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Abstract see two to four cores per package in embedded and desk-

top platforms, and higher core counts in server-class ma-
This paper outlines the design of ‘Quest-V’, which is imehines. This increase in on-chip core count is driven in
plemented as a collection of separate kernels operatinggart by trade-offs in power and computational demands.
gether as a distributed system on a chip. Quest-V uses Many of these multicore processors also feature hard-
tualization techniques to isolate kernels and prevent logaare virtualization technology (e.g., Intel VT and AMD-
faults from affecting remote kernels. A virtual maching CPUSs). Virtualization has re-emerged in the last decade
monitor for each kernel keeps track of extended page é&-a way to consolidate workloads on servers, thereby pro-
ble mappings that control immutable memory access &4ding an effective means to increase resource utilization
pabilities. This leads to a high-confidence multikernel aprile still ensuring logical isolation between guest vattu
proach, where failures of system sub-components do p@dchines.

render the entire system inoperable. Communication .iSHardware advances with respect to multicore technol-

supported between kernels using both inter—processor&n- have not been met by software developments. In par-
terrupts (IF.)IS.) and shgred memory regions for messe*@%lar, multicore processors pose significant challenges
passing. Similarly, device driver data structures areeshar

able between kernels to avoid the need for complex |R5Jerat_|ng system design [8, 6, 36]. Not only is it difficult
10 design software systems that scale to large numbers of

virtualization, or communication with a dedicated ker- . . .
. L rocessing cores, there are numerous micro-architectural
nel responsible for I/O. In Quest-V, device interrupts afe . i
. i i . factors that affect software execution, leading to re-
delivered directly to a kernel, rather than via a monitg . . . .
. o .duced efficiency and unpredictability. Shared on-chip

that determines the destination. Apart from bootstrappin " .
. . céches [20, 37], memory bus bandwidth contention [44],
each kernel, handling faults and managing extended page . : . -
. .S rdware interrupts [43], instruction pipelines, hardsvar
tables, the monitors are not needed. This differs from con- A .
. . . . . refetchers, amongst other factors, all contribute to-vari
ventional virtual machine systems in which a central moh:

itor, or hypervisor, is responsible for scheduling and m ability in task execution times. This is particularly prob-

epatic for real-time and embedded systems, where task
agement of host resources amongst a set of guest ker .

) "§eadlines must be met.
In this paper we show how Quest-V can support online

fault isolation and recovery technigques that are not possi-Coupled with the challenges posed by multicore pro-
ble with conventional systems. We also show how mermessors are the inherent complexities in modern operat-
ory virtualization and 1/0 management do not add undirkg systems. Such complex interactions between software
overheads to the overall system performance. components inevitably lead to program faults and poten-
tial compromises to system integrity. Various faults may
occur due to memory violations (e.g., stack and buffer
1 Introduction overflows, null pointer dereferences and jumps or stores
to out of range addresses [28, 14]), CPU violations (e.g.,
Multicore processors are now ubiquitous in today’s micrgtarvation and deadlocks), and I/O violations (e.g., mis-
processor and microcontroller industry. It is common tmanagement of access rights to files and devices). Device



drivers, in particular, are a known source of potential davirtualization to isolate kernels and system components.
gers to operating systems, as they are typically written Bgction 5 describes related work, while conclusions and
third party sources and usually execute with kernel prifuture work are discussed in Section 6.

ileges. To address this, various researchers have devised

techniques to verify the correctness of drivers, or to sand- . .

box them from the rest of the kernel [33, 34]. 2 Design Rationale

In this paper, we present a new system design that uses
both virtualization capabilities and the redundancy efter Quest-V is centered around three main goals: safety, pre-
by multiple processing cores, to develop a real-time syd#ictability and efficiency. Quest-V is intended for safety-
tem that is resilient to software faults. Our system, call&#tical application domains, requiring high confidence in
‘Quest-V' is designed as a multikernel [6], or distributetheir operation [16]. Target applications include those
system on a chip. Extended page tables (EPTsplate emerging in healthcare, avionics, automotive systems,
separate kernel images in physical memory. These p&#eory automation, robotics and space exploration. In
tables map each kernel's ‘guest’ physical memory to hg#tch cases, the system requires real-time responsiveness
(or machine) physical memory. Changes to protection bigstime-critical events, to prevent potential loss of liees
within EPTs can only be performed by a trusted morfquipment. Similarly, advances in fields such as cyber-
tor associated with the kernel on the corresponding cop8ysical systems means that more sophisticated OSes be-
This ensures any |||ega| memory accesses (e_g_, Write)&nd those traditionally found in real-time and embedded
tempts on read-only pages) within a kernel are caught @mputing are now required. With the emergence of off-
the corresponding monitor. Our system has similaritiestftg-shelf and low-power processors now supporting mul-
the Barrelfish multikernel, while also using virtualizatio tiple cores and hardware virtualization, it seems appfopri
similar to systems such as Xen [5]. We differ from trsate that these will become commonplace within this class
ditional virtualized systems [9] by avoiding monitor inOf systems. In fact, the ARM Cortex A15 is expected
tervention where possible, except for updating EPTs aldfeature virtualization capabilities, on a processingeco
handling faults. typically designed for embedded systems.

