CAS CS 538. Problem Set 3

Due in class Tuesday, September 25, 2012, before the start of lecture

Problem 1. (30 points) In the first week, we showed that if a cryptosystem is Shannon secure, then $|K| \ge |M|$. However, perfect security is a very strong condition: it requires than for any $m_0, m_1 \in M$, $\Delta(\operatorname{Enc}_k(m_0), \operatorname{Enc}_k(m_1)) = 0$. (Note that each of these two random variables is produced by taking a uniform key $k \in K$ and then applying the encryption function.) Given what we now know about statistical distance, we could relax this requirement, replacing 0 with some small value ϵ . This would imply that Eve cannnot distinguish the encryption of m_0 from the encryption of m_1 with advantage greater than ϵ , even if she has unlimited computational powers. In this problem, you will show that this particular relaxation does not help shrink the key space much.

(a) (10 points) Let X_1, \ldots, X_n and Y_1, \ldots, Y_n be random variables. Let X (respectively, Y) be the random variable produced by picking *i* uniformly at random between 1 and *n* and then choosing the value of X_i (respectively, Y_i). That is, $\Pr[X = x] = \frac{1}{n} \sum_{i=1}^n \Pr[X_i = x]$, and similarly for Y. Prove that $\Delta(X, Y) \leq \frac{1}{n} \sum_{i=1}^n \Delta(X_i, Y_i)$.

(b) (10 points) Suppose that, for a given cryptosystem and for all $m_0, m_1 \in M$,

$$\Delta(\operatorname{Enc}_k(m_0), \operatorname{Enc}_k(m_1)) \leq \epsilon$$
.

Let m denote the uniform distribution on the set M. Show that for all m_0 ,

$$\Delta((m, \operatorname{Enc}_k(m_0)), (m, \operatorname{Enc}_k(m))) \leq \epsilon$$

(note that the last two occurrences of m refer to the same value). In other words, one random variable contains a random message and an encryption of m_0 , and the other contains a random messages and its encryption. (Hint: use problem 2 (specifically, item 5 of Lemma 6.3) from PS2 to show that $\Delta((m_1, \operatorname{Enc}_k(m_0)), (m_1, \operatorname{Enc}_k(m_1))) \leq \epsilon$; then apply the previous part to average over all m_1).

(c) (10 points) Finally, show that if for all $m_0, m_1 \in M$, $\Delta(\operatorname{Enc}_k(m_0), \operatorname{Enc}_k(m_1)) \leq \epsilon$, then $|K| \geq |M|(1-\epsilon)$. (Hint: use the previous part; if the key space is too small, then it's unlikely that any key will decrypt an encryption of m_0 to a random m; this observations gives you a distinguisher).

Note: The answers below must be *proven* using one of the two definitions of pseudorandomness used in class.

Problem 2. (40 points)

(a) (20 points)

Suppose an algorithm G is a pseudorandom generator. Let \overline{G} be the following algorithm: on input seed s, run G(s) to get w, then negate every bit of w to get \overline{w} (i.e., for bit i, $\overline{w}_i = 1 - w_i$), and output the result. Prove by using a reduction that \overline{G} is also a pseudorandom generator.

(b) (20 points)

Suppose algorithms G_1 and G_2 are pseudorandom generators. Let G_3 be the following algorithm: on input s, G_3 runs $G_1(s)$ to get w_1 , runs $G_2(s)$ to get w_2 , and ouptuts the concatenation of the two

strings: $w_3 = w_1 \circ w_2$. Show that G_3 is *not* necessarily a pseudo-random generator. (Hint: it may be helpful to use what you proved in the previous part.)

Problem 3. (30 points)

In the previous problem, we saw an *insecure* way to combine two pseudorandom generators: run them on the same seed. Here we will show that running them on two *independent* seeds is *secure*.

Suppose algorithms G_1 and G_2 are pseudorandom generators. Let G_3 be the following algorithm: on input s_3 (assume length of s_3 is even), G_3 splits s_3 in half to get two strings s_1 and s_2 of half the length. Then G_3 runs $G_1(s_1)$ to get w_1 , runs $G_2(s_2)$ to get w_2 , and ouptuts the concatenation of the two strings: $w_3 = w_1 \circ w_2$. Show G_3 is a pseudorandom generator. (Hint: suppose it's not. Then there is a distinguisher that can tell w_3 from random. Use a "hybrid" argument—unlike the complicated one we did in class, where we had many intermediate points, here you only need one intermediate point.)