
Quest-V: A Virtualized Multikernel for High-Confidence
Embedded Systems

Ye Li, Richard West, Eric Missimer, Matthew Danish

Computer Science Department
Boston University
Boston, MA 02215

Email: {liye,richwest,missimer,md}@cs.bu.edu

Abstract

This paper outlines the design of ‘Quest-V’, which is im-
plemented as a collection of separate kernels operating to-
gether as a distributed system on a chip. Quest-V uses vir-
tualization techniques to isolate kernels and prevent local
faults from affecting remote kernels. A virtual machine
monitor for each kernel keeps track of extended page ta-
ble mappings that control immutable memory access ca-
pabilities. This leads to a high-confidence multikernel ap-
proach, where failures of system sub-components do not
render the entire system inoperable. Communication is
supported between kernels using both inter-processor in-
terrupts (IPIs) and shared memory regions for message
passing. Similarly, device driver data structures are share-
able between kernels to avoid the need for complex I/O
virtualization, or communication with a dedicated ker-
nel responsible for I/O. In Quest-V, device interrupts are
delivered directly to a kernel, rather than via a monitor
that determines the destination. Apart from bootstrapping
each kernel, handling faults and managing extended page
tables, the monitors are not needed. This differs from con-
ventional virtual machine systems in which a central mon-
itor, or hypervisor, is responsible for scheduling and man-
agement of host resources amongst a set of guest kernels.
In this paper we show how Quest-V can support online
fault isolation and recovery techniques that are not possi-
ble with conventional systems. We also show how mem-
ory virtualization and I/O management do not add undue
overheads to the overall system performance.

1 Introduction

Multicore processors are now ubiquitous in today’s micro-
processor and microcontroller industry. It is common to

see two to four cores per package in embedded and desk-
top platforms, and higher core counts in server-class ma-
chines. This increase in on-chip core count is driven in
part by trade-offs in power and computational demands.
Many of these multicore processors also feature hard-
ware virtualization technology (e.g., Intel VT and AMD-
V CPUs). Virtualization has re-emerged in the last decade
as a way to consolidate workloads on servers, thereby pro-
viding an effective means to increase resource utilization
while still ensuring logical isolation between guest virtual
machines.

Hardware advances with respect to multicore technol-
ogy have not been met by software developments. In par-
ticular, multicore processors pose significant challengesto
operating system design [8, 6, 36]. Not only is it difficult
to design software systems that scale to large numbers of
processing cores, there are numerous micro-architectural
factors that affect software execution, leading to re-
duced efficiency and unpredictability. Shared on-chip
caches [20, 37], memory bus bandwidth contention [44],
hardware interrupts [43], instruction pipelines, hardware
prefetchers, amongst other factors, all contribute to vari-
ability in task execution times. This is particularly prob-
lematic for real-time and embedded systems, where task
deadlines must be met.

Coupled with the challenges posed by multicore pro-
cessors are the inherent complexities in modern operat-
ing systems. Such complex interactions between software
components inevitably lead to program faults and poten-
tial compromises to system integrity. Various faults may
occur due to memory violations (e.g., stack and buffer
overflows, null pointer dereferences and jumps or stores
to out of range addresses [28, 14]), CPU violations (e.g.,
starvation and deadlocks), and I/O violations (e.g., mis-
management of access rights to files and devices). Device

1

drivers, in particular, are a known source of potential dan-
gers to operating systems, as they are typically written by
third party sources and usually execute with kernel priv-
ileges. To address this, various researchers have devised
techniques to verify the correctness of drivers, or to sand-
box them from the rest of the kernel [33, 34].

In this paper, we present a new system design that uses
both virtualization capabilities and the redundancy offered
by multiple processing cores, to develop a real-time sys-
tem that is resilient to software faults. Our system, called
‘Quest-V’ is designed as a multikernel [6], or distributed
system on a chip. Extended page tables (EPTs)1 isolate
separate kernel images in physical memory. These page
tables map each kernel’s ‘guest’ physical memory to host
(or machine) physical memory. Changes to protection bits
within EPTs can only be performed by a trusted moni-
tor associated with the kernel on the corresponding core.
This ensures any illegal memory accesses (e.g., write at-
tempts on read-only pages) within a kernel are caught by
the corresponding monitor. Our system has similarities to
the Barrelfish multikernel, while also using virtualization
similar to systems such as Xen [5]. We differ from tra-
ditional virtualized systems [9] by avoiding monitor in-
tervention where possible, except for updating EPTs and
handling faults.

We show how Quest-V does not incur significant oper-
ational overheads compared to a non-virtualized version
of our system, simply called Quest, designed for SMP
platforms. We observe that communication, interrupt han-
dling, thread scheduling and system call costs are on par
with the costs of conventional SMP systems, with the ad-
vantage that Quest-V can tolerate system component fail-
ures without the need for reboots.

We show how Quest-V can recover from component
failure, using a web server in the presence of a misbe-
having network device driver. Both local and remote ker-
nel recovery strategies are described. This serves as an
example of the ‘self-healing’ characteristics of Quest-V,
with online fault recovery being useful in situations where
high-confidence (or high availability) is important. This
is typically the case with many real-time and embedded
safety-critical systems found in healthcare, avionics, fac-
tory automation and automotive systems, for example.

In the following section we describe the rationale for
the design of Quest-V. This is followed by a description
of the architecture in Section 3. An experimental evalu-
ation of the system is provided in Section 4. Here, we
show the overheads of online device driver recovery for
a network device, along with the costs of using hardware

1Intel uses the term “EPT”, while AMD refers to them as Nested
Page Tables (NPTs). We use the term EPT for consistency.

virtualization to isolate kernels and system components.
Section 5 describes related work, while conclusions and
future work are discussed in Section 6.

2 Design Rationale

Quest-V is centered around three main goals: safety, pre-
dictability and efficiency. Quest-V is intended for safety-
critical application domains, requiring high confidence in
their operation [16]. Target applications include those
emerging in healthcare, avionics, automotive systems,
factory automation, robotics and space exploration. In
such cases, the system requires real-time responsiveness
to time-critical events, to prevent potential loss of livesor
equipment. Similarly, advances in fields such as cyber-
physical systems means that more sophisticated OSes be-
yond those traditionally found in real-time and embedded
computing are now required. With the emergence of off-
the-shelf and low-power processors now supporting mul-
tiple cores and hardware virtualization, it seems appropri-
ate that these will become commonplace within this class
of systems. In fact, the ARM Cortex A15 is expected
to feature virtualization capabilities, on a processing core
typically designed for embedded systems.

While safety is a key goal, we assume that users of our
system are mostly trusted. That is, they are not expected
to subject the system to malicious attacks, with the in-
tent of breaching security barriers. Instead, our focus on
safety is concerned with the prevention of software faults.
While others have used techniques such as software fault
isolation [14, 28], type-safe languages [25, 24, 19, 7], and
hardware features such as segmentation [11, 35], Quest-
V uses virtualization techniques to provide fault isolation.
Notably, Quest-V relies on EPTs to separate system soft-
ware components operating as a collection of services in
a distributed system on a chip.

3 Quest-V Architecture

A high-level overview of the Quest-V architecture is
shown in Figure 1. A single hypervisor is replaced by a
separate trusted monitor for each sandbox. Quest-V uses
memory virtualization as an integral design feature, to
separate sub-system components into distinct sandboxes.