We show how Quest-V does not incur significant oper- While safety is a key goal, we assume that users of our
ational overheads compared to a non-virtualized versigystem are mostly trusted. That is, they are not expected
of our system, simply called Quest, designed for SMP subject the system to malicious attacks, with the in-
platforms. We observe that communication, interrupt hai@nt of breaching security barriers. Instead, our focus on
dling1 thread Schedu”ng and System call costs are on ﬁafety is concerned with the preVention of software faults.
with the costs of conventional SMP systems, with the afhile others have used techniques such as software fault
vantage that Quest-V can tolerate system component fiplation [14, 28], type-safe languages [25, 24, 19, 7], and
ures without the need for reboots. hardware features such as segmentation [11, 35], Quest-

We show how Quest-V can recover from compone}‘{tuses virtualization _techniques to provide fault isolatio
failure, using a web server in the presence of a misgdotably, Quest-V relies on EPTs to separate system soft-
having network device driver. Both local and remote kef{areé components operating as a collection of services in
nel recovery strategies are described. This serves a@4listributed system on a chip.
example of the ‘self-healing’ characteristics of Quest-V,
with online fault recovery being useful in situations wher, .
high-confidence (or hig% avai?ability) is important. Thi?’ QueSt'V Architecture
is typically the case with many real-time and embedded . i ) i
safety-critical systems found in healthcare, avionics; f&* Ngh-level overview of the Quest-V architecture is

tory automation and automotive systems, for example. ShOWn in Figure 1. A single hypervisor is replaced by a
sreparate trusted monitor for each sandbox. Quest-V uses

In the following section we describe the rationale fo mory virtualization n intearal desian feature. t
the design of Quest-V. This is followed by a descriptiorr‘ﬁ1e ory virtualization as a egral gesign feaiure, to

of the architecture in Section 3. An experimental evaljcrarate sub-system components into distinct sandboxes.
ation of the system is provided in Section 4. Here eThe Quest-\{ architecture supports sandbox k_ernels that
show the overheads of online device driver recovery\%?ve both replicated and complementary services. That

a network device, along with the costs of using hardware S°M€ sandboxes may ha\_/e identical kernel functional-
ity, while others partition various system components to

Lntel uses the term “EPT”, while AMD refers to them as NestefPr™M an a_syr_nmetric configuration. The _eXtent to which
Page Tables (NPTs). We use the term EPT for consistency. functionality is separated across kernels is somewhat con-
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Figure 1: Quest-V Architecture Overview

3.1 System Implementation

figurable in the Quest-V design. In our initial implemen- ) . )
tation, each sandbox kernel replicates most functionaligtest-V is currently implemented as a 32-bit x86 sys-
offering a private version of the corresponding services@M: targeting embedded rather than server domains. We
its local application threads. Certain functionality isp Plan to port Quest-V to the ARM Cortex A1S when it be-
ever, shared across system components. In particular,GRE'€S available. Using EPTs, each sandbox virtual ad-
share certain driver data structures across sandBoxes dress space is mapped to its own host memory region.
allow 1/0 requests and responses to be handled locally©Only the BIOS, certain driver data structures, and com-

Quest-V allowsany sandbox to be configured for cormunication chann(_els are _shared across sandboxes, while
responding device interrupts, rather than have a dedicaddlpther functionality is prlyately mapped. .
sandbox be responsible for all communication with that Each sandbox kernel image is mapped to physical
device. This greatly reduces the communication and cR€MOrY after the region reserved for the system BIOS,
trol paths necessary for /O requests from applicatioR§9iNning from the low 1MB. While sandbox kernels can
in Quest-V. It also differs from the split-driver approacﬁha_re devices and_ corresponding driver data structures, a
taken by systems such as Xen, that require all device fif2Vice can be dedicated to a sandbox for added safety.
terrupts to be channeled through a special driver domain BY default, Quest-V allows delivery of interrupts di-

Sandboxes that do not require access to shared dev[ESLY t0 sandbox kernels, where drivers are implemented.
are isolated from unnecessary drivers and associated SE1Y if heightened security is needed are drivers mapped
vices. Moreover, a sandbox can be provided with its o monitors. We are still investigating the implications of

private set of devices and drivers, so if a software failufiS In terms of performance costs.
occurs in one driver, it will not necessarily affect all athe JUSt @s hardware devices can be shared between sand-

sandboxes. In fact, if a driver experiences a fault then R8X kernels, a process that does not require strict memory
effects are limited to the local sandbox and the data strpEOtection can be loaded into a user space region accessi-
tures shared with other sandboxes. Outside these sh&{§cross sandboxes. This reduces the cost of process mi-
data structures, remote sandboxes (including all mopito@§ation and inter-process communication. However, in the
are protected by extended page tables. current Quest—\{ sy;tem, we do not. suppor’g shar'ed user-
Quest-V allows each sandbox kernel to be configuredScBa(_:es for application processes, _mstead isolating thgm
operate on a chosen subset of CPUs,aves This is sim- Wlth_ln the local sandbox. Whlle this makes process mi-
ilar to how Corey partitions resources amongst app”C%r_atlon more cumbers_ome, it prevents kernel faults in one
tions [8]. In our current approach, we assume each safgdPox from corrupting processes in others.
box kernel is associated with one physical core since that
simplifies local (sandbox) scheduling and allows for reld-1.1 Hardware Virtualization Support

tively easy enforcem.ent of service guaranteeg using a.v?ﬂjest—v utilizes the hardware virtualization support kvai
ant (.)f rqte-monotomc scheduI!ng [22]. Notwﬂhstandm%,ble in most of the current x86 and the next generation
application threads can b_e migrated betv_ve_en sandbo processors to encapsulate each sandbox in a sepa-
as part of a load balancing strategy. = Similarly, mumr'ate virtual machine. As with conventional hypervisors,

threaded applications can be distributed across sandb()éggst_v treats a guest VM domain as an extra ring of

20nly for those drivers that have been mapped as shared betwBsgMOry pr(?t_eCtion in addition to the traditional kemel
specific sandboxes. and user privilege levels. However, instead of having one




hypervisor for the whole system, Quest-V has one moni-EPT support alone is actually insufficient to prevent
tor running in the host domain for each sandbox as shofawilty device drivers from corrupting the system. It is
earlier in Figure 1. Each sandbox kernel performs its owtill possible for a malicious driver or a faulty device to
local scheduling and I/0O handling without the cost of VMPMA into arbitrary physical memory. This can be pre-
Exits into a monitor. VM-EXits are only needed to handieented with technologies such as Intel’s VT-d, which re-
software faults and update EPTs. strict the regions into which DMAs can occur using IOM-
MUs. However, this is still insufficient to address other
more insidious security vulnerabilities such as “white-rab
bit” attacks [40]. For example, a PCle device can be con-
The isolation provided by memory virtualization requirefégured fo generate a Message Signaled Interrupt (MSI)

additional steps to translate guest virtual addressessio H%ith arbitrary vector and delivery mode by writing to local
IC memory. Such malicious attacks can be addressed

physical addresses. Modern processors with hardw’z%% . :
support avoid the need for software managed shadow p Ing hardware techniques such as Interrupt Remapping

tables, and they also support TLBs to cache various inter- ilHavn;g Tta_'d tlh'f’ the f(;qu? ?f 9“: Wotrkdls prel_do;pl-
mediate translation stages. nantly on fault isolation and safety in trusted application

domains, rather than security in untrusted systems.

