 = c1 + c2 mod n.
Then c3 mod p = (c1 + c2) mod p = (a1 + a2) mod p (because n divides c3 − c1 − c2, and therefore
so does p) and similarly c3 mod q = (b1 + b2) mod q. Hence c3 = crt(a1 + a2, b1 + b2). Same
for multiplication. Thus, we can look at addition and multiplication modulo n “coordinate-wise”:
modulo p and modulo q.

We will denote by Z∗
n the set of values in Zn that are relatively prime to n. Note that the

“coordinates” of Z∗
n are in Z∗

p and Z∗
q , and that Z∗

n has (p − 1)(q − 1) elements.
Note that the above proof is constructive: that is, c is efficiently (and, in fact, quite easily)

computable given a and b. Thus, it is often more efficient to work modulo p and q separately and
the reconstruct the value modulo n when it is needed.

2 Squares and Square Roots

Let p > 2 be a prime. Let QRp denote the set of squares in Z∗
p . Recall from HW2 that for a ∈ Z∗

p ,
if a ∈ QRp, then a(p−1)/2 ≡ 1, and if a �∈ QRp, then a(p−1)/2 ≡ −1.

Suppose p ≡ 3 (mod 4). Take s ∈ Z∗
p . It has two roots: r and −r. Exactly one of these two

roots is itself in QRp. Indeed, consider r(p−1)/2 and (−r)(p−1)/2. Since (p − 1)/2 is odd (because
p = 4k + 3 for some k), (−r)(p−1)/2 = − (

r(p−1)/2)
)
, so one is 1 and the other is −1.

Hence, if we let fp(x) : QRp → QRp be the map x 	→ x2 mod p, we see that for each s ∈ QRp,
there exists a unique inverse r ∈ QRp such that f(r) = s (namely, r is the square root of s that is
itself a square). So fp of x is a permutation of QRp. Note that fp is easy to compute (just squaring)
and easy to invert (as shown on HW2, it’s easy to compute square roots modulo p).

Now let p �= q be two distinct odd primes, and let n = pq. Let QRn denote the set of squares
in Z∗

n. Then if s is a square modulo n, it is also a square modulo p and q. Since it has two roots
±r1 modulo p and two roots ±r2 modulo q, it has four roots modulo n: crt(±r1,±r2).

Leo Reyzin. BU CAS CS 538. Fall 2003. 2

Suppose both p and q are congruent to 3 modulo 4. Then exactly one of ±r1 is a square modulo
p, and exactly one of ±r2 is a square modulo q, so exactly one of crt(±r1,±r2) is a square modulo n.
Hence, if we let fn(x) : QRn → QRn be the map x 	→ x2 mod n, we see that fn(x) is a permutation
over QRn. Note that fn(x) is easy to compute. We will argue below that it is hard to invert—as
hard as it is to factor n.

3 Blum-Blum-Shub Generator

The following construction is due to [BBS86]1. Starting with a sufficiently long random seed, select
two k-bit random primes p, q that are 3 modulo 4, let n = pq, and let x be random element of
QRn (just select a random element of Zn, check if it’s relatively prime with n, and square it). Let
x1 = x, x2 = fn(x), x3 = fn(x2), . . . , xl = fn(xl−1). Output the least significant bit for each xi.

Note that this looks very much like the Blum-Micali generator, with exponentation mod p
replaced with squaring mod n, and B replaced with least significant bit. The proof is very similar,
too. We simply need two facts: that computing x from x2 mod n is hard (discussed in the next
section), and that computing the least significant bit of x from x2 mod n is as hard as computing all
of x (shown in [ACGS88]; an alternative proof is given is in [AGS03]; we will not discuss either here).
These two facts correspond, in the Blum-Micali case, to the assumption that discrete logarithm is
hard and that B(x) is as hard as to compute from gx mod p as x itself.

This generator is more efficient than Blum-Micali: requires only one modular squaring per bit,
instead of one one modular exponentiation. It is also based on a different (depending on whom you
ask, more or less plausible) assumption: that factoring n is hard. We will show this in the next
section.

4 Square Roots Modulo a Composite are as Hard as Factoring

We want to justify why we believe it’s hard to compute x from x2 modulo n. Indeed, let s = r2 mod
n. Then s has four square roots, as discussed above crt(r1, r2), crt(−r1,−r2), crt(r1,−r2), crt(−r1, r2).
Take two of these that are not negatives of each other, e.g., r = crt(r1, r2) and r′ = crt(r1,−r2).
Add them to get r + r′ = crt(2r1, 0). Thus, r + r′ ≡ 0 (mod q), so q|(r + r′). Note also that
r + r′ �≡ 0 (mod p), so p � |(r + r′). Hence, gcd(r + r′, n) = q. Thus, if you know two such roots,
you can factor n, by simply computing the gcd (this can be done quickly with Euclid’s algorithm).

Now suppose we have an algorithm A that computes square roots modulo n. We will use it to
factor n as follows: take a random r ∈ Z∗

n, compute s = r2 mod n, and give s to A. A will return
some root r′ of s. Because s has four roots and r was chosen at random (and not given to A), no
matter how A works, Pr[r = ±r′] = 1/2. Hence, in half the cases, gcd(r + r′, n) will give you a
factor p or q of n.

Thus, we just proved (by contradiction and reduction, as usual) that if factoring n is hard, so is
computing square roots modulo n. Hence, the Blum-Blum-Shub generator is secure based on the
following assumption:

Assumption 1. For any poly-time algorithm F , there exists a negligible function negl such that,
if you generate random k-bit primes p and q that are both 3 modulo 4, and let n = pq, Pr[F (n) =
p] ≤ negl(k).

1Conference version published in Crypto in 1982.

Leo Reyzin. BU CAS CS 538. Fall 2003. 3

References

[ACGS88] W. Alexi, B. Chor, O. Goldreich, and C. Schnorr. RSA and Rabin functions: Certain
parts are as hard as the whole. SIAM Journal on Computing, 17(2):194–209, April 1988.

[AGS03] Adi Akavia, Shafi Goldwasser, and Muli Safra. Proving hardcore predicates using list
decoding. In 44th Annual Symposium on Foundations of Computer Science, Cambridge,
Massachusetts, October 2003. IEEE.

[BBS86] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number
generator. SIAM Journal on Computing, 15(2):364–383, May 1986.