The Quest-V architecture supports sandbox kernels that
have both replicated and complementary services. That
is, some sandboxes may have identical kernel functional-
ity, while others partition various system components to
form an asymmetric configuration. The extent to which
functionality is separated across kernels is somewhat con-

2

Figure 1: Quest-V Architecture Overview

figurable in the Quest-V design. In our initial implemen-
tation, each sandbox kernel replicates most functionality,
offering a private version of the corresponding services to
its local application threads. Certain functionality is, how-
ever, shared across system components. In particular, we
share certain driver data structures across sandboxes2, to
allow I/O requests and responses to be handled locally.

Quest-V allowsany sandbox to be configured for cor-
responding device interrupts, rather than have a dedicated
sandbox be responsible for all communication with that
device. This greatly reduces the communication and con-
trol paths necessary for I/O requests from applications
in Quest-V. It also differs from the split-driver approach
taken by systems such as Xen, that require all device in-
terrupts to be channeled through a special driver domain.

Sandboxes that do not require access to shared devices
are isolated from unnecessary drivers and associated ser-
vices. Moreover, a sandbox can be provided with its own
private set of devices and drivers, so if a software failure
occurs in one driver, it will not necessarily affect all other
sandboxes. In fact, if a driver experiences a fault then its
effects are limited to the local sandbox and the data struc-
tures shared with other sandboxes. Outside these shared
data structures, remote sandboxes (including all monitors)
are protected by extended page tables.

Quest-V allows each sandbox kernel to be configured to
operate on a chosen subset of CPUs, orcores. This is sim-
ilar to how Corey partitions resources amongst applica-
tions [8]. In our current approach, we assume each sand-
box kernel is associated with one physical core since that
simplifies local (sandbox) scheduling and allows for rela-
tively easy enforcement of service guarantees using a vari-
ant of rate-monotonic scheduling [22]. Notwithstanding,
application threads can be migrated between sandboxes
as part of a load balancing strategy. Similarly, multi-
threaded applications can be distributed across sandboxes

2Only for those drivers that have been mapped as shared between
specific sandboxes.

to allow parallel thread execution.
Application and system services in distinct sandbox

kernels can communicate via shared memory channels.
These channels are established by EPT mappings setup by
the corresponding monitors. Messages are passed across
these channels similar to the approach in Barrelfish [6].

Main and I/O VCPUs are used for real-time manage-
ment of CPU cycles, to enforcetemporal isolation. Ap-
plication and system threads are bound to VCPUs, which
in turn are assigned to underlying physical CPUs. We will
elaborate on this aspect of the system in Section 3.1.3.

3.1 System Implementation

Quest-V is currently implemented as a 32-bit x86 sys-
tem, targeting embedded rather than server domains. We
plan to port Quest-V to the ARM Cortex A15 when it be-
comes available. Using EPTs, each sandbox virtual ad-
dress space is mapped to its own host memory region.
Only the BIOS, certain driver data structures, and com-
munication channels are shared across sandboxes, while
all other functionality is privately mapped.

Each sandbox kernel image is mapped to physical
memory after the region reserved for the system BIOS,
beginning from the low 1MB. While sandbox kernels can
share devices and corresponding driver data structures, a
device can be dedicated to a sandbox for added safety.

By default, Quest-V allows delivery of interrupts di-
rectly to sandbox kernels, where drivers are implemented.
Only if heightened security is needed are drivers mapped
to monitors. We are still investigating the implications of
this in terms of performance costs.

Just as hardware devices can be shared between sand-
box kernels, a process that does not require strict memory
protection can be loaded into a user space region accessi-
ble across sandboxes. This reduces the cost of process mi-
gration and inter-process communication. However, in the
current Quest-V system, we do not support shared user-
spaces for application processes, instead isolating them
within the local sandbox. While this makes process mi-
gration more cumbersome, it prevents kernel faults in one
sandbox from corrupting processes in others.

3.1.1 Hardware Virtualization Support

Quest-V utilizes the hardware virtualization support avail-
able in most of the current x86 and the next generation
ARM processors to encapsulate each sandbox in a sepa-
rate virtual machine. As with conventional hypervisors,
Quest-V treats a guest VM domain as an extra ring of
memory protection in addition to the traditional kernel
and user privilege levels. However, instead of having one

3

hypervisor for the whole system, Quest-V has one moni-
tor running in the host domain for each sandbox as shown
earlier in Figure 1. Each sandbox kernel performs its own
local scheduling and I/O handling without the cost of VM-
Exits into a monitor. VM-Exits are only needed to handle
software faults and update EPTs.

3.1.2 Hardware-Assisted Memory Isolation

The isolation provided by memory virtualization requires
additional steps to translate guest virtual addresses to host
physical addresses. Modern processors with hardware
support avoid the need for software managed shadow page
tables, and they also support TLBs to cache various inter-
mediate translation stages.

Figure 2: Extended Page Table Mapping

Figure 2 shows how address translation works for
Quest-V guests (i.e., sandboxes) using Intel’s extended
page tables. Specifically, each sandbox kernel uses its
own internal paging structures to translate guest virtual
addresses to guest physical addresses (GPAs). EPT struc-
tures are then walked by the hardware to complete the
translation to host physical addresses (HPAs).

On modern Intel x86 processors with EPT support, ad-
dress mappings can be manipulated at 4KB page gran-
ularity. This gives us a fine grained approach to iso-
late sandbox kernels and enforce memory protection. For
each 4KB page we have the ability to set read, write and
even execute permissions. Consequently, attempts by one
sandbox to access illegitimate memory regions of another
will incur an EPT violation, causing a trap to the local
monitor. The EPT data structures are, themselves, re-
stricted to access by the monitors, thereby preventing tam-
pering by sandbox kernels.

EPT support alone is actually insufficient to prevent
faulty device drivers from corrupting the system. It is
still possible for a malicious driver or a faulty device to
DMA into arbitrary physical memory. This can be pre-
vented with technologies such as Intel’s VT-d, which re-
strict the regions into which DMAs can occur using IOM-
MUs. However, this is still insufficient to address other
more insidious security vulnerabilities such as “white rab-
bit” attacks [40]. For example, a PCIe device can be con-
figured to generate a Message Signaled Interrupt (MSI)
with arbitrary vector and delivery mode by writing to local
APIC memory. Such malicious attacks can be addressed
using hardware techniques such as Interrupt Remapping
(IR). Having said this, the focus of our work is predomi-
nantly on fault isolation and safety in trusted application
domains, rather than security in untrusted systems.

3.1.3 VCPU Scheduling

As stated earlier, Quest-V’s goals are not only to ensure
system safety, but also predictability. For use in real-
time systems, the system must perform certain tasks by
their deadlines. Quest-V does not require tasks to spec-
ify deadlines but instead ensures that the execution of one
task does not interfere with the timely execution of oth-
ers. For example, Quest-V is capable of scheduling inter-
rupt handlers as threads, so they do not unduly interfere
with the execution of higher-priority tasks. While Quest-
V’s scheduling framework is described elsewhere [42], we
briefly explain how it provides temporal isolation between
tasks and system events. This is the basis for real-time
tasks with specific resource requirements to be executed
in bounded time, while allowing non-real-time tasks to
execute with specific priorities.