3.1.2 Hardware-Assisted Memory Isolation

SB Kemel —|_PML4 [Directory Plr|D|re+ctory| Table | Offset 3.1.3 VCPU Scheduling
As stated earlier, Quest-V's goals are not only to ensure
—— 1 s 1 system safety, but also predictability. For use in real-
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E——— briefly explain how it provides temporal isolation between

[ Guest Domain [ Host Domain tasks and system events. This is the basis for real-time

_ _ tasks with specific resource requirements to be executed
Figure 2: Extended Page Table Mapping in bounded time, while allowing non-real-time tasks to

execute with specific priorities.

Figure 2 shows how address translation works forIn Quest-Vyirtual CPUs(VCPUSs) form the fundamen-
Quest-V guests (i.e., sandboxes) using Intel's extendatlabstraction for scheduling and temporal isolation ef th
page tables. Specifically, each sandbox kernel usessigstem. The concept of a VCPU is similar to thatin virtual
own internal paging structures to translate guest virtuabhchines [3, 5], where a hypervisor provides the illusion
addresses to guest physical addresses (GPAs). EPT sifimultiple physical CPUPCPUSsY represented as VC-
tures are then walked by the hardware to complete tAEs to each of the guest virtual machines. VCPUs exist
translation to host physical addresses (HPAS). as kernel abstractions to simplify the management of re-

On modern Intel x86 processors with EPT support, asurce budgets for potentially many software threads. We
dress mappings can be manipulated at 4KB page grage a hierarchical approach in which VCPUs are sched-
ularity. This gives us a fine grained approach to istled on PCPUs and threads are scheduled on VCPUs.
late sandbox kernels and enforce memory protection. FoA VCPU acts as a resource container [4] for scheduling
each 4KB page we have the ability to set read, write aad accounting decisions on behalf of software threads. It
even execute permissions. Consequently, attempts by 8@ev/es no other purpose to virtualize the underlying phys-
sandbox to access illegitimate memory regions of anotfie®l CPUs, since our sandbox kernels and their applica-
will incur an EPT violation, causing a trap to the locaions execute directly on the hardware. In particular, a
monitor. The EPT data structures are, themselves, re_?’We define a PCPU to be either a conventional CPU, a processing

Stri(.:ted to access by the monitors, thereby preventing taffye, or a hardware thread in a simultaneous multi-threadd)Sys-
pering by sandbox kernels. tem.




VCPU does not need to act as a container for cached 31t.4 Inter-Sandbox Communication

struction blocks that have been generated to emulate the

effects of guest code, as in some trap-and-emulate vilter-sandbox communication in Quest-V relies on mes-
alized systems. sage passing primitives built on shared memory, and

asynchronous event notification mechanisms using Inter-
In common with bandwidth preserving servers [2, 1Processor Interrupts (IPIs). IPIs are currently used to-com

31], each VCPUY, has a maximum compute time bugmunicate with remote sandboxes to assist in fault recov-
get, Conas, available in a time periodVy. V is con- € and can also be used to notify the arrival of mes-
strained to use no more than the fractigh — Cmaee Sages exchanged via shared memory channels. Monitors

of a physical processor (PCPU) in any window ‘6{: regfipdate extended page table mappings as necessary to es-

time, Vi, while running at its normal (foreground) prior_tablish message passing channels between specific sand-

ity. To avoid situations where PCPUs are idle when the?@x€S: Only those sandboxes with mapped shared pages
are threads awaiting service, a VCPU that has expired#& able to_commumcate with one another. _AII other sand-
budget may operate at a lower (background) priority. Apoxes are isolated from these memory regions.
background priorities are set below those of foreground” Mailboxdata structure is set up within shared mem-
priorities to ensure VCPUs with expired budgets do n8fY Py ach end of a communication channel. By default,
adversely affect those with available budgets. Quest-V currently supports asynchronous communication
by polling a status bit in each relevant mailbox to deter-
Quest-V defines two classes of VCPUs: [23in VC- Mine message arrival. Message passing threads are bound
PUs are used to schedule and track the PCPU usagd®¥CPUs with specific parameters to control the rate of
conventional software threads, while (2p VCPUsare exchange of information. Likewise, sending and receiving
used to account for, and schedule the execution of, fRreads are assigned to higher priority VCPUs to reduce
terrupt handlers for 1/O devices. This distinction allowid€ latency of transfer of information across a communi-
for interrupts from I/O devices to be scheduled as threagtion channel. This way, shared memory channels can
which may be deferred execution when threads associd¥€dPrioritized and granted higher or lower throughput as
with higher priority VCPUs having available budgets ar@eeded, while ensuring information is communicated in
runnable. The flexibility of Quest-V allows 1/0 VCPUSA predictable manner. Thus, Quest-V supports real-time
to be specified for certain devices, or for certain tasks tif@mmunication between sandboxes without compromis-
issue I/0 requests, thereby allowing interrupts to be hdRd the CPU shares allocated to non-communicating tasks.
dled at different priorities and with different CPU shares
than conventional tasks associated with Main VCPUS. 3.1 5 |nterrupt Distribution and /O Management

