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CAS CS 538. Problem Set 3
Due in class Tuesday, September 25, 2012, before the start of lecture

Problem 1. (30 points) In the first week, we showed that if a cryptosystem is Shannon secure, then
|K| ≥ |M |. However, perfect security is a very strong condition: it requires than for any m0,m1 ∈M ,
∆(Enck(m0),Enck(m1)) = 0. (Note that each of these two random variables is produced by taking
a uniform key k ∈ K and then applying the encryption function.) Given what we now know about
statistical distance, we could relax this requirement, replacing 0 with some small value ε. This would
imply that Eve cannnot distinguish the encryption of m0 from the encryption of m1 with advantage
greater than ε, even if she has unlimited computational powers. In this problem, you will show that
this particular relaxation does not help shrink the key space much.

(a) (10 points) Let X1, . . . , Xn and Y1, . . . , Yn be random variables. Let X (respectively, Y ) be the
random variable produced by picking i uniformly at random between 1 and n and then choosing the
value of Xi (respectively, Yi). That is, Pr[X = x] = 1

n

∑n
i=1 Pr[Xi = x], and similarly for Y . Prove

that ∆(X, Y ) ≤ 1
n

∑n
i=1 ∆(Xi, Yi).

(b) (10 points) Suppose that, for a given cryptosystem and for all m0, m1 ∈M ,

∆(Enck(m0),Enck(m1)) ≤ ε .

Let m denote the uniform distribution on the set M . Show that for all m0,

∆ ((m,Enck(m0)) , (m,Enck(m))) ≤ ε

(note that the last two occurrences of m refer to the same value). In other words, one random variable
contains a random message and an encryption of m0, and the other contains a random messages and
its encryption. (Hint: use problem 2 (specifically, item 5 of Lemma 6.3) from PS2 to show that
∆((m1,Enck(m0)), (m1,Enck(m1))) ≤ ε; then apply the previous part to average over all m1).

(c) (10 points) Finally, show that if for all m0,m1 ∈ M , ∆(Enck(m0),Enck(m1)) ≤ ε, then |K| ≥
|M |(1− ε). (Hint: use the previous part; if the key space is too small, then it’s unlikely that any key
will decrypt an encryption of m0 to a random m; this observations gives you a distinguisher).

Note: The answers below must be proven using one of the two definitions of pseudorandomness used
in class.

Problem 2. (40 points)

(a) (20 points)
Suppose an algorithm G is a pseudorandom generator. Let Ḡ be the following algorithm: on input
seed s, run G(s) to get w, then negate every bit of w to get w̄ (i.e., for bit i, w̄i = 1−wi), and output
the result. Prove by using a reduction that Ḡ is also a pseudorandom generator.

(b) (20 points)
Suppose algorithms G1 and G2 are pseudorandom generators. Let G3 be the following algorithm: on
input s, G3 runs G1(s) to get w1, runs G2(s) to get w2, and ouptuts the concatenation of the two
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strings: w3 = w1 ◦w2. Show that G3 is not necessarily a pseudo-random generator. (Hint: it may be
helpful to use what you proved in the previous part.)

Problem 3. (30 points)
In the previous problem, we saw an insecure way to combine two pseudorandom generators: run
them on the same seed. Here we will show that running them on two independent seeds is secure.

Suppose algorithms G1 and G2 are pseudorandom generators. Let G3 be the following algorithm:
on input s3 (assume length of s3 is even), G3 splits s3 in half to get two strings s1 and s2 of half
the length. Then G3 runs G1(s1) to get w1, runs G2(s2) to get w2, and ouptuts the concatenation
of the two strings: w3 = w1 ◦ w2. Show G3 is a pseudorandom generator. (Hint: suppose it’s not.
Then there is a distinguisher that can tell w3 from random. Use a “hybrid” argument—unlike the
complicated one we did in class, where we had many intermediate points, here you only need one
intermediate point.)