In Quest-V,virtual CPUs(VCPUs) form the fundamen-
tal abstraction for scheduling and temporal isolation of the
system. The concept of a VCPU is similar to that in virtual
machines [3, 5], where a hypervisor provides the illusion
of multiplephysical CPUs(PCPUs)3 represented as VC-
PUs to each of the guest virtual machines. VCPUs exist
as kernel abstractions to simplify the management of re-
source budgets for potentially many software threads. We
use a hierarchical approach in which VCPUs are sched-
uled on PCPUs and threads are scheduled on VCPUs.

A VCPU acts as a resource container [4] for scheduling
and accounting decisions on behalf of software threads. It
serves no other purpose to virtualize the underlying phys-
ical CPUs, since our sandbox kernels and their applica-
tions execute directly on the hardware. In particular, a

3We define a PCPU to be either a conventional CPU, a processing
core, or a hardware thread in a simultaneous multi-threaded (SMT) sys-
tem.

4

VCPU does not need to act as a container for cached in-
struction blocks that have been generated to emulate the
effects of guest code, as in some trap-and-emulate virtu-
alized systems.

In common with bandwidth preserving servers [2, 12,
31], each VCPU,V , has a maximum compute time bud-
get, Cmax, available in a time period,VT . V is con-
strained to use no more than the fractionVU =

Cmax

VT

of a physical processor (PCPU) in any window of real-
time, VT , while running at its normal (foreground) prior-
ity. To avoid situations where PCPUs are idle when there
are threads awaiting service, a VCPU that has expired its
budget may operate at a lower (background) priority. All
background priorities are set below those of foreground
priorities to ensure VCPUs with expired budgets do not
adversely affect those with available budgets.

Quest-V defines two classes of VCPUs: (1)Main VC-
PUs are used to schedule and track the PCPU usage of
conventional software threads, while (2)I/O VCPUsare
used to account for, and schedule the execution of, in-
terrupt handlers for I/O devices. This distinction allows
for interrupts from I/O devices to be scheduled as threads,
which may be deferred execution when threads associated
with higher priority VCPUs having available budgets are
runnable. The flexibility of Quest-V allows I/O VCPUs
to be specified for certain devices, or for certain tasks that
issue I/O requests, thereby allowing interrupts to be han-
dled at different priorities and with different CPU shares
than conventional tasks associated with Main VCPUs.

By default, VCPUs act like Sporadic Servers [30].
Local APIC timers are programmed to replenish VCPU
budgets as they are consumed during thread execution.
We use the algorithm by Stanovich et al [32] to correct
for early replenishment and budget amplification in the
POSIX specification. Sporadic Servers enable a system
to be treated as a collection of equivalent periodic tasks
scheduled by a rate-monotonic scheduler (RMS) [22].
This is significant, given I/O events can occur at arbi-
trary (aperiodic) times, potentially triggering the wakeup
of blocked tasks (again, at arbitrary times) having higher
priority than those currently running. RMS analysis can
be applied, to ensure each VCPU is guaranteed its share
of CPU time,VU , in finite windows of real-time.

An example schedule is provided in Figure 3 for three
VCPUs, whose budgets are depleted when a correspond-
ing thread is executed. Priorities are inversely propor-
tional to periods. As can be seen, each VCPU is granted
its real-time share of the underlying physical CPU.

3.1.4 Inter-Sandbox Communication

Inter-sandbox communication in Quest-V relies on mes-
sage passing primitives built on shared memory, and
asynchronous event notification mechanisms using Inter-
processor Interrupts (IPIs). IPIs are currently used to com-
municate with remote sandboxes to assist in fault recov-
ery, and can also be used to notify the arrival of mes-
sages exchanged via shared memory channels. Monitors
update extended page table mappings as necessary to es-
tablish message passing channels between specific sand-
boxes. Only those sandboxes with mapped shared pages
are able to communicate with one another. All other sand-
boxes are isolated from these memory regions.

A mailboxdata structure is set up within shared mem-
ory by each end of a communication channel. By default,
Quest-V currently supports asynchronous communication
by polling a status bit in each relevant mailbox to deter-
mine message arrival. Message passing threads are bound
to VCPUs with specific parameters to control the rate of
exchange of information. Likewise, sending and receiving
threads are assigned to higher priority VCPUs to reduce
the latency of transfer of information across a communi-
cation channel. This way, shared memory channels can
be prioritized and granted higher or lower throughput as
needed, while ensuring information is communicated in
a predictable manner. Thus, Quest-V supports real-time
communication between sandboxes without compromis-
ing the CPU shares allocated to non-communicating tasks.

3.1.5 Interrupt Distribution and I/O Management

By default, Quest-V allows interrupts to be delivered di-
rectly to sandbox kernels. Hardware interrupts are deliv-
ered toall sandbox kernels with access to the correspond-
ing device. This avoids the need for interrupt handling
to be performed in the context of a monitor as is typi-
cally done with conventional virtual machine approaches.
Quest-V does not need to do this since complex I/O virtu-
alization is not required. Instead, early demultiplexing in
the sandboxed device drivers determines if subsequent in-
terrupt handling should be processed locally. If that is not
the case, the local sandbox simply discards the interrupt.
We believe this to be less expensive than going through a
dedicated coordinator as is done in Xen [5] and others.

Quest-V uses the I/O APIC found on modern x86 plat-
forms to multicast hardware interrupts toall sandboxes
sharing a corresponding device. The I/O APIC is re-
programmed as necessary to re-route interrupts as part of
fault recovery, when a new sandbox is required to con-
tinue or restore a service. We expect the number of sand-
boxes sharing a device to be relatively low (around 2-4

5

Figure 3: Example VCPU Schedule

cores) so multicasting interrupts should not be an issue.
Aside from interrupt handling, device drivers need to

be written to support inter-sandbox sharing. Certain data
structures have to be duplicated for each sandbox kernel,
while others are shared and protected by synchronization
primitives. For example, with a NIC driver, we dupli-
cate indices into the receive (RX) ring buffer, while shar-
ing both the transmit (TX) and RX buffers between sand-
boxes. Synchronization is used to read and update RX and
TX descriptors in the respective ring buffers. Figure 4
shows an RX ring buffer shared between 4 sandboxes,
with separate indices. Betweent and t + 1, sandboxes
2, 3, and 4 all handle interrupts and advance their indices.
The driver needs to be written so that a slot in the buffer
only becomes ready for DMA data when it is not refer-
enced byany index. Any of the 4 sandboxes can examine
indexes to see if one is lagging above athresholdbehind
the others, as might be the case for a faulty sandbox. A
functioning sandbox can then correct this by advancing
indexes as necessary, or triggering fault recovery.

Figure 4: Example NIC RX Ring Buffer Sharing

The duplication of certain driver data structures, and
synchronization on shared data may impact the perfor-
mance of hardware devices multiplexed between sand-
boxes. However, I/O virtualization technologies to
support device sharing such as SR-IOV [18] are now
emerging, although not commonplace in embedded sys-
tems. Without hardware support, Quest-V’s software-
based shared driver approach is arguably more flexible
than having devices assigned to single sandboxes. While
technologies such as VT-d support I/O passthrough, they
do not allow device sharing.