By default, VCPUs act like Sporadic Servers [30BY default, Quest-V allows interrupts to be delivered di-
Local APIC timers are programmed to replenish VCPctly to sandbox kernels. Hardware interrupts are deliv-
budgets as they are consumed during thread executied toall sandbox kernels with access to the correspond-
We use the algorithm by Stanovich et al [32] to correiftg device. This avoids the need for interrupt handling
for early replenishment and budget amplification in tHe be performed in the context of a monitor as is typi-
POSIX specification. Sporadic Servers enable a systeally done with conventional virtual machine approaches.
to be treated as a collection of equivalent periodic tasRsiest-V does not need to do this since complex 1/O virtu-
scheduled by a rate-monotonic scheduler (RMS) [22]lization is not required. Instead, early demultiplexing i
This is significant, given 1/O events can occur at arbihe sandboxed device drivers determines if subsequent in-
trary (aperiodic) times, potentially triggering the wageuterrupt handling should be processed locally. If that is not
of blocked tasks (again, at arbitrary times) having highthe case, the local sandbox simply discards the interrupt.
priority than those currently running. RMS analysis cafve believe this to be less expensive than going through a
be applied, to ensure each VCPU is guaranteed its sh@dedicated coordinator as is done in Xen [5] and others.
of CPU time,Vy,, in finite windows of real-time. Quest-V uses the I/O APIC found on modern x86 plat-

forms to multicast hardware interrupts &l sandboxes

An example schedule is provided in Figure 3 for thresharing a corresponding deviceThe 1/O APIC is re-
VCPUs, whose budgets are depleted when a correspgmegrammed as necessary to re-route interrupts as part of
ing thread is executed. Priorities are inversely propdault recovery, when a new sandbox is required to con-
tional to periods. As can be seen, each VCPU is grantatlie or restore a service. We expect the number of sand-
its real-time share of the underlying physical CPU. boxes sharing a device to be relatively low (around 2-4
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Figure 3: Example VCPU Schedule

cores) so multicasting interrupts should not be an issudransfers to local APIC memory-mapped pages, to trig-
Aside from interrupt handling, device drivers need tger arbitrary interrupts. A “storm” of IPIs could then be
be written to support inter-sandbox sharing. Certain datispatched to remote cores, potentially flooding the sys-
structures have to be duplicated for each sandbox kertiein bus. In our tests to generate as many IPIs as quickly
while others are shared and protected by synchronizatispossible we did not observe this as a problem, since
primitives. For example, with a NIC driver, we duplithere appears to be a limit on the number of interrupts
cate indices into the receive (RX) ring buffer, while shagn the bus itself. Moreover, Quest-V runs all interrupt
ing both the transmit (TX) and RX buffers between saniandlers as threads bound to time-budgeted VCPUs, so
boxes. Synchronization is used to read and update RX @nbiurst of interrupts cannot cause denial-of-service. A
TX descriptors in the respective ring buffers. Figure YMCPU is placed into a background (low) priority class un-
shows an RX ring buffer shared between 4 sandboxdkits budget is replenished.
with separate indices. Betweerandt + 1, sandboxes
2,3, aqd 4 all handle interrupts and advance _their indicgs_z Fault Recovery
The driver needs to be written so that a slot in the buffer
only becomes ready for DMA data when it is not refeQuest-V is designed to be robust against software faults
enced byanyindex. Any of the 4 sandboxes can examiriéiat could potentially compromise a system kernel. As
indexes to see if one is lagging abovéheesholdbehind long as the integrity of one sandbox is maintained it is the-
the others, as might be the case for a faulty sandbox.ofetically possible to build a Quest-V multikernel capable
functioning sandbox can then correct this by advanciog recovering service functionality online. This contsast

indexes as necessary, or triggering fault recovery. with a traditional system approach, which may require a
full system reboot if the kernel is compromised by faulty
RX Ring Buffer at Time t RX Ring Buffer at Time t + 1 Software SUCh as a device driver_

In this paper, we assume the existence of technigues to
identify faults. Although fault detection mechanisms are
not necessarily straightforward, faults are easily detict
in Quest-V if they generate EPT violations. EPT viola-
tions transfer control to a corresponding monitor where
they may be handled. More elaborate schemes for iden-
tifying faults will be covered in our future work. Here,
we explain the details of how fault recovery is performed
Figure 4: Example NIC RX Ring Buffer Sharing  without requiring a full system reboot.

The duplication of certain driver data structures, and Quest-V allows for fault recovery e|t_her in the local
sandbox, where the fault occurred, or in a remote sand-

synchronization on shared data may impact the perf%r-x that is presumably unaffected. Upon detection of a

mance of hardware devices multiplexed between Sa?at]lt, a method for passing control to the local monitor is

boxes. ~ However, I/O virtualization technologies t(r)e uired. We assume monitors are trusted and have a min-
support device sharing such as SR-IOV [18] are naw- )

emerging, although not commonplace in embedded S|mal code base. If the fault does not automatically trigger

. . M-EXxit, it can be forced by a fault handler issuing an
tems. Without hardware support, Quest-V’s software- S . )
. X . ropriate instructiorf. An astute reader might assume
based shared driver approach is arguably more flexi

. . : , nat carefully crafted malicious attacks to compromise a
than having devices assigned to single sandboxes, ng &tem might try to rewrite fault detection code within a
technologies such as VT-d support I/O passthrough, th gnt try

do not allow device sharing. sandbox, thereby preventing a monitor from ever gaining

Itis possible that faulty device drivers could issue DMA “For example, on the x86, thepui d instruction forces a VM-Exit.

