
BU CAS CS 538. Fall 2012. 1

CAS CS 538. Problem Set 4
Due in class Tuesday, October 2, 2012, before the start of lecture

Problem 1. (25 points) This problem gives an example of what’s wrong with deterministic encryp-
tion. (Note that there are many reasons that deterministic encryption is generally a bad idea—this
is just one of them. The only time deterministic encryption seems to make sense is when the mes-
sage itself is assumed can be assume to have a lot of randomness, which is not the case here, since
the same message is being encrypted twice, so the “second” message has no randomness given the
“first” message, because it’s the same message. Deterministic encryption of high-entropy messages
has actually been studied—I can point you to references if you are interested.)

Suppose Bob and David have two independent Rabin public keys nB and nD, respectively. Suppose
Alice has a single message m to send to both of them, and m is a square in both Z∗

nB
and Z∗

nD
. She

encrypts it with plain-Rabin twice to get cB = m2 mod nB and cD = m2 mod nD. Show how an
eavesdropper Eve who intercepts cB and cD can recover m. (Hint: if Rabin public keys are generated
independently, then they are relatively prime with all but negligible probability. You can use the
fact that Chinese remainder theorem applies not only to primes, but to any pair of relatively prime
integers.) Remark (no work required on your part): the same will be true if we use RSA with public
exponent 3 and encrypt with three different moduli.

Problem 2. (25 points) In this problem, we will see how powerful hybrid arugments can be.
Suppose (Gen, E, D) is a secure multi-bit public-key cryptosystem, and G is a secure pseudoran-

dom generator. We want to consider the following public-key cryptosystem. To encrypt m of length
l, select a random seed s, generate p = G(s) of length l, and output c = (EPK(s), p ⊕m). (This is
how encryption is often done in real life: a symmetric key s is encrypted first, and then the actual
“payload” is encrypted with a symmetric cryptosystem keyed by s.) Show that this cryptosystem is
secure. Suggestion:

(a) Show that (EPK(s), G(s)) is indistinguishable from (EPK(s), R), where R ∈R {0, 1}l. Hint: use
a hybrid argument, with EPK(s), G(t), for a random unrelated t, as a hybrid point.

(b) Show that (EPK(s), p ⊕ m0) is indistinguishable from (EPK(s), p ⊕ m1). Hint: use a hybrid
argument, with two hybrid points, and the previous part.

Problem 3. (25 points) Let p1 and p2 be two primes of length k bits each. Let n = p1p2, let c ∈ Z∗
n

be a 2k-bit value, and let d be a random 2k-bit exponent. Assume that the operation of computing
xy mod z takes time exactly k2 when x, y and z are all of length k.

(a) How long does it take to compute m = cd mod n using the square-and-multiply technique of
Problem Set 1?

(b) Let c1 = c mod p1 and d1 = d mod (p1 − 1). Note that m ≡ cd1
1 (mod p1). How long does

it take to compute m1 = cd1
1 mod p1? Assume that q1 = p−1

1 mod p2 and q2 = p−1
2 mod p1 are

known. How to compute m faster than in part (a) using the Chinese Remainder Theorem?
How much of a speed-up do you get?



BU CAS CS 538. Fall 2012. 2

(c) In fact, you can save a little on the Chinese Remainder Theorem computation, and you don’t
even need q1, just q2. Simply compute m1 = cd mod p1 and m2 = cd mod p2 as before, then
h = q2(m1 − m2) mod p1, and then m as m2 + hp2. Prove that this computation is correct.
(Hint: first prove that m2 + hp2 is congruent to m1 modulo p1 and congruent to m2 modulo p2.
Now prove that 0 ≤ m2 + hp2 < n. Recall that CRT states that a value satisfying these three
conditions is unique—hence it has to be equal to m).

Problem 4. (25 points) Let p1 and p2 be two primes of length k bits each, such that p1 ≡ p2 ≡ 3
(mod 4). Let u1 = (p1 + 1)/4, and u2 = (p2 + 1)/4. Recall from Problem Set 2 that if s is a square
modulo p1, then a square root of s is t = su1 mod p1.

(a) Prove that t itself is a square modulo p1.

(b) Prove that 2`-th root of s is equal to sul
1 mod p1 and is itself a square modulo p1.

(c) In light of the above and Problem 3, how (and how much) can you speed up Blum-Goldwasser
decryption of an `-bit message as compared to simply taking square roots ` times? (Ignore the
costs of anything but the modular arithmetic. Assume that ul

1 mod p1 − 1 and ul
2 mod p2 − 1

are computed at key generation and kept with the secret key, so the cost of computing u1 and
u2 need not be taken into account.)


