
BU CAS CS 538. Fall 2012. 1

CAS CS 538. Problem Set 6

Due in class Tuesday, October 23, 2012, before the start of lecture

Problem 1. (40 points) In this problem you will study whether two one-way functions can be
composed to produce a new one-way function.

(a) (10 points) Suppose f(x) is a one-way function. Let g1(x) be the function that outputs f(x)
followed by |f(x)| zeroes. Prove by a reduction that g1 is one way.

(b) (20 points) Suppose f(x) is a one-way function. Let g2(x) be the following function: if the last
d|x|/2e bits of x are 0, then output f(0). Else output f(x). Show that g2 is a one-way function.

(Hint: Suppose an inverter A for g2 exists. Let px be the probability that this inverter is correct
on input x. We know that the proability of successful inversion over all inputs of size k is equal to∑

x∈{0,1}k
px/2

k

and is not negligible in k. Construct an invereter B for f from A. Let qx be the probability that B
is correct on input x. The probability of B’s success on inputs of length k is∑

x∈{0,1}k
qx/2

k.

Express qx in terms of px, and show why the probability of B’s success is not negligible.)

(c) (10 points) Suppose g1(x) and g2(x) are one-way functions. Is g3(x) = g2(g1(x)) necessarily
one-way? Prove your answer. (Hint: use previous two parts.)

Problem 2. (30 points) Show how to compute the root of an n-leaf Merkle tree in log n space. More
precisely, given x1, x2, . . . , xn as values to be placed in the leaves of the tree, and a hash function H,
describe how to compute the root r of the tree while never storing more than dlog ne hash values.

For the next problem, we will augment collsion-resistant hashing with a useful property. Consider a
collision-resistant hash family whose domain Di can always be written as Mi × Ri (for example, for
the DL-based family studied in class, i = (p, g, h) and Dp,g,h = Mp,g,h×Rp,g,h, where Mp,g,h = Rp,g,h =
{1, 2, . . . , q}). We will call this family a trapdoor hash family if it has two additional properties: the
algorithm Gen also outputs a trapdoor key ti in addition to the hash function index i, and there exists
an algorithm T that, on input (1k, i, ti,m1, r1,m2), will output r2 such that Hi(m1, r1) = Hi(m2, r2)
(here, m1,m2 ∈Mi and r1, r2 ∈ Ri) in polynomial time. In other words, although collisions are hard
to find given i, they are very easy to find given given extra information ti. In fact, collision are so
easy to find given ti that, given one input and half of another, you can find the remaining half of the
second input so that the two inputs collide.

Below you will show that the hash function family studied in class has a trapdoor. This means that
you may have to trust the person who picked the hash function to not know the trapdoor—because
the function is not collision-resistant to anyone who knows the trapdoor.

BU CAS CS 538. Fall 2012. 2

However, trapdoor hash families can be quite useful. For example, if the hash function is chosen
by the signer at the same time as she generates her public-secret key pair for the signature scheme
(in which case the signer puts i in her public key), then we don’t mind that she knows the trapdoor,
since it is in her interests not to reveal it—else, others would be able to find collisions and, therefore,
forge signatures on her behalf. Moreover, this enables the signer to perform much of the signature
computaiton ahead of time, before she even knows what message she will be signing, in the following
interesting twist of the hash-and-sign paradigm (due to Adi Shamir and Yael Tauman).

Take any signature scheme and modify it as follows. Add the hash key i to your public key,
and the trapdoor ti to your secret key. Before you even know what message you are signing, take a
random message m′ and value r′, and sign the hash h = Hi(m

′, r′) to get σ′. Then, when the time
comes to sign some message m, simply run T to find r such that the hash of (m, r) is h, and output
(σ′, r) as your signature. Thus, you can precompute most of the signature before you even know
the message, and then do only the very quick computation of T once the message is known. This is
useful, e.g., when a server has idle cycles to burn some times, and is overloaded at other times.

Problem 3. (30 points) Show that the DL-based family studied in class is actually a trapdoor hash
family. In other words, demonstrate how to modify Gen, what tp,g,h will be, and construct T that
uses tp,g,h. (Hint: Gen should no longer be simply selecting g, h blindly at random.)