It is possible that faulty device drivers could issue DMA

transfers to local APIC memory-mapped pages, to trig-
ger arbitrary interrupts. A “storm” of IPIs could then be
dispatched to remote cores, potentially flooding the sys-
tem bus. In our tests to generate as many IPIs as quickly
as possible we did not observe this as a problem, since
there appears to be a limit on the number of interrupts
on the bus itself. Moreover, Quest-V runs all interrupt
handlers as threads bound to time-budgeted VCPUs, so
a burst of interrupts cannot cause denial-of-service. A
VCPU is placed into a background (low) priority class un-
til its budget is replenished.

3.2 Fault Recovery

Quest-V is designed to be robust against software faults
that could potentially compromise a system kernel. As
long as the integrity of one sandbox is maintained it is the-
oretically possible to build a Quest-V multikernel capable
of recovering service functionality online. This contrasts
with a traditional system approach, which may require a
full system reboot if the kernel is compromised by faulty
software such as a device driver.

In this paper, we assume the existence of techniques to
identify faults. Although fault detection mechanisms are
not necessarily straightforward, faults are easily detected
in Quest-V if they generate EPT violations. EPT viola-
tions transfer control to a corresponding monitor where
they may be handled. More elaborate schemes for iden-
tifying faults will be covered in our future work. Here,
we explain the details of how fault recovery is performed
without requiring a full system reboot.

Quest-V allows for fault recovery either in the local
sandbox, where the fault occurred, or in a remote sand-
box that is presumably unaffected. Upon detection of a
fault, a method for passing control to the local monitor is
required. We assume monitors are trusted and have a min-
imal code base. If the fault does not automatically trigger
a VM-Exit, it can be forced by a fault handler issuing an
appropriate instruction.4 An astute reader might assume
that carefully crafted malicious attacks to compromise a
system might try to rewrite fault detection code within a
sandbox, thereby preventing a monitor from ever gaining

4For example, on the x86, thecpuid instruction forces a VM-Exit.

6

control. First, this should not be possible if the fault de-
tection code is presumed to exist in read-only memory,
which should be the case for the sandbox kernel text seg-
ment. This segment cannot be made write accessible since
any code executing within a sandbox kernel will not have
access to the EPT mappings controlling host memory ac-
cess. However, it is still possible for malicious code to ex-
ist in writable regions of a sandbox, including parts of the
data segment. To guard against compromised sandboxes
that lose the capability to pass control to their monitor as
part of fault recovery, certain procedures can be adopted.
One such approach would be to periodically force traps
to the monitor using apreemption timeout[1]. This way,
the fault detection code could itself be within the monitor,
thereby isolated from any possible tampering from a ma-
licious attacker or faulty software component. Many of
these techniques are still under development in Quest-V
and will be considered in our future work.

Assuming that a fault detection event has either trig-
gered a trap into a monitor, or the monitor itself is trig-
gered via a preemption timeout and executes a fault de-
tector, we now describe how the handling phase proceeds.

Local Fault Recovery. In the case of local recovery,
the corresponding monitor is required to release the allo-
cated memory for the faulting components. If insufficient
information is available about the extent of system dam-
age, the monitor may decide to re-initialize the entire local
sandbox, as in the case of initial system launch. Any ac-
tive communication channels with other sandboxes may
be affected, but the remote sandboxes that are otherwise
isolated will be able to proceed as normal.

As part of local recovery, the monitor may decide to
replace the faulting component, or components, with al-
ternative implementations of the same services. For ex-
ample, an older version of a device driver that is perhaps
not as efficient as a recent update, but is more rigorously
tested, may be used in recovery. Such component replace-
ments can lead to system robustness through functional or
implementationdiversity[39]. That is, a component suf-
fering a fault or compromising attack may be immune to
the same fault or compromised behavior if implemented in
an alternative way. The alternative implementation could,
perhaps, enforce more stringent checks on argument types
and ranges of values that a more efficient but less safe im-
plementation might avoid. Observe that alternative rep-
resentations of software components could be resident in
host physical memory, and activated via a monitor that
adjusts EPT mappings for the sandboxed guest.

Remote Fault Recovery. Quest-V also supports the
recovery of a faulty software component in an alterna-
tive sandbox. This may be more appropriate in situations

where a replacement for the compromised service already
exists, and which does not require a significant degree of
re-initialization. While an alternative sandbox effectively
resumes execution of a prior service request, possibly in-
volving a user-level thread migration, the corrupted sand-
box can be “healed” in the background. This is akin to
a distributed system in which one of the nodes is taken
offline while it is being upgraded or repaired.

In Quest-V, remote fault recovery involves the local
monitor identifying a target sandbox. There are many
possible policies for choosing a target sandbox that will
resume an affected service request. However, one sim-
ple approach is to pick any available sandbox in random
order, or according to a round-robin policy. In more com-
plex decision-making situations, a sandbox may be cho-
sen according to its current load. Either way, the local
monitor informs the target sandbox via an IPI. Control is
then passed to a remote monitor, which performs the fault
recovery. Although out of the scope of this paper, infor-
mation needs to be exchanged between monitors about the
actions necessary for fault recovery and what threads, if
any, need to be migrated.

Figure 5: Example NIC Driver Recovery

An example of remote recovery involving a network in-
terface card (NIC) driver is shown in Figure 5. Here, an
IPI is issued from the faulting sandbox to the remote sand-
box via their respective monitors, in order to kick-start
the recovery procedures after the fault has been detected.
For the purposes of our implementation, an arbitrary tar-
get sandbox is chosen. The necessary state information

7

needed to restore service is retrieved from shared memory
using message passing if available. In our simple tests, we
assume that the NIC driver’s state is not recovered, but in-
stead the driver is completely re-initialized. This means
that any prior in-flight requests using the NIC driver will
be discarded.

The major phases of remote recovery are listed in both
the flow chart and diagram of Figure 5. In this example,
the faulting NIC driver overwrites the message channel in
the local sandbox kernel. After receiving an IPI, the re-
mote monitor resumes its sandbox kernel at a point that
re-initializes the NIC driver. The newly selected sandbox
responsible for recovery then redirects network interrupts
to itself. Observe that in general this may not be nec-
essary because interrupts from the network may already
be multicast and, hence, received by the target sandbox.
Likewise, in this example, the target sandbox is capable
of influencing interrupt redirection via an I/O APIC be-
cause of established capabilities granted by its monitor. It
may be the case that a monitor does not allow such ca-
pabilities to be given to its sandbox kernel, requiring the
monitor itself to be responsible for interrupt redirection.

When all the necessary kernel threads and user pro-
cesses are restarted in the remote kernel, the network ser-
vice will be brought up online. In our example, the local
sandbox (with the help of its monitor) will identify the
damaged message channel and try to restore it in step 4.

In the current implementation of Quest-V, we assume
that all recovered services are re-initialized and any out-
standing requests are either discarded or can be resumed
without problems. In general, many software components
may require a specific state of operation to be restored for
correct system resumption. In such cases, we would need
a scheme similar to those adopted in transactional sys-
tems, to periodically checkpoint recoverable state. Snap-
shots of such state can be captured by local monitors at
periodic intervals, or other appropriate times, and stored
in memory outside the scope of each sandbox kernel.