Buinow xapu|
Buinopy xapu|

)

@ Sandbox x read index @ Driver DMA index
@ Readyfor DMA @ Not Ready for DMA @ DMA Data Available




control. First, this should not be possible if the fault devhere a replacement for the compromised service already
tection code is presumed to exist in read-only memomxkists, and which does not require a significant degree of
which should be the case for the sandbox kernel text segHnitialization. While an alternative sandbox effectjve
ment. This segment cannot be made write accessible siregimes execution of a prior service request, possibly in-
any code executing within a sandbox kernel will not hawelving a user-level thread migration, the corrupted sand-
access to the EPT mappings controlling host memory &ox can be “healed” in the background. This is akin to
cess. However, it is still possible for malicious code to er-distributed system in which one of the nodes is taken
ist in writable regions of a sandbox, including parts of thaffline while it is being upgraded or repaired.
data segment. To guard against compromised sandboxda Quest-V, remote fault recovery involves the local
that lose the capability to pass control to their monitor asonitor identifying a target sandbox. There are many
part of fault recovery, certain procedures can be adoptpdssible policies for choosing a target sandbox that will
One such approach would be to periodically force trapssume an affected service request. However, one sim-
to the monitor using preemption timeoutl]. This way, ple approach is to pick any available sandbox in random
the fault detection code could itself be within the monitoarder, or according to a round-robin policy. In more com-
thereby isolated from any possible tampering from a malex decision-making situations, a sandbox may be cho-
licious attacker or faulty software component. Many a&fen according to its current load. Either way, the local
these techniques are still under development in Questidnitor informs the target sandbox via an IPI. Control is
and will be considered in our future work. then passed to a remote monitor, which performs the fault
Assuming that a fault detection event has either trifgcovery. Although out of the scope of this paper, infor-
gered a trap into a monitor, or the monitor itself is trighation needs to be exchanged between monitors about the
gered via a preemption timeout and executes a fault @&tions necessary for fault recovery and what threads, if
tector, we now describe how the handling phase proceedfdy, need to be migrated.

Local Fault Recovery. In the case of local recovery,

the corresponding monitor is required to release the allo- — Component Canp
. . . . i 0 ecovery in
cated memory for the faulting components. If insufficient Failure Betection Local Sandbox Remote Sandbox | _\ A_
. . . . il S
information is available about the extent of system dam- 72 e gl g
@ ® <

age, the monitor may decide to re-initialize the entireloca- - - - - —-t+-—-—-—-4 "= -— - — - — = - — - - —
sandbox, as in the case of initial system launch. Any ac-tios v
tive communication channels with other sandboxes may Fault Identification
be affected, but the remote sandboxes that are otherwise fnd rendihe

isolated will be able to proceed as normal.

As part of local recovery, the monitor may decide to —
replace the faulting component, or components, with al- % %
ternative implementations of the same services. For ex-
ample, an older version of a device driver that is perhaps
not as efficient as a recent update, but is more rigorously A
tested, may be used in recovery. Such component replace- _
ments can lead to system robustness through functional or {55?”'””“’ b | [ Meoiery )() lops
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implementatiordiversity[39]. That is, a component suf-

. . . . Monitor Lt M,oﬁlllt—or Monitor
fering a fault or compromising attack may be immune to d @ :
the same fault or compromised behavior ifimplemented in ; p
an alternative way. The alternative implementation could, NiC

perhaps, enforce more stringent checks on argument types
and ranges of values that a more efficient but less safe im-
plementation m|ght avoid. Observe that alternative rep'An examp|e of remote recovery involving a network in_
resentations of software components could be residentdiface card (NIC) driver is shown in Figure 5. Here, an
host physical memory, and activated via a monitor thgd) js issued from the faulting sandbox to the remote sand-
adjusts EPT mappings for the sandboxed guest. box via their respective monitors, in order to kick-start
Remote Fault Recovery. Quest-V also supports thethe recovery procedures after the fault has been detected.
recovery of a faulty software component in an altern&eor the purposes of our implementation, an arbitrary tar-
tive sandbox. This may be more appropriate in situatioget sandbox is chosen. The necessary state information

Figure 5: Example NIC Driver Recovery



needed to restore service is retrieved from shared memdril  Fault Recovery

using message passing if available. In our simple tests, we .
assume that the NIC driver's state is not recovered, but {2 demonstrate the fault recovery mechanism of Quest-

stead the driver is completely re-initialized. This mears We intentionally corrupted the NIC driver on the mini-
that any prior in-flight requests using the NIC driver will X machine while running a HTTP 1.0-compliant single-
be discarded. threaded web server in user-space. Our simple web server

The major phases of remote recovery are listed in b s ported to a socket API that we implemented on top

the flow chart and diagram of Figure 5. In this exampl8, IWItP'd'At‘ remo;e Lmuxtmatchlnf ru:gr(l)gt tperf ag'd .
the faulting NIC driver overwrites the message channeltl’?lmp edlo sendrequests atarate o per second during
the local sandbox kernel. After receiving an IPI, the ré)_oth the period of driver failure and normal operation of

mote monitor resumes its sandbox kernel at a point tljig? web server. Request URLS referred to the Quest-V

re-initializes the NIC driver. The newly selected sandb&ebs'te’ with a size of 17675 bytes.

responsible for recovery then redirects network intesupt " 9Ure 6 shows the request and response rate over sev-
to itself. Observe that in general this may not be negr@! seconds during which the server was affected by the
essary because interrupts from the network may alred@!ting driver. The request and response rate recorded by
be multicast and, hence, received by the target sandddxt Per f drops for a brief period while the NIC driver

Likewise, in this example, the target sandbox is C‘,;maﬂ%re-initialized and the web server is restarted in another
of influencing interrupt redirection via an /0 APIC peSandbox to the one that failed. Steady-state is reached in

cause of established capabilities granted by its monitor'gss than 0.5s of driver failure. This is significantly faste

may be the case that a monitor does not allow such &N & system reboot, which can take over a minute to
pabilities to be given to its sandbox kernel, requiring tHEStart the network service.
monitor itself to be responsible for interrupt redirection
When all the necessary kernel threads and user pro-
cesses are restarted in the remote kernel, the network serz
vice will be brought up online. In our example, the local
sandbox (with the help of its monitor) will identify the
damaged message channel and try to restore it in step 4.
In the current implementation of Quest-V, we assume
that all recovered services are re-initialized and any out-
standing requests are either discarded or can be resume§

