SOFTWARE AND HARDWARE SYSTEM ARCHITECTURE FOR NEXT GENERATION VEHICLES

SHIV SIKAND
EXECUTIVE VICE PRESIDENT
DRAKO MOTORS

PROFESSOR RICHARD WEST
DEPT OF COMPUTER SCIENCE
BOSTON UNIVERSITY
MISSION

We create stunning, driver focused supercars that deliver exhilarating performance with maximum control and safety—on road and track.
Modern luxury vehicles have 50-150 ECUs
source: Strategy Analytics, IHS Markit

Global ECU market $63.6 billion (2018)
source: grandviewresearch.com

ADAS, HEVs and BEVs driving costs of electronics in vehicles

HEV + BEV ECUs 3% market in 2018
 + Potential rise to 15% by 2030
 + Continental & Bosch have 28% ECU market
 source: eenewsautomotive.com 2018
HARDWARE EVOLUTION

EMBEDDED MCUs
8 → 16 → 32 bit microcontrollers
Single core, single function
low performance, low power

SIMPLE RTOS
Compute / memory limited
Low communication bandwidth
High cost for functional safety
SOFTWARE EVOLUTION

Simple firmware

Model-based design

MATLAB, Embedded C/C++ single threaded code

Separate hardware for different software
criticality/integrity levels (ASIL A-D)

Linux / Windows for low-criticality infotainment

RTOS for high-criticality vehicle control
VEHICLE COMMUNICATIONS NETWORKS

I2C, CAN, LIN, Flexray, MOST
Bandwidth-limited (typically <1Mbps)

ETHERNET
Real-time challenges, jitter, no bandwidth reservation
Time-triggered Ethernet not yet commonplace
Switched architecture
TODAY’S ECU VEHICLE NETWORK

Diagnostics

Powertrain Gateway
- CAN / Flexray
 - Transmission Management
 - Engine Management
 - Battery Monitoring
 - Alternator Regulator

Body & Comfort Gateway
- CAN / LIN
 - Window Lift
 - HVAC & Comfort
 - Interior/Exterior Lighting
 - Door & Seat Modules

Chassis Gateway
- CAN / LIN / Flexray
 - Steer by Wire
 - Brake by Wire
 - Power Steering
 - Tire Pressure Monitoring

Infotainment Gateway
- Ethernet / MOST / CAN
 - Head Unit
 - Head Up Display
 - Navigation
 - Instrument Cluster (IC)
SEMICONDUCTOR EVOLUTION

Compute, memory & I/O challenge addressed by increasing count of MCUs/ECUs

More complex ECUs for BEVs (ADAS, battery mgmt, vehicle dynamics, IVI, IC, V2V, V2I,...)

Custom processors and SoCs

Cost explosion for OEMs
SEMICONDUCTOR EVOLUTION

From MHz to GHz

Clock speed scaling now over

Future is multicore
+ Already embraced outside automotive domain
+ Smartphones, tablets, laptops, desktops, servers
+ 8 cores on smartphones, 64+ on servers
+ Hardware virtualization features to separate functional components
FUNCTIONAL CONSOLIDATION

AIM: break the 1:1 mapping of vehicle functions to ECUs (minimize ECUs)

Replace hardware ECU functionality with software
+ $N > 1$ software functions per core
+ Easier to reconfigure
+ Easier to update
+ Easier to extend
+ Extend vehicle life and capabilities – Lower cost
AUTOMOTIVE OS REQUIREMENTS

Management of software functions
+ Tradeoffs in timing and safety criticality
+ Mixed-criticality functionality on single platform
 + e.g., ABS, torque vectoring vs infotainment
+ Time and space isolation (security)
+ ASIL requirements

Real-time vs non-real-time functions

Low cost

Fast Boot

Power Management
Drako DriveOS™

Uses PC-class hardware for the car

Multicore

Hardware virtualization

Integrated high-bandwidth I/O

Combine RTOS capabilities with legacy services for e.g., infotainment, ADAS
Drako DriveOS™

Leverage the Quest-V real-time partitioning hypervisor
- Open Source

Co-locate Quest RTOS with Linux and Android guests on same hardware

Real-time USB-CAN interface for communication with simple ECUs
+ Processing moved to PC, while ECUs communicate, sense and respond to data
QUEST-V PARTITIONING HYPERVISOR

More Critical

Less Critical

User Space

Kernel

Hardware

Sandbox 1

Sandbox 2

Sandbox M

Real-time Command & Control

Real-time Sensor Data Processing

Display & External Comms

Monitor

Monitor

Monitor

VCPU(s)

VCPU(s)

Linux

Core(s)

Core(s)

Core(s)

Memory

Memory

Memory

I/O Devices e.g. Motors, Servos

I/O Devices e.g. Cameras, LIDAR

I/O Devices e.g. GPU, NIC

...
EXAMPLE: DriveOS FOR NEXT-GEN IVI
DriveOS: SUPPORT FOR ANDROID IVI

Provide Android interface to securely configure vehicle & exchange data in real-time
Drako DriveOS™: QUEST-V VS NATIVE ANDROID

Quest-V tuned pipes empowers Android

+ More predictable communication (less jitter)
+ Greater throughput and lower delay
Single x86 multicore PC Solution

Can map all services to a single car PC

Real-time I/O via Quest-V Tuned Pipes
Drako DriveOS™: TUNED PIPES

Like POSIX pipes but guarantee throughput and delay on communication

Boomerang I/O subsystem supports real-time I/O across Quest RTOS and legacy OSes
 + Empowers legacy OSes (Linux, Android) with real-time capabilities
EXAMPLE SINGLE BOARD COMPUTER

Boomerang tuned pipe path (1) spans Quest + Linux + USB-CAN

Boomerang tuned pipe path (2) spans Quest + USB-CAN
Drako DriveOS™: BOOMERANG RESULTS

Boomerang sub-system in DriveOS meets communication timing guarantees
A Linux SMP (multicore) OS with real-time extensions cannot perform I/O predictably
CONCLUSIONS

Next-generation automotive systems require ECU functional consolidation

Automotive PC-class hardware a low-cost viable option

Need for a vehicle OS that integrates real-time and non-real-time mixed-criticality services

DriveOS™ uses hardware virtualization for real time temporal and spatial isolation
+ Uses Quest-V: World’s first real-time partitioning hypervisor with guaranteed I/O throughput and delay across criticality domains
QUESTIONS