4 Experimental Evaluation

We conducted a series of experiments that compared
Quest-V to both Linux and a non-virtualized Quest sys-
tem. For network experiments, we ran Quest-V on a mini-
ITX machine with a Core i5-2500K 4-core processor, fea-
turing 8GB RAM and a Realtek 8111e NIC. In all other
cases we used a Dell PowerEdge T410 server with an In-
tel Xeon E5506 2.13GHz 4-core processor, featuring 4GB
RAM. Unless otherwise stated, all software threads were
bound to Main VCPUs with 100% utilization.

4.1 Fault Recovery

To demonstrate the fault recovery mechanism of Quest-
V, we intentionally corrupted the NIC driver on the mini-
ITX machine while running a HTTP 1.0-compliant single-
threaded web server in user-space. Our simple web server
was ported to a socket API that we implemented on top
of lwIP. A remote Linux machine runninghttperf at-
tempted to send requests at a rate of 120 per second during
both the period of driver failure and normal operation of
the web server. Request URLs referred to the Quest-V
website, with a size of 17675 bytes.

Figure 6 shows the request and response rate over sev-
eral seconds during which the server was affected by the
faulting driver. The request and response rate recorded by
httperf drops for a brief period while the NIC driver
is re-initialized and the web server is restarted in another
sandbox to the one that failed. Steady-state is reached in
less than 0.5s of driver failure. This is significantly faster
than a system reboot, which can take over a minute to
restart the network service.

 60

 80

 100

 120

 140

 0 0.5 1 1.5 2 2.5 3 3.5

R
eq

ue
st

s
(R

ep
lie

s)
 /

S
ec

on
d

Time (Seconds)

Request
Reply

Figure 6: Web Server Recovery

Fault recovery can occur locally or remotely. In this
experiment, we saw little difference in the cost of ei-
ther approach. Either way, the NIC driver needs to be
re-initialized. This either involves re-initialization of the
same driver that faulted in the first place, or an alterna-
tive driver that is tried and tested. As fault detection is not
in the scope of this paper, we triggered the fault recov-
ery event manually by assuming an error occurred. Aside
from optional replacement of the faulting driver, and re-
initialization, the network interface needs to be restarted.
This involves re-registering the driver with lwIP and as-
signing the interface an IP address.

The time for different phases of kernel-level recovery
is shown in Table 1. The only added cost not shown is
to restart the web server but Figure 6 shows this not to

8

be expensive. For most system components, we expect
re-initialization to be the most significant recovery cost.

Phases
CPU Cycles

Local Recovery Remote Recovery
VM-Exit 885
Driver Replacement 10503 N/A
IPI Round Trip N/A 4542
VM-Enter 663
Driver Re-initialization 1.45E+07
Network I/F Restart 78351

Table 1: Overhead of Different Phases in Fault Recovery

4.2 Forkwait Microbenchmark

In Quest-V, sandboxes spend most of their life-time in
guest mode, and system calls that trigger context switches
will not induce VM-Exits to a monitor. Consequently,
we tried to measure the overhead of hardware virtualiza-
tion on normal system calls for Intel x86 processors. We
chose theforkwait microbenchmark [3] because it in-
volves two relatively sophisticated system calls, (fork
andwaitpid), involving both privilege level switches
and memory operations.

40000 new processes were forked in each set of exper-
iments and the total CPU cycles were recorded. We then
compared the performance of Quest-V against a version
of Quest without hardware virtualization enabled, as well
as a Linux 2.6.32 kernel in both 32- and 64-bit configura-
tions. Results in Table 2 suggest that hardware virtualiza-
tion does not add any obvious overhead to Quest-V system
calls. Moreover, both Quest and Quest-V took less time
than Linux to complete their executions.

4.3 Address Translation Overhead

To show the costs of address translation as described in
Figure 2, we measured the latency to access a number of
data and instruction pages in a guest user-space process.
Figures 7 and 8 show the execution time of a process
bound to a Main VCPU with a20ms budget every100ms.
Instruction and data references to consecutive pages are
4160 bytes apart to avoid cache aliasing effects. The re-
sults show the average cost to access working sets taken
over 10 million iterations. In the cases where there is a
TLB flush or a VM exit, these are performed each time
the set of pages on the x-axis has been referenced.

For working sets less than512 pages Quest-V (Base
case) performs as well as a non-virtualized version of

Quest Quest-V Linux32 Linux64
CPU Cycles 9.03E+09 9.20E+09 9.37E+09 1.29E+10

Table 2: Forkwait Microbenchmark

Quest. Extra levels of address translation with extended
paging only incur costs above the two-level paging of a
32-bit Quest virtual memory system when address spaces
are larger than512 pages. For embedded systems, we
do not see this as a limitation, as most applications will
have smaller working sets. As can be seen, the costs of
a VM-Exit are equivalent to a TLB flush, but Quest-V
avoids this by operating more commonly in theQuest-V
base case. Hence, extended paging does not incur signif-
icant overheads under normal circumstances, as the hard-
ware TLBs are being used effectively.

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7 8
C

P
U

 C
yc

le
s

(x
10

00
)

Number of Pages (x100)

Quest-V VM Exit
Quest-V TLB Flush

Quest TLB Flush
Quest-V Base

Quest Base

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7 8
C

P
U

 C
yc

le
s

(x
10

00
)

Number of Pages (x100)

Quest-V VM Exit
Quest-V TLB Flush

Quest TLB Flush
Quest-V Base

Quest Base

Figure 7: Data TLB Performance

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8

C
P

U
 C

yc
le

s
(x

10
00

)

Number of Pages (x100)

Quest-V VM Exit
Quest-V TLB Flush

Quest TLB Flush
Quest-V Base

Quest Base

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8

C
P

U
 C

yc
le

s
(x

10
00

)

Number of Pages (x100)

Quest-V VM Exit
Quest-V TLB Flush

Quest TLB Flush
Quest-V Base

Quest Base

Figure 8: Instruction TLB Performance

4.4 Interrupt Distribution and Handling

Besides system calls, device interrupts also require con-
trol to be passed to a kernel. We therefore conducted
a series of experiments to show the overheads of inter-
rupt delivery and handling in Quest-V. For comparison,
we recorded the number of interrupts that occurred and
the total round trip time to process 30000 ping packets on
both Quest and Quest-V machines. In this case, the ICMP
requests were issued in 3 millisecond intervals from a re-
mote machine. The results are shown in Table 3.

Notice that in Quest, all the network interrupts are di-
rected to one core and in Quest-V, we deliver network in-

9

Quest Quest-V
Interrupts 30004 30003
Round-trip time (ms) 5737 5742

Table 3: Interrupt Distribution and Handling Overhead

terrupts to all cores but only one core (i.e., one sandbox
kernel) actually handles them. Each sandbox kernel in
Quest-V performs early demultiplexing to identify the tar-
get for interrupt delivery, discontinuing the processing of
interrupts that are not meant to be locally processed. Con-
sequently, the overhead with Quest-V also includes dis-
patching of interrupts from the I/O APIC. However, we
can see from the results that the performance difference
between Quest and Quest-V is almost negligible, meaning
neither hardware virtualization nor multicasting of inter-
rupts is prohibitive. Here, Quest-V does not require in-
tervention of a monitor to process interrupts. Instead, in-
terrupts are directed to sandbox kernels according to rules
setup in corresponding virtual machine control structures.