140

120 1

100

sts (Replies) / Seco

80 |

without problems. In general, many software componentsx . | Request —— |
may require a specific state of operation to be restored for ‘ ‘ ‘ Reply ———
correct system resumption. In such cases, we would need o os 1 18 2 25 3 35
a scheme similar to those adopted in transactional sys- Time (Seconds)

tems, to periodically checkpoint recoverable state. Snap- ]

shots of such state can be captured by local monitors at Figure 6: Web Server Recovery

periodic intervals, or other appropriate times, and stored

: . Fault recovery can occur locally or remotely. In this
in memory outside the scope of each sandbox kernel. y y Y

experiment, we saw little difference in the cost of ei-
ther approach. Either way, the NIC driver needs to be
. . re-initialized. This either involves re-initializatiorf the
4 Experimental Evaluation same driver that faulted in the first place, or an alterna-
tive driver that is tried and tested. As fault detection it no
We conducted a series of experiments that compafadhe scope of this paper, we triggered the fault recov-
Quest-V to both Linux and a non-virtualized Quest sys+y event manually by assuming an error occurred. Aside
tem. For network experiments, we ran Quest-V on a miritom optional replacement of the faulting driver, and re-
ITX machine with a Core i5-2500K 4-core processor, feititialization, the network interface needs to be restarte
turing 8GB RAM and a Realtek 8111e NIC. In all othefFhis involves re-registering the driver with IwlP and as-
cases we used a Dell PowerEdge T410 server with an $igning the interface an IP address.
tel Xeon E5506 2.13GHz 4-core processor, featuring 4GBThe time for different phases of kernel-level recovery
RAM. Unless otherwise stated, all software threads weaseshown in Table 1. The only added cost not shown is
bound to Main VCPUs with 100% utilization. to restart the web server but Figure 6 shows this not to



be expensive. For most system components, we exp@aest. Extra levels of address translation with extended
re-initialization to be the most significant recovery cost.paging only incur costs above the two-level paging of a
32-bit Quest virtual memory system when address spaces

Ph CPU Cycles are larger tharb12 pages. For embedded systems, we
ases Local Recovery[ Remote Recovery . P . . .
VVERT 885 do not see this as a limitation, as most applications will
Driver Replacement 10503 N/A have smgller worki_ng sets. As can be seen, the costs of

IPI Round Trip N/A 4542 a VM-Exit are equivalent to a TLB flush, but Quest-V
VM-Enter 663 avoids this by operating more commonly in Qeest - V
Driver Re-initialization 1.45E+07 base case. Hence, extended paging does not incur signif-
Network I/F Restart 78351

icant overheads under normal circumstances, as the hard-
Table 1: Overhead of Different Phases in Fault Recove§are TLBs are being used effectively.

4.2 Forkwait Microbenchmark 140 ————
Quest-V VM Exit ——
In Quest-V, sandboxes spend most of their life-time in 120 b OGS TIR Flush -
guest mode, and system calls that trigger context switches g 100 | ngjg;/t Pase
will not induce VM-Exits to a monitor. Consequently, 2 gl -~
we tried to measure the overhead of hardware virtualiza- &
tion on normal system calls for Intel x86 processors. We g o
chose thd or kwai t microbenchmark [3] because it in- & 407
volves two relatively sophisticated system callspi( k 20 t
andwai t pi d), involving both privilege level switches 0 et et

and memory operations. o1 ZN b3 f: 5100 6 7 8
40000 new processes were forked in each set of exper- umber of Pages (x100)
iments and the total CPU cycles were recorded. We then

compared the performance of Quest-V against a version Figure 7: Data TLB Performance

of Quest without hardware virtualization enabled, as well 300 —
as a Linux 2.6.32 kernel in both 32- and 64-bit configura- QUISL TLE Filsh —~
tions. Results in Table 2 suggest that hardware virtualiza- BOL e
tion does not add any obvious overhead to Quest-V system 8 200 | Quest Base =~ A ]
calls. Moreover, both Quest and Quest-V took less time E 150 |
than Linux to complete their executions. &
g 100 r
4.3 Address Translation Overhead 50
To show the costs of address translation as described in T s 4 s e v s
Figure 2, we measured the latency to access a humber of Number of Pages (x100)
data and instruction pages in a guest user-space process.
Figures 7 and 8 show the execution time of a process Figure 8: Instruction TLB Performance

bound to a Main VCPU with a0ms budget every00ms.
Instruction and data references to consecutive pages4i4 Interrupt Distribution and Handling
4160 bytes apart to avoid cache aliasing effects. The re-

sults show the average cost to access working sets taﬁ@ﬁ'des system calls, device interrupts also require con-

over 10 million iterations. In the cases where there ist%®! ©© be passed to a kernel. We therefore conducted

TLB flush or a VM exit, these are performed each tinfe series of experiments to show the overheads of inter-
the set of pages on the x-axis has been referenced.  'UPt delivery and handling in Quest-V. For comparison,

For working sets less thafl2 pages Quest-VRase W€ recorded the number of interrupts that occurred and

case) performs as well as a non-virtualized version total round trip time to procgss 3000(_) ping packets on
both Quest and Quest-V machines. In this case, the ICMP

requests were issued in 3 millisecond intervals from a re-
Quest | Quest-V | Linux32 | Linux64 mote machine. The results are shown in Table 3.
CPU Cycles| 9.03E+09) 9.20E+09| 9.37E+09| 1.29E+10 Notice that in Quest, all the network interrupts are di-
rected to one core and in Quest-V, we deliver network in-

