
Advanced Topics in Cryptography - Homework 1.

Review of crypto topics. Here’s a quick review of some topics typically taught in a basic
crypto class. You can also find them in various textbooks and online lecture notes (including by
current teachers). They are also covered in a condensed way in the chapter on cryptography in the
complexity textbook by Arora and Barak (see online draft on http://www.cs.princeton.edu/

theory/index.php/Compbook/Draft#crypto ).
Two distributions X,Y ranging over {0, 1}k are �-statistically indistinguishable if for every

function f : {0, 1}k → {0, 1} it holds that:

= |Pr[f(X) = 1]− Pr[f(Y ) = 1]| < � (1)

we say that they are (�, T )-computationally indistinguishable if () holds only with respect to func-
tions T that can be computed by Boolean circuits of size at most T . We say that X,Y are
simply computationally indistinguishable / statistically indistinguishable if this holds for functions
� = �(k), T = T (k) such that � goes to zero and T goes to infinity faster than every polynomial in
k. For the next several classes, you can just think of � = 2−k0.001 and T (k) = 2k

0.001
.

An encryption scheme is a tuple of three probabilistic polynomial time (p.p.t) algorithms
(G,E,D) for key generation, encryption and decryption. In a private key scheme the generator
G outputs a single key sk used for both encryption and decryption, while in a public key scheme
the generator outputs a pair of keys (sk, pk) where pk is used for encryption and sk is used for
decryption. We require the natural validity condition that for any message m, Dsk(Epk(m)) = m.

In this exercise we restrict ourselves to encryption whose messages are single bits. A private
key encryption scheme is semantically secure if it satisfies that the distributions Esk(0) and Esk(1)
are computationally indistinguishable. A public key scheme is semantically secure if (pk,Epk(0))
and (pk,Epk(1)) are computationally indistinguishable, where (pk,Epk(b)) denotes the distribution
on pairs obtained by running G(1k) to get (pk, sk) and then running Epk(b). (This is equivalent to
the definition given in class - check it!.)

Definition of homomorphic encryption. We say that a quadruple of p.p.t algorithms (G,E,D,EV AL)
is a homomorphic encryption scheme with respect to a class of circuits C, if (G,E,D) is semanti-
cally secure and in addition for every circuit C ∈ C taking t bits as input, the algorithm EV AL

satisfies:

Strong homomorphism For everym1, . . . ,mt ∈ {0, 1} and c1, . . . , ct output by Epk(m1), . . . , Epk(mt)
respectively, the distributions EV ALpk(C, c1, . . . , ct) and Epk(C(m1, . . . ,mt) are statistically
indistinguishable.

Weak homomorphism For everym1, . . . ,mt ∈ {0, 1} and c1, . . . , ct output by Epk(m1), . . . , Epk(mt)
respectively it holds that (1) Dsk(EV ALpk(C, c1, . . . , ct)) = C(m1, . . . ,mt) with probability
1− negl(k) (where negl(k) denotes a function tending to zero faster than any polynomial in
k), and (2) the output of EV AL on any input is of length at most k2. (k2 can be replaced
here with any fixed polynomial.)
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For private key encryption the definition is the same except that EV AL obviously doesn’t get
the public key as input (and neither the private key).

Exercise 1. Prove that if a scheme is strongly homomorphic w.r.t. C then it is also weakly
homomorphic. See footnote for hint1

The next exercises cover Ron Rothblum’s transformation of a private key encryption (G,E,D,EV AL)
that is weakly homomorphic w.r.t XOR into a public key encryption (G�, E�, D�). Recall that the
construction is as follows: G� runs G to obtain sk, chooses r ←R {0, 1}�, and (c1, . . . , c�) where
ci = Esk(ri) for i = 1..� and � = k4. The public key is r, c1, . . . , c�. To encrypt the message
m ∈ {0, 1}, the algorithm E� chooses a random s ∈ {0, 1}� subject to

�
i risi = m (mod 2) and

outputs EV AL(XOR, {ci}i:si=1). Decryption uses the same algorithm.
The big question is whether this is semantically secure. This is proven via the following two

exercises: (you should verify that you understand why they do indeed suffice!)

Exercise 2. Suppose that there is a polynomial time algorithmA that can distinguish (r, c1, . . . , c�, E�(0))
from (r, c1, . . . , c�, E�(1)) with non-negligible success. ThenA can also distinguish (r, c̃1, . . . , c̃�, E�(0))
from (r, c̃1, . . . , c̃�, E�(1)) where c̃i is obtained by running Esk(0) (instead of Esk(ri). See footnote
for hint2

The harder part is the following:

Exercise 3. Let A be any function (possibly not in polynomial time) then

��Pr[A(r, c̃1, . . . , c̃�, E
�(0)) = 1]− Pr[A(r, c̃1, . . . , c̃�, E

�(1)) = 1]
�� < 100 ∗ 2−k (2)

We now give some guidance how to solve Exercise 3. It will follow from the stronger statement
that (2) holds even after fixing typical values for all randomness used for generating sk, c̃1, . . . , c̃�
and hence the only randomness involved in the probabilities in (2) are r, s. The main claim to
prove is the following:
Claim: Let y be a string of size at most k2, and let Sy denote the set of strings s ∈ {0, 1}� such
that EV AL(XOR, {ci}i:si=1) = y, and d = �log |Sy|�. Then with probability 1 −2 −k over the
choice of r ∈ {0, 1}�,

1

2
− 2−d/10 ≤ Pr

s∈Sy

�
��

i=1

siri (mod 2)

�
≤ 1

2
+ 2−d/10 (3)

Exercise 4. Prove that Exercise 3 follows from the claim via the following steps:

1. Prove that with probability at least 1−2−k
it holds that d � 100k. See footnote for hint.3

2. Now you can argue that with high probability the pair (r, y) where y = EV AL(XOR, {ci}i:si=1)
doesn’t reveal any information on the message bit m, and hence even an attacker with un-
bounded computation time cannot guess m from it.

1
Hint: If two distributions are statistically indistinguishable then the decryption algorithm will output the same answer on them, and also

their lengths will be the same, except with negligible error.

2
Hint:This is a fairly standard cryptographic reduction to the semantic security of the scheme (G,E,D). One fact we use is that if an

encryption scheme is semantically secure then one also cannot distinguish between two �-tuples of encryptions.

3
Hint: This follows from the fact that there are 2

�
possible strings s but only 2

k2+1
possible outputs of EV AL.
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Exercise 5. Prove the claim. It is an instance of what is known as the Leftover Hash Lemma. In
this particular case you can prove it as follows: let S = Sy and define for every s ∈ S the random

variable Xs over the choice of r ∈ {0, 1}� where Xs =
��

i=1 siri (mod 2).

1. Prove that E[Xs] = 1/2 for very s �= 0n.

2. Prove that E[XsXt] = E[Xs]E[Xt] for every s �= t.

3. Prove that for every n, Prr∈{0,1}� [|
�

s∈S Xs − |S|/2| > n
�
|S|] < 100/n2. See footnote for

hint4

4. Prove the claim.

4
Hint: Compute the variance of

�
s∈S Xs and use the Chebychev Inequality.
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