4.5 Inter-Sandbox Communication

The message passing mechanism in Quest-V is built on
shared memory. While we will consider NUMA effects
in the future, they are arguably less important for the em-
bedded systems we are targeting. Instead of focusing on
memory and cache optimization, we tried to study the im-
pact of scheduling on message passing in Quest-V.

We setup two kernel threads in two different sandbox
kernels and assigned a VCPU to each of them. One ker-
nel thread used a 4KB shared memory message passing
channel to communicate with the other thread. In the first
case, the two VCPUs were the highest priority with their
respective sandbox kernels. In the second case, the two
VCPUs were assigned lower utilizations and priorities,
to identify the effects of VCPU parameters (and schedul-
ing) on the message sending and receiving rates. In both
cases, the time to transfer messages of various sizes across
the communication channel was measured. Note that
the VCPU scheduling framework ensures that all threads
are guaranteed service as long as the total utilization of
all VCPUs is bounded according to rate-monotonic the-
ory [22]. Consequently, the impacts of message passing
on overall system performance can be controlled and iso-
lated from the execution of other threads in the system.

Figure 9 shows the time spent exchanging messages
of various sizes, plotted on a log scale.Quest-V Hiis
the plot for message exchanges involving high-priority
VCPUs having100ms periods and 50% utilizations for
both the sender and receiver.Quest-V Lowis the plot for
message exchanges involving low-priority VCPUs having

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

26 28 210 212 214 216 218 220

T
im

e
(M

ill
is

ec
on

ds
)

Message Size (bytes)

Quest-V Hi
Quest-V Low

0.000

0.005

0.010

0.015

0.020

26 27 28 29 210 211

Figure 9: Message Passing Microbenchmark

100ms periods and 40% utilizations for both the sender
and receiver. In the latter case, a shell process was bound
to a highest priority VCPU. As can be seen, the VCPU
parameters have an effect on message transfer times.

In our experiments, the time spent for each size of
message was averaged over a minimum of 5000 trials to
normalize the scheduling overhead. The communication
costs grow linearly with increasing message size, because
they include the time to access memory.

4.6 Isolation

To demonstrate fault isolation in Quest-V, we created a
scenario that includes both message passing and network
service across 4 different sandboxes. Specifically, sand-
box 1 has a kernel thread that sends messages through
private message passing channels to sandbox 0, 2 and 3.
Each private channel is shared only between the sender
and specific receiver, and is guarded by EPTs. In addition,
sandbox 0 also has a network service running that handles
ICMP echo requests. After all the services are up and
running, we manually break the NIC driver in sandbox
0, overwrite sandbox 0’s message passing channel shared
with sandbox 1, and try to wipe out the kernel memory of
other sandboxes to simulate a driver fault. After the driver
fault, sandbox 0 will try to recover the NIC driver along
with both network and message passing services running
in it. During the recovery, the whole system activity is
plotted in terms of message reception rate and ICMP echo
reply rate in all available sandboxes and the results are
shown in Figure 10.

In the experiment, sandbox 1 broadcasts messages to
others at 50 millisecond intervals, while sandbox 0, 2
and 3 receive at 100, 800 and 1000 millisecond intervals.
Also, another machine in the local network sends ICMP
echo requests at 500 millisecond intervals to sandbox 0.
All message passing threads are bound to Main VCPUs

10

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30 35 40 45 50

M
sg

s/
IC

M
P

 P
kt

s
R

ec
ei

ve
d

Time (Seconds)

SB0
SB2
SB3

ICMP0
 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30 35 40 45 50

M
sg

s/
IC

M
P

 P
kt

s
R

ec
ei

ve
d

Time (Seconds)

SB0
SB2
SB3

ICMP0

Figure 10: Sandbox Isolation

with 100ms periods and 20% utilization. The network
driver thread is bound to an I/O VCPU with 10% utiliza-
tion and10ms period.

Results show that an interruption of service happened
for both message passing and network packet processing
in sandbox 0, but all the other sandboxes were unaffected.
This is because of memory isolation between sandboxes
enforced by EPTs. When the “faulty” driver in sandbox 0
tries to overwrite memory of the other sandboxes, it sim-
ply traps into the local monitor because of a memory vi-
olation. Consequently, the only memory that the driver
can wipe out is only the writable memory in sandbox 0.
Hence all the monitors and other sandboxes will remain
protected from this failure.

4.7 Shared Driver Performance

We implemented a shared driver in Quest-V for a single
NIC device, providing a separate virtual interface for each
sandbox requiring access. This allows for each sandbox to
have its own IP address and even a virtual MAC address
for the same physical NIC.

We compared the performance of our shared driver de-
sign to the I/O virtualization adopted by Xen 4.1.2, both
para-virtualized (PVM) and hardware-virtualized (HVM).
We used an x8664 root-domain (Dom0) for Xen, based
on Linux 3.1. For guests, and non-virtualization cases, we
also used Ubuntu Linux 10.04 (32-bit kernel 2.6.32).

Figure 11 shows UDP throughput measurements using
netperf, which was ported to the Quest-V and non-
virtualized Quest-SMP systems. Up to 4netperf
clients were run in separate guest domains, or sandboxes,
for the virtualized systems. For Xen, each guest had one
VCPU that was free to run on any processor. Similarly, for
non-virtualized cases, the clients ran as separate threads
on arbitrary processors. Each client produced a stream of
16KB messages.

Quest-V shows better performance than other virtual-

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Quest-V Linux Xen (PVM) Xen (HVM)

U
D

P
 T

hr
ou

gh
pu

t (
M

bp
s)

1xnetperf
2xnetperf
4xnetperf

Quest-SMP

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Quest-V Linux Xen (PVM) Xen (HVM)

U
D

P
 T

hr
ou

gh
pu

t (
M

bp
s)

1xnetperf
2xnetperf
4xnetperf

Quest-SMP

Figure 11: UDP Throughput

ized systems, although it is inferior to a non-virtualized
Linux system for network throughput. We attribute this
in part to the virtualization overheads but also to our sys-
tem not yet being optimized. Future work will focus on
performance tuning our system to reach throughput val-
ues closer to Linux, but initial results are encouraging.
Note that the increases in throughput for all cases of in-
creasednetperf instances, except for paravirtualized
Xen (Xen (PVM)), appear to be because of the increased
traffic being generated by the clients. Xen is apparently
sensitive to the VCPU utilization for its communicating
threads [41, 23].

5 Related Work

The concept of a multikernel is featured in Barrelfish[6],
which has greatly influenced our work. Barrelfish repli-
cates system state rather than sharing it, to avoid the costs
of synchronization and management of shared data struc-
tures. As with Quest-V, communication between ker-
nels is via explicit message passing, using shared mem-
ory channels to transfer cache-line-sized messages. In
contrast to Barrelfish, Quest-V uses virtualization mech-
anisms to partition separate kernel services as part of our
goal to develop high-confidence systems.