Table 2: Forkwait Microbenchmark



Quest | Quest-V 45

#Interrupts 30004 | 30003 ol Qfec‘s?.s\ﬁ'\(ow ,,,,, -
Round-trip time (ms)| 5737 5742 ’
%\ > 0.020
Table 3: Interrupt Distribution and Handling Overhead § %0
2 25+ 0.015
= 4
. S 20 o010 A A
terrupts to all cores but only one core (i.e., one sandbox ¢ I 7
_ E 151 o005} P Iy
kernel) actually handles them. Each sandbox kernel in = ;| 0000 £E s A
Quest-V performs early demultiplexing to identify the tar- 05| 2027 28200001 7
get for interrupt delivery, discontinuing the processitig o 0.0 . . S S ‘
26 28 210 212 214 216 218 220

interrupts that are not meant to be locally processed. Con-
sequently, the overhead with Quest-V also includes dis-
patching of interrupts from the 1/0O APIC. However, we
can see from the results that the performance difference
between Quest and Quest-V is almost negligible, meaning
neither hardware virtualization nor multicasting of inter goms periods and 40% utilizations for both the sender
rupts is prohibitive. Here, Quest-V does not require imd receiver. In the latter case, a shell process was bound
tervention of a monitor to process interrupts. Instead, ifer a highest priority VCPU. As can be seen, the VCPU
terrupts are directed to sandbox kernels according to rulggameters have an effect on message transfer times.
setup in corresponding virtual machine control structures |n our experiments, the time spent for each size of
message was averaged over a minimum of 5000 trials to
45 Inter-Sandbox Communication normalize the schedylin'g overhead. The communication
costs grow linearly with increasing message size, because
The message passing mechanism in Quest-V is built they include the time to access memory.
shared memory. While we will consider NUMA effects
in the future, they are arguably less important for the en-
bedded systems we are targeting. Instead of focusing on
memory and cache optimization, we tried to study the ifle demonstrate fault isolation in Quest-V, we created a
pact of scheduling on message passing in Quest-V.  scenario that includes both message passing and network

We setup two kernel threads in two different sandb®ervice across 4 different sandboxes. Specifically, sand-
kernels and assigned a VCPU to each of them. One Keox 1 has a kernel thread that sends messages through
nel thread used a 4KB shared memory message pasginigate message passing channels to sandbox 0, 2 and 3.
channel to communicate with the other thread. In the fiflSach private channel is shared only between the sender
case, the two VCPUs were the highest priority with thesind specific receiver, and is guarded by EPTs. In addition,
respective sandbox kernels. In the second case, the saadbox 0 also has a network service running that handles
VCPUs were assigned lower utilizations and prioritiefCMP echo requests. After all the services are up and
to identify the effects of VCPU parameters (and scheduilinning, we manually break the NIC driver in sandbox
ing) on the message sending and receiving rates. In bOtloverwrite sandbox 0’s message passing channel shared
cases, the time to transfer messages of various sizes aonagssandbox 1, and try to wipe out the kernel memory of
the communication channel was measured. Note tlother sandboxes to simulate a driver fault. After the driver
the VCPU scheduling framework ensures that all threa@silt, sandbox 0 will try to recover the NIC driver along
are guaranteed service as long as the total utilizationvath both network and message passing services running
all VCPUs is bounded according to rate-monotonic thet it. During the recovery, the whole system activity is
ory [22]. Consequently, the impacts of message passpigtted in terms of message reception rate and ICMP echo
on overall system performance can be controlled and iseply rate in all available sandboxes and the results are
lated from the execution of other threads in the system.shown in Figure 10.

Figure 9 shows the time spent exchanging messagek the experiment, sandbox 1 broadcasts messages to
of various sizes, plotted on a log scalQuest-V Hiis others at 50 millisecond intervals, while sandbox 0, 2
the plot for message exchanges involving high-priorignd 3 receive at 100, 800 and 1000 millisecond intervals.
VCPUs havingl00ms periods and 50% utilizations forAlso, another machine in the local network sends ICMP
both the sender and receiv&uest-V Lows the plot for echo requests at 500 millisecond intervals to sandbox 0.
message exchanges involving low-priority VCPUs havirgl message passing threads are bound to Main VCPUs

Message Size (bytes)

Figure 9: Message Passing Microbenchmark

Isolation
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with 100ms periods and 20% utilization. The networkzed systems, although it is inferior to a non-virtualized
driver thread is bound to an I/O VCPU with 10% utilizatinux system for network throughput. We attribute this
tion and10ms period. in part to the virtualization overheads but also to our sys-
Results show that an interruption of service happentsin not yet being optimized. Future work will focus on
for both message passing and network packet procesgisgformance tuning our system to reach throughput val-
in sandbox 0, but all the other sandboxes were unaffectads closer to Linux, but initial results are encouraging.
This is because of memory isolation between sandboxéste that the increases in throughput for all cases of in-
enforced by EPTs. When the “faulty” driver in sandbox €reasednet per f instances, except for paravirtualized
tries to overwrite memory of the other sandboxes, it sitten Xen ( PVM ), appear to be because of the increased
ply traps into the local monitor because of a memory Miraffic being generated by the clients. Xen is apparently
olation. Consequently, the only memory that the driveensitive to the VCPU utilization for its communicating
can wipe out is only the writable memory in sandbox ¢hreads [41, 23].
Hence all the monitors and other sandboxes will remain

protected from this failure.
5 Related Work

4.7 Shared Driver Performance _ _ _ _
The concept of a multikernel is featured in Barrelfish[6],

We implemented a shared driver in Quest-V for a singihich has greatly influenced our work. Barrelfish repli-
NIC device, providing a separate virtual interface for eadates system state rather than sharing it, to avoid the costs
sandbox requiring access. This allows for each sandboxfasynchronization and management of shared data struc-
have its own IP address and even a virtual MAC addrasses. As with Quest-V, communication between ker-
for the same physical NIC. nels is via explicit message passing, using shared mem-
We compared the performance of our shared driver dgy channels to transfer cache-line-sized messages. In
sign to the 1/O virtualization adopted by Xen 4.1.2, bottontrast to Barrelfish, Quest-V uses virtualization mech-
para-virtualized (PVM) and hardware-virtualized (HVM)anisms to partition separate kernel services as part of our
We used an x864 root-domain (Dom0) for Xen, basedyoal to develop high-confidence systems.
on Linux 3.1. For guests, and non-virtualization cases, weSystems such as Hive [10] and Factored OS (FOS) [36]
also used Ubuntu Linux 10.04 (32-bit kernel 2.6.32).  also take the view of designing a system as a distributed
Figure 11 shows UDP throughput measurements usitglection of kernels on a single chip. FOS is primar-
net per f, which was ported to the Quest-V and nority designed for scalability on manycore systems with
virtualized Quest - SMP systems. Up to set perf potentially 100s to 1000s of cores. Each OS service is
clients were run in separate guest domains, or sandboxastored into a set of communicating servers that collec-
for the virtualized systems. For Xen, each guest had anely operate together. In FOS, kernel services are parti-
VCPU that was free to run on any processor. Similarly, fioned across spatially-distinct servers executing on sep
non-virtualized cases, the clients ran as separate threadse cores, avoiding contention on hardware resources
on arbitrary processors. Each client produced a streanso€h as caches and TLBs. Quest-V differs from FOS in its
16KB messages. primary focus, since the former is aimed at fault recovery
Quest-V shows better performance than other virtualhd dependable computing. Moreover, Quest-V manages
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resources across both space and time, providing real-tisapport based on C#. In Quest-V, virtualization tech-
resource management that is not featured in the scalatbitpues are used to isolate software components. While
collection of microkernels forming FOS. this may seem more expensive, we have seen on modern