Systems such as Hive [10] and Factored OS (FOS) [36]
also take the view of designing a system as a distributed
collection of kernels on a single chip. FOS is primar-
ily designed for scalability on manycore systems with
potentially 100s to 1000s of cores. Each OS service is
factored into a set of communicating servers that collec-
tively operate together. In FOS, kernel services are parti-
tioned across spatially-distinct servers executing on sep-
arate cores, avoiding contention on hardware resources
such as caches and TLBs. Quest-V differs from FOS in its
primary focus, since the former is aimed at fault recovery
and dependable computing. Moreover, Quest-V manages

11

resources across both space and time, providing real-time
resource management that is not featured in the scalable
collection of microkernels forming FOS.

Hive [10] is a standalone OS that targets features of the
Stanford FLASH processor to assign groups of process-
ing nodes tocells. Each cell represents a collection of ker-
nels that communicate via message exchanges. The whole
system is partitioned so that hardware and software faults
are limited to the cells in which they occur. Such fault
containment is similar to that provided by virtual machine
sandboxing, which Quest-V relies upon. However, unlike
Quest-V, Hive enforces isolation using special hardware
firewall features on the FLASH architecture.

There have been several notable systems relying on vir-
tualization techniques to enforce logical isolation and im-
plement scalable resource management on multicore and
multiprocessor platforms. Disco [9] is a virtual machine
monitor (VMM) that was key to the revival in virtualiza-
tion in the 1990s. It supports multiple guests on multi-
processor platforms. Memory overheads are reduced by
transparently sharing data structures such as the filesys-
tem buffer cache between virtual machines.

Cellular Disco [15] extends the Disco VMM with sup-
port for hardware fault containment. As with Hive, the
system is partitioned into cells, each containing a copy
of the monitor code and all machine memory pages be-
longing to the cell’s nodes. A failure of one cell only af-
fects the VMs using resources in the cell. Quest-V does
not focus explicitly on hardware fault containment but its
system partitioning into separate kernels means that it is
possible to support such features.

Xen[5] is a subsequent VMM that uses a special
driver domain and (now optional) paravirtualization tech-
niques [38] to support multiple guests. In contrast to
VMMs such as Disco and Xen, Quest-V operates as a sin-
gle system with sandbox kernels potentially implementing
different services that are isolated using memory virtual-
ization. Quest-V also avoids the need for a split-driver
model involving a special domain (Dom0 in Xen) to han-
dle device interrupts.

Helios [26] is another system that adopts multiplesatel-
lite kernels, which execute on heterogeneous platforms,
including graphics processing units, network interface
cards, or specific NUMA nodes. Applications and ser-
vices can be off-loaded to special purpose devices to re-
duce the load on a given CPU. Helios builds upon Sin-
gularity [17] and all satellite microkernels communicate
via message channels. Device interrupts are directed to a
coordinatorkernel, which restricts the location of drivers.

Helios, Singularity, and theSealed Process Architec-
ture [17] enforce dependability and safety using language

support based on C#. In Quest-V, virtualization tech-
niques are used to isolate software components. While
this may seem more expensive, we have seen on modern
processors with hardware virtualization support that this
is not the case.

In other work, Corey[8] is a library OS providing an in-
terface similar to the Exokernel[13], and which attempts
to address the bottlenecks of data sharing across modern
multicore systems. Cores can be dedicated to applications
which then communicate via shared memory IPC. Quest-
V similarly partitions system resources amongst sandbox
kernels, but in a manner that ensures isolation using mem-
ory virtualization.

Finally, Quest-V has similarities to systems that sup-
port self-healing, such as ASSURE [29] and Vigilant [27].
Such self-healing systems contrast with those that attempt
to verify their functional correctness before deployment.
seL4 [21] attempts to verify that faults will never occur at
runtime, but as yet has not been developed for platforms
supporting parallel execution of threads (e.g., multicore
processors). Regardless, verification is only as good as the
rules against which invariant properties are being judged,
and as a last line of defense Quest-V is able to recover at
runtime from unforeseen errors.

6 Conclusions and Future Work

This paper describes a virtualized multikernel, called
Quest-V. Extended page tables are used to isolate sand-
box kernels across different cores in a multicore system.
This leads to a distributed system on a chip that is robust
to software faults. While operational sandboxes proceed
as normal, faulting sandboxes can be recovered online us-
ing either local or remote fault recovery techniques.

Experiments show that hardware virtualization does not
add significant overheads in our design, as VM-Exits into
monitor code are only needed to handle software faults
and update extended page tables. Unlike conventional hy-
pervisors that virtualize underlying hardware for use by
multiple disparate guests, Quest-V assumes all sandboxes
are operating together as one collective system. Each
sandbox kernel is responsible for scheduling of its threads
and VCPUs onto local hardware cores. Similarly, memory
allocation and I/O management are handled within each
sandbox without involvement of a monitor.

In this paper, we assume the existence of a fault de-
tector that transfers control to a local monitor for each
sandbox. While such transfers can be triggered by EPT
violations, we will investigate more advanced techniques
for fault detection. Similarly, we will investigate policies
and mechanisms for online recovery of faults requiring
the continuation of stateful tasks. Some method of check-

12

pointing and transactional recovery might be appropriate
in such cases. Although our fault recovery schemes thus
far require re-initialization of a service, we feel this is still
better in many cases than a full system reboot.

Since Quest-V is a system built from scratch, it lacks
the rich APIs and libraries found in modern systems. This
limits our ability to draw comparisons with current OSes,
as evidenced by our time spent portingnetperf and a
socket API to Quest-V. We will continue to add more ex-
tensive features, while investigating techniques to address
security as well as safety violations. Similarly, more ad-
vanced multi-threaded applications will be developed, to
study migration between sandbox kernels. Notwithstand-
ing, we believe Quest-V’s design could pave the way for
future high-confidence systems, suitable for emerging ap-
plications in safety-critical, real-time and embedded do-
mains. NB: The source code is available on request.

References

[1] Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3: System Programming
Guide. See www.intel.com.

[2] L. Abeni, G. Buttazzo, S. Superiore, and S. Anna.
Integrating multimedia applications in hard real-
time systems. InProceedings of the 19th IEEE Real-
time Systems Symposium, pages 4–13, 1998.

[3] K. Adams and O. Agesen. A comparison of software
and hardware techniques for x86 virtualization. In
Proceedings of the 12th Intl. Conf. on Architectural
Support for Programming Languages and Operating
Systems, pages 2–13, New York, NY, USA, 2006.

[4] G. Banga, P. Druschel, and J. C. Mogul. Resource
Containers: A new facility for resource management
in server systems. InProceedings of the 3rd USENIX
Symposium on Operating Systems Design and Im-
plementation, 1999.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. InProceedings
of the 19th ACM Symposium on Operating Systems
Principles, pages 164–177, 2003.

[6] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The Multikernel: A new OS architec-
ture for scalable multicore systems. InProceedings
of the 22nd ACM Symposium on Operating Systems
Principles, pages 29–44, 2009.

[7] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. Fiuczynski, and B. E. Chambers. Extensibility,
safety, and performance in the SPIN operating sys-
tem. In Proceedings of the 15th ACM Symposium
on Operating Systems Principles, pages 267–284,
1995.

[8] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F.
Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu,
Y. hua Dai, Y. Zhang, and Z. Zhang. Corey: An
operating system for many cores. InProceedings of
the 8th USENIX Symposium on Operating Systems
Design and Implementation, pages 43–57, 2008.