Hive [10] is a standalone OS that targets features of thgdcessors with hardware virtualization support that this
Stanford FLASH processor to assign groups of proce#snot the case.
ing nodes taells Each cell represents a collection of ker- In other work, Corey[8] is a library OS providing an in-
nels that communicate via message exchanges. The witeléace similar to the Exokernel[13], and which attempts
system is partitioned so that hardware and software fadfisaddress the bottlenecks of data sharing across modern
are limited to the cells in which they occur. Such faumulticore systems. Cores can be dedicated to applications
containment is similar to that provided by virtual machinghich then communicate via shared memory IPC. Quest-
sandboxing, which Quest-V relies upon. However, unliRé similarly partitions system resources amongst sandbox
Quest-V, Hive enforces isolation using special hardwafernels, butin a manner that ensures isolation using mem-
firewall features on the FLASH architecture. ory virtualization.

There have been several notable systems relying on virFinally, Quest-V has similarities to systems that sup-
tualization techniques to enforce logical isolation and irROrt self-healing, such as ASSURE [29] and Vigilant [27].
plement scalable resource management on multicore &t¢h self-healing systems contrast with those that attempt
multiprocessor platforms. Disco [9] is a virtual machint® Vverify their functional correctness before deployment.
monitor (VMM) that was key to the revival in virtualiza-SeL4 [21] attempts to verify that faults will never occur at
tion in the 1990s. It supports multiple guests on mulfuntime, but as yet has not been developed for platforms
processor platforms. Memory overheads are reduced¥§prorting parallel execution of threads (e.g., multicore
transparently sharing data structures such as the filegy@cessors). Regardless, verification is only as good as the
tem buffer cache between virtual machines. rules against which invariant properties are being judged,

Cellular Disco [15] extends the Disco VMM with sup_and as a last line of defense Quest-V is able to recover at

port for hardware fault containment. As with Hive, th&Untime from unforeseen errors.

system is partitioned into cells, each containing a o Conclusions and Future Work
of the monitor code and all machine memory pages be-
longing to the cell's nodes. A failure of one cell only afyyig haner describes a virtualized multikernel, called
fects the VMs_u_smg resources in the cell. _Quest-V d‘?%est-v. Extended page tables are used to isolate sand-
not focus explicitly on hardware fault containment but i, \arnels across different cores in a multicore system.
systgm partitioning into separate kermnels means that itffgis jeads to a distributed system on a chip that is robust
possible to support such features. to software faults. While operational sandboxes proceed
Xen[5] is a subsequent VMM that uses a specigk normal, faulting sandboxes can be recovered online us-
driver domain and (now optional) paravirtualization tecling either local or remote fault recovery techniques.
niques [38] to support multiple guests. In contrast t0 gxperiments show that hardware virtualization does not
VMMs such as Disco and Xen, Quest-V operates as a siiq significant overheads in our design, as VM-Exits into
gle system with sandbox kernels potentially implementingonitor code are only needed to handle software faults
different services that are isolated using memory virtugjpq update extended page tables. Unlike conventional hy-
ization. Quest-V also avoids the need for a split-driv@faryisors that virtualize underlying hardware for use by
model involving a special domaiemD in Xen) to han- myitiple disparate guests, Quest-V assumes all sandboxes
dle device interrupts. are operating together as one collective system. Each
Helios [26] is another system that adopts multigagel- sandbox kernel is responsible for scheduling of its threads
lite kernels which execute on heterogeneous platformgnd VCPUSs onto local hardware cores. Similarly, memory
including graphics processing units, network interfaggiocation and I/O management are handled within each
cards, or specific NUMA nodes. Applications and segandbox without involvement of a monitor.
vices can be off-loaded to special purpose devices to retn this paper, we assume the existence of a fault de-
duce the load on a given CPU. Helios builds upon Sitector that transfers control to a local monitor for each
gularity [17] and all satellite microkernels communicatgéandbox. While such transfers can be triggered by EPT
via message channels. Device interrupts are directed {@dations, we will investigate more advanced techniques
coordinatorkernel, which restricts the location of driverstor fault detection. Similarly, we will investigate poles
Helios, Singularity, and th&ealed Process Architec-and mechanisms for online recovery of faults requiring
ture[17] enforce dependability and safety using languagjee continuation of stateful tasks. Some method of check-
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pointing and transactional recovery might be appropriate’] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
in such cases. Although our fault recovery schemes thus M. Fiuczynski, and B. E. Chambers. Extensibility,
far require re-initialization of a service, we feel thisigls
better in many cases than a full system reboot.

Since Quest-V is a system built from scratch, it lacks
the rich APIs and libraries found in modern systems. This
limits our ability to draw comparisons with current OSes,

as evidenced by our time spent portingt perf and a

socket API to Quest-V. We will continue to add more ex-
tensive features, while investigating techniques to askire
security as well as safety violations. Similarly, more ad-
vanced multi-threaded applications will be developed, to
study migration between sandbox kernels. Notwithstand-
ing, we believe Quest-V's design could pave the way foég]
future high-confidence systems, suitable for emerging ap-
plications in safety-critical, real-time and embedded do-
mains. NB: The source code is available on request.
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