[9] E. Bugnion, S. Devine, and M. Rosenblum. Disco:
Running commodity operating systems on scalable
multiprocessors. InProceedings of the 16th ACM
Symposium on Operating Systems Principles, pages
143–156, 1997.

[10] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri,
D. Teodosiu, and A. Gupta. Hive: Fault containment
for shared-memory multiprocessors. InProceedings
of the 15th ACM Symposium on Operating Systems
Principles, pages 12–25, 1995.

[11] T. Chiueh, G. Venkitachalam, and P. Pradhan. Inte-
grating segmentation and paging protection for safe,
efficient and transparent software extensions. In
Proceedings of the 17th ACM Symposium on Oper-
ating Systems Principles, pages 140–153, 1999.

[12] Z. Deng, J. W. S. Liu, and J. Sun. A scheme for
scheduling hard real-time applications in open sys-
tem environment. InProceedings of the 9th Euromi-
cro Workshop on Real-Time Systems, 1997.

[13] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: An operating system architecture for
application-level resource management. InProceed-
ings of the 15th ACM Symposium on Operating Sys-
tems Principles, pages 251–266, 1995.

[14] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. C. Necula. XFI: Software guards for system ad-
dress spaces. InProceedings of the 7th USENIX
Symposium on Operating System Design and Imple-
mentation, November 6-8 2006.

[15] K. Govil, D. Teodosiu, Y. Huang, and M. Rosen-
blum. Cellular Disco: Resource management using
virtual clusters on shared-memory multiprocessors.
In Proceedings of the 17th ACM Symposium on Op-
erating Systems Principles, pages 154–169, 1999.

13

[16] NITRD Working Group: IT Frontiers for a New
Millenium: High Confidence Systems, April 1999.
http://www.nitrd.gov/pubs/bluebooks/2000/hcs.html.

[17] G. Hunt, M. Aiken, M. F̈ahndrich, C. Hawblitzel,
O. Hodson, J. Larus, S. Levi, B. Steensgaard,
D. Tarditi, and T. Wobber. Sealing OS processes to
improve dependability and safety. InProceedings
of the 2nd ACM SIGOPS European Conference on
Computer Systems, pages 341–354, 2007.

[18] PCI-SIG SR-IOV primer. www.intel.com.

[19] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Ch-
eney, and Y. Wang. Cyclone: A safe dialect of C. In
Proceedings of the USENIX Annual Technical Con-
ference, pages 275–288, Monterey, CA, June 2002.

[20] S. Kim, D. Chandra, and Y. Solihin. Fair cache shar-
ing and partitioning in a chip multiprocessor archi-
tecture. InParallel Architectures and Compilation
Techniques (PACT ’04), October 2004.

[21] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. seL4: Formal verification of an OS
kernel. In Proceedings of the 22nd ACM Sympo-
sium on Operating Systems Principles, pages 207–
220, 2009.

[22] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time environ-
ment.Journal of the ACM, 20(1):46–61, 1973.

[23] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimiz-
ing network virtualization in Xen. InProceedings
of the USENIX Annual Technical Conference, pages
15–28, 2006.

[24] G. Morrisett, K. Crary, N. Glew, D. Grossman,
F. Smith, D. Walker, S. Weirich, and S. Zdancewic.
TALx86: A realistic typed assembly language. In
ACM SIGPLAN Workshop on Compiler Support for
System Software, pages 25–35, Atlanta, GA, USA,
May 1999.

[25] G. Morrisett, D. Walker, K. Crary, and N. Glew.
From System F to typed assembly language.ACM
Transactions on Programming Languages and Sys-
tems, 21(3):527–568, 1999.

[26] E. B. Nightingale, O. Hodson, R. McIlroy, C. Haw-
blitzel, and G. Hunt. Helios: Heterogeneous mul-
tiprocessing with satellite kernels. InProceedings

of the 22nd ACM Symposium on Operating Systems
Principles, pages 221–234, 2009.

[27] D. Pelleg, M. Ben-Yehuda, R. Harper,
L. Spainhower, and T. Adeshiyan. Vigilant:
Out-of-band detection of failures in virtual ma-
chines.SIGOPS Oper. Syst. Rev., 42:26–31, January
2008.

[28] T. A. R. Wahbe, S. Lucco and S. Graham. Software-
based fault isolation. InProceedings of the 14th
ACM Symposium on Operating Systems Principles,
December 1993.

[29] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot,
J. Nieh, and A. D. Keromytis. ASSURE: Auto-
matic software self-healing using rescue points. In
Proceedings of the 14th Intl. Conf. on Architectural
Support for Programming Languages and Operating
Systems, pages 37–48, 2009.

[30] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task
scheduling for hard real-time systems.Real-Time
Systems Journal, 1(1):27–60, 1989.

[31] M. Spuri, G. Buttazzo, and S. S. S. Anna. Schedul-
ing aperiodic tasks in dynamic priority systems.
Real-Time Systems, 10:179–210, 1996.

[32] M. Stanovich, T. P. Baker, A.-I. Wang, and M. G.
Harbour. Defects of the POSIX sporadic server and
how to correct them. InProceedings of the 16th
IEEE Real-Time and Embedded Technology and Ap-
plications Symposium, 2010.

[33] M. Swift, B. Bershad, and H. Levy. Improving the
reliability of commodity operating systems. InPro-
ceedings of the 19th ACM Symposium on Operating
Systems Principles, 2003.

[34] M. M. Swift, B. N. Bershad, and H. M. Levy. Re-
covering device drivers. InProceedings of the 8th
USENIX Symposium on Operating Systems Design
and Implementation, pages 1–16, 2004.

[35] V. Uhlig, U. Dannowski, E. Skoglund, A. Haeberlen,
and G. Heiser. Performance of address-space mul-
tiplexing on the Pentium. Technical Report 2002-1,
University of Karlsruhe, Germany, 2002.

[36] D. Wentzlaff and A. Agarwal. Factored operating
systems (FOS): The case for a scalable operating
system for multicores.SIGOPS Operating Systems
Review, 43:76–85, April 2009.

14

[37] R. West, P. Zaroo, C. A. Waldspurger, and X. Zhang.
Online cache modeling for commodity multicore
processors.Operating Systems Review, 44(4), De-
cember 2010. Special VMware Track.

[38] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
performance in the Denali isolation kernel. InPro-
ceedings of the 5th USENIX Symposium on Operat-
ing System Design and Implementation, December
2002.

[39] D. Williams, W. Hu, J. Davidson, J. Hiser, J. Knight,
and A. Nguyen-Tuong. Security through diversity.
Security & Privacy, IEEE, 7:26–33, Jan 2009.

[40] R. Wojtczuk and J. Rutkowska. Following the white
rabbit: Software attacks against Intel VT-d technol-
ogy, April 2011. Inivisible Things Lab.

[41] Xen Network Throughput and Performance Guide.
http://wiki.xen.org/wiki/NetworkThroughput-
Guide.

[42] XXXX. Omitted for blind review.

[43] Y. Zhang and R. West. Process-aware interrupt
scheduling and accounting. InProceedings of the
27th IEEE Real Time Systems Symposium, Decem-
ber 2006.

[44] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Ad-
dressing shared resource contention in multicore
processors via scheduling. InIn Proceedings of the
15th Intl. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
129–141, March 2010.